Operation Control Design of Grid-Connected Photovoltaic and Fuel Cell/Supercapacitor Hybrid Energy Storage System
Abstract
:1. Introduction
2. Structure of the Grid-Connected PV-FSHESS System
3. Power Allocation Strategy of the FSHESS
3.1. Determination of Allowable SOC Range of the SC
3.2. Improved Power Allocation Strategy Based on Rules and SC Constraints
- (1)
- , SC charging and FC standing.
- (2)
- , SC discharging and FC discharging.
4. Grid-Connected Inverter Control Based on Modified Variable Speed Integral Nonlinear PI
4.1. Mathematical Model of the Grid-Connected Inverter
4.2. Modified Variable Speed Integral Nonlinear PI Algorithm
5. Results and Discussion
5.1. Power Allocation Effect Analysis of the FSHESS
5.2. Control Effect Analysis of the DC-Bus Voltage
5.3. Operation Effect Analysis of the Grid-Connected PV-FSHESS
6. Conclusions
- (1)
- The presented improved power allocation approach based on the low-pass filter and rules fully takes into account the specific characteristics of each ES unit in the FSHESS and the constraints for the SC’s safe operation, i.e., keeping the SC’s SOC in a reasonable range. With this strategy, the FSHESS can successively not only compensate for the power difference between the PV output power and load demands but also maintain the SC’s SOC in its allowable range.
- (2)
- The modified variable speed integral nonlinear PI control algorithm for the DC-bus voltage control can adaptively adjust the strength of the integral action according to the actual deviation between the reference value and real-time measurement of the DC-bus voltage, which can significantly reduce the system’s overshoot and oscillation. In addition, the introduction of the dead-zone nonlinear block is beneficial to decrease the power loss of the DC/AC generated by frequent adjustment of the controller.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PV | Photovoltaic |
FC | Fuel cell |
SC | Supercapacitor |
HESS | Hybrid energy storage system |
FSHESS | Fuel cell/supercapacitor hybrid energy storage system |
DN | Distribution network |
ES | Energy storage |
LIB | Li-ion battery |
MPPT | Maximum power point tracking |
SOC | State of charge |
OS | Operation state |
LPF | Low-pass filter |
DC | Direct current |
AC | Alternating current |
Ppv | The output power of PV |
Pfc | The power provided by FC |
Psc | The power provided by SC |
Pload | The power demand of loads |
PFSHESS | The total power undertaken by FSHESS |
ifc_ref | The actual discharging current reference value of FC |
isc_ch | The charging current of SC under full power compensation |
isc_ch_ref | The actual charging current reference value of SC |
isc_dis | The discharging current of SC |
isc_dis_ref | The actual discharging current reference value of SC |
usc_c | The actual terminal voltage of SC |
iinv | The input side current of the inverter |
ia,b,c | The output side current of the inverter |
ua,b,c | The output side voltage of the inverter |
ea,b,c | The grid voltage |
Cdc | The DC-bus capacitance |
Udc | The actual DC-bus voltage |
Udc_ref | The voltage reference value of DC-bus |
id_ref | The grid-connected current reference value of d-axis |
Uerr | The DC-bus voltage deviation |
e | The input of the modified variable speed integral controller |
References
- Shakeel, S.R.; Yousaf, H.; Irfan, M.; Rajala, A. Solar PV adoption at household level: Insights based on a systematic literature review. Energy Strategy Rev. 2023, 50, 101178. [Google Scholar] [CrossRef]
- Verbytskyi, I.; Lukianov, M.; Nassereddine, K.; Pakhaliuk, B.; Husev, O.; Strzelecki, R.M. Power converter solutions for industrial PV applications—A review. Energies 2022, 15, 3295. [Google Scholar] [CrossRef]
- Yan, X.; Wang, Q.; Bu, J. High penetration PV active distribution network power flow optimization and loss reduction based on flexible interconnection technology. Electr. Power Syst. Res. 2024, 226, 109839. [Google Scholar] [CrossRef]
- Sattar, F.; Ghosh, S.; Isbeih, Y.J.; El Moursi, M.S.; Al Durra, A.; El Fouly, T.H.M. A predictive tool for power system operators to ensure frequency stability for power grids with renewable energy integration. Appl. Energy 2024, 353, 122226. [Google Scholar] [CrossRef]
- Zidane, T.E.K.; Aziz, A.S.; Zahraoui, Y.; Kotb, H.; Aboras, K.M.; Kitmo; Jember, Y.B. Grid-connected Solar PV power plants optimization: A review. IEEE Access 2023, 11, 79588–79608. [Google Scholar] [CrossRef]
- Yildiz, B.; Stringer, N.; Klymenko, T.; Syahman, S.M.; Abramowitz, G.; Bruce, A.; MacGill, I.; Egan, R.; Sproul, A.B. Real-world data analysis of distributed PV and battery energy storage system curtailment in low voltage networks. Renew. Sustain. Energy Rev. 2023, 186, 113696. [Google Scholar] [CrossRef]
- Rezaeimozafar, M.; Duffy, M.; Monaghan, R.F.D.; Barrett, E. A hybrid heuristic-reinforcement learning-based real-time control model for residential behind-the-meter PV-battery systems. Appl. Energy 2024, 355, 122244. [Google Scholar] [CrossRef]
- Bullich-Massagué, E.; Cifuentes-García, F.; Glenny-Crende, I.; Cheah-Mañé, M.; Aragüés-Peñalba, M.; Díaz-González, F.; Gomis-Bellmunt, O. A review of energy storage technologies for large scale photovoltaic power plants. Appl. Energy 2020, 274, 115213. [Google Scholar] [CrossRef]
- Datta, U.; Kalam, A.; Shi, J. Battery energy storage system control for mitigating PV penetration impact on primary frequency control and state-of-charge recovery. IEEE Trans. Sustain. Energy 2020, 11, 746–757. [Google Scholar] [CrossRef]
- Abid, H.; Thakur, J.; Khatiwada, D.; Bauner, D. Energy storage integration with solar PV for increased electricity access: A case study of Burkina Faso. Energy 2021, 230, 120656. [Google Scholar] [CrossRef]
- Bharatee, A.; Ray, P.K.; Ghosh, A. A power management scheme for grid-connected PV integrated with hybrid energy storage system. J. Mod. Power Syst. Clean Energy 2022, 10, 954–963. [Google Scholar] [CrossRef]
- Cano, A.; Arévalo, P.; Benavides, D.; Jurado, F. Comparative analysis of HESS (battery/supercapacitor) for power smoothing of PV/HKT, simulation and experimental analysis. J. Power Sources 2022, 549, 232137. [Google Scholar] [CrossRef]
- Rezaeimozafar, M.; Monaghan, R.F.D.; Barrett, E.; Duffy, M. A review of behind-the-meter energy storage systems in smart grids. Renew. Sustain. Energy Rev. 2022, 164, 112573. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, J.; Li, J. Coordinated control strategy of hybrid energy storage to improve accommodating ability of PV. J. Eng. 2017, 2017, 1555–1559. [Google Scholar] [CrossRef]
- Akram, U.; Shah, R.; Mithulananthan, N. Hybrid energy storage system for frequency regulation in microgrids with source and load uncertainties. IET Gener. Transm. Distrib. 2019, 13, 5048–5057. [Google Scholar] [CrossRef]
- Sheng, C.; Fu, J.; Li, D.; Jiang, C.; Guo, Z.; Li, B.; Lei, J.; Zeng, L.; Deng, Z.; Fu, X.; et al. Energy management strategy based on health state for a PEMFC/Lithium-ion batteries hybrid power system. Energy Convers. Manag. 2022, 271, 116330. [Google Scholar] [CrossRef]
- Peng, W.; Chen, Q.; Manandhar, U.; Wang, B.; Rodriguez, J. Event-triggered model predictive control for the inverter of a grid-connected microgrid with a battery-supercapacitor HESS. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 5540–5552. [Google Scholar] [CrossRef]
- Abdalla, Y.S.; Ali, N.; Alanazi, A.; Alanazi, M.; Armghan, H.; Sharaf, M.A.; Boudabbous, A.R.; Armghan, A. Fast reaching law based integral terminal sliding mode controller for photovoltaic-fuel cell-battery-super capacitor based direct-current microgrid. J. Energy Storage 2022, 56, 105915. [Google Scholar] [CrossRef]
- Guo, Z.; Ye, Z.; Ni, P.; Cao, C.; Wei, X.; Zhao, J.; He, X. Intelligent digital twin modelling for hybrid PV-SOFC power generation system. Energies 2023, 16, 2806. [Google Scholar] [CrossRef]
- Sharma, R.K.; Mishra, S. Dynamic power management and control of a PV PEM fuel-cell-based standalone ac/dc microgrid using hybrid energy storage. IEEE Trans. Ind. Appl. 2018, 54, 526–538. [Google Scholar]
- Ghazanfari, A.; Hamzeh, M.; Mokhtari, H.; Karimi, H. Active power management of multihybrid fuel cell/supercapacitor power conversion system in a medium voltage microgrid. IEEE Trans. Smart Grid 2012, 3, 1903–1910. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, G.; Lei, Y.; Zheng, H. Current status and prospects of control strategy for a DC micro grid hybrid energy storage system. Power Syst. Prot. Control 2021, 49, 177–187. [Google Scholar]
- Wang, Y.; Sun, Z.; Li, X.; Yang, X.; Chen, Z. A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems. Energy 2019, 189, 116142. [Google Scholar] [CrossRef]
- Jing, W.; Lai, C.H.; Wong, W.S.H.; Wong, M.L.D. A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification. Appl. Energy 2018, 224, 340–356. [Google Scholar] [CrossRef]
- Liu, H.; Ma, B.; Hao, S.; Huang, C.; Zhang, K. DC bus voltage and super capacitor charge management control in optical storage system. Control Theory Appl. 2022, 39, 1661–1669. [Google Scholar]
- Eydi, M.; Ghazi, R.; Buygi, M.O. A decentralized control method for proportional current-sharing, voltage restoration, and SOCs balancing of widespread DC microgrids. Int. J. Electr. Power Energy Syst. 2024, 155, 109645. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, J.; Zhou, J.; Zang, J.; Wang, J.; Shi, G.; Cai, X. Power and voltage control based on DC offset injection for bipolar low-voltage DC distribution system. J. Mod. Power Syst. Clean Energy 2023, 11, 1529–1539. [Google Scholar] [CrossRef]
- Meng, J.; Shi, X.; Wang, Y.; Fu, C.; Kou, W. Research on a fast and stable DC voltage control strategy of voltage sag generator system. Trans. China Electrotech. Soc. 2014, 29, 219–226. [Google Scholar]
- Cai, H.; Li, J.; Wang, Y.; Wei, W. Exploiting photovoltaic sources to regulate bus voltage for DC microgrids. Energies 2023, 16, 5123. [Google Scholar] [CrossRef]
- Li, X.; Liu, J. Real-time power distribution method adopting second-order filtering for hybrid energy storage system. Power Syst. Technol. 2019, 43, 1650–1657. [Google Scholar]
- Zhang, X.; Cao, R. Grid-Connected Photovoltaic Power Generation and Its Inverter Control; China Machine Press: Beijing, China, 2011; pp. 130–139. [Google Scholar]
- Zhou, K.; Wen, X.; Deng, T.; Zhang, J.; Zhang, Z.; Yang, D. A study on the DC-bus voltage stability control of photovoltaic power generation-supercapacitor energy storage grid-connected systems. Power Syst. Clean Energy 2024, 40, 47–55; 62. [Google Scholar]
Circuit Parameter | Value | Parameter Description |
---|---|---|
R1/Ω | 0.0005 | Input equivalent resistance of the boost DC/DC |
L1/H | 0.001 | Input inductance of the boost DC/DC |
R2/Ω | 0.0005 | Input equivalent resistance of the bidirectional DC/DC |
L2/H | 0.001 | Input equivalent inductance of the bidirectional DC/DC |
Cdc/F | 0.0022 | Capacitance of the DC-bus capacitor |
Esc/V | 300 | Terminal voltage of the SC |
Efc/V | 350 | Terminal voltage of the FC |
Udc_ref/V | 750 | Reference value of the DC-bus voltage |
Ppv_max/kW | 30 | Maximum output power of the PV |
L3/H | 0.0018 | Inductance of the grid-connected filter |
R3/Ω | 0.0005 | Equivalent resistance of the grid-connected filter |
ugrid/V | 380 | RMS of the grid-connected voltage |
f/Hz | 50 | Frequency of the DN |
Controller Parameters | Value | Parameter Description |
---|---|---|
δ | 5 | Dead-zone threshold |
ξ | 200 | Variable speed integral threshold |
kpu | 0.1 | Proportional coefficient of the voltage loop |
kiu | 100 | Integral coefficient of the voltage loop |
kpc | 1.5 | Proportional coefficient of the current loop |
kic | 0.0005 | Integral coefficient of the current loop |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, K.; Wen, X.; He, M.; Tang, Q.; Tan, J. Operation Control Design of Grid-Connected Photovoltaic and Fuel Cell/Supercapacitor Hybrid Energy Storage System. Energies 2025, 18, 1088. https://doi.org/10.3390/en18051088
Zhou K, Wen X, He M, Tang Q, Tan J. Operation Control Design of Grid-Connected Photovoltaic and Fuel Cell/Supercapacitor Hybrid Energy Storage System. Energies. 2025; 18(5):1088. https://doi.org/10.3390/en18051088
Chicago/Turabian StyleZhou, Ke, Xiankui Wen, Mingjun He, Qian Tang, and Junfeng Tan. 2025. "Operation Control Design of Grid-Connected Photovoltaic and Fuel Cell/Supercapacitor Hybrid Energy Storage System" Energies 18, no. 5: 1088. https://doi.org/10.3390/en18051088
APA StyleZhou, K., Wen, X., He, M., Tang, Q., & Tan, J. (2025). Operation Control Design of Grid-Connected Photovoltaic and Fuel Cell/Supercapacitor Hybrid Energy Storage System. Energies, 18(5), 1088. https://doi.org/10.3390/en18051088