A Perspective on Hydrogen Storage in the Energetic Transition Scenario
Abstract
1. Introduction
2. The Colours of Hydrogen: Production and Sustainability
3. Hydrogen Drawback: Security and Storage Issues and Technologies
4. The Realm of Hydrogen Storage Systems
4.1. Compressed Hydrogen
4.2. Liquid Hydrogen
4.3. Cold-Cryo Compressed Hydrogen
4.4. Physisorbed Hydrogen
4.5. Chemical Hydrogen Storage
5. Crunching the Numbers of the Hydrogen Storage Issue in the Pervasive Hydrogen Based Scenario
6. Conclusions and Future Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wolf, S.; Teitge, J.; Mielke, J.; Schütze, F.; Jaeger, C. The European Green Deal—More than climate neutrality. Intereconomics 2021, 56, 99–107. [Google Scholar] [CrossRef]
- Mokrzycki, E.; Gawlik, L. The development of a green hydrogen economy. Energies 2024, 17, 3165. [Google Scholar] [CrossRef]
- Migliavacca, G.; Carlini, C.; Domenighini, P.; Zagano, C. Hydrogen: Prospects and criticalities for future development and analysis of present EU and national regulation. Energies 2024, 17, 4827. [Google Scholar] [CrossRef]
- Vancoillie, J.; Demuynck, J.; Sileghem, L.; Van De Ginste, M.; Verhelst, S. Comparison of the renewable transportation fuels, hydrogen and methanol formed from hydrogen, with gasoline–Engine efficiency study. Int. J. Hydrogen Energy 2012, 37, 9914–9924. [Google Scholar] [CrossRef]
- Jesus, B.; Ferreira, I.A.; Carreira, A.; Erikstad, S.O.; Godina, R. Economic framework for green shipping corridors: Evaluating cost-effective transition from fossil fuels towards hydrogen. Int. J. Hydrogen Energy 2024, 83, 1429–1447. [Google Scholar] [CrossRef]
- Bleischwitz, R.; Bader, N. Policies for the transition towards a hydrogen economy: The EU case. Energy Policy 2010, 38, 5388–5398. [Google Scholar] [CrossRef]
- Satyapal, S.; Petrovic, J.; Read, C.; Thomas, G.; Ordaz, G. The US Department of Energy’s National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements. Catal. Today 2007, 120, 246–256. [Google Scholar] [CrossRef]
- Arcos, J.M.M.; Santos, D.M.F. The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production. Gases 2023, 3, 25–46. [Google Scholar] [CrossRef]
- Boretti, A. There are hydrogen production pathways with better than green hydrogen economic and environmental costs. Int. J. Hydrogen Energy 2021, 46, 23988–23995. [Google Scholar] [CrossRef]
- Nakkeeran, K.; Victor, K. Grey and blue hydrogen: Insights into production technologies and outlook on CO2-free alternatives. Sustain. Energy Technol. Assess. 2025, 75, 104222. [Google Scholar] [CrossRef]
- Incer-Valverde, J.; Korayem, A.; Tsatsaronis, G.; Morosuk, T. “Colors” of hydrogen: Definitions and carbon intensity. Energy Convers. Manag. 2023, 291, 117294. [Google Scholar] [CrossRef]
- Sanyal, A.; Malalasekera, W.; Bandulasena, H.; Wijayantha, K. Review of the production of turquoise hydrogen from methane catalytic decomposition: Optimising reactors for Sustainable Hydrogen production. Int. J. Hydrogen Energy 2024, 72, 694–715. [Google Scholar] [CrossRef]
- Howarth, R.W.; Jacobson, M.Z. How green is blue hydrogen? Energy Sci. Eng. 2021, 9, 1676–1687. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G. Hydrogen production for energy: An overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- de León, C.M.; Molina, P.; Ríos, C.; Brey, J. Green hydrogen production’s impact on sustainable development goals. Int. J. Hydrogen Energy 2025, 142, 642–653. [Google Scholar] [CrossRef]
- Serik, A.; Kuspanov, Z.; Daulbayev, C. Cost-effective strategies and technologies for green hydrogen production. Renew. Sustain. Energy Rev. 2026, 226, 116242. [Google Scholar] [CrossRef]
- International Energy Agency. Executive Summary. Available online: https://www.iea.org/reports/global-hydrogen-review-2024/executive-summary?utm_source=chatgpt.com (accessed on 5 December 2025).
- European Hydrogen Observatory. Cost of Hydrogen Production. Available online: https://observatory.clean-hydrogen.europa.eu/index.php/hydrogen-landscape/production-trade-and-cost/cost-hydrogen-production?utm_source=chatgpt.com (accessed on 5 December 2025).
- Singla, M.K.; Gupta, J.; Beryozkina, S.; Safaraliev, M.; Singh, M. The colorful economics of hydrogen: Assessing the costs and viability of different hydrogen production methods-A review. Int. J. Hydrogen Energy 2024, 61, 664–677. [Google Scholar] [CrossRef]
- Béres, R.; Junginger, M.; van den Broek, M. Assessing the feasibility of CO2 removal strategies in achieving climate-neutral power systems: Insights from biomass, CO2 capture, and direct air capture in Europe. Adv. Appl. Energy 2024, 14, 100166. [Google Scholar] [CrossRef]
- Ueckerdt, F.; Verpoort, P.C.; Anantharaman, R.; Bauer, C.; Beck, F.; Longden, T.; Roussanaly, S. On the cost competitiveness of blue and green hydrogen. Joule 2024, 8, 104–128. [Google Scholar] [CrossRef]
- Li, Y.; Hao, J.-S.; Zhou, Y. Economic analysis of different hydrogen production routes under a CO2 pricing mechanism—A levelized cost of hydrogen based study. Int. J. Hydrogen Energy 2025, 128, 47–67. [Google Scholar] [CrossRef]
- Shammah, N.; Favour, C.; Precious, N.; Emeka, N. Towards a Low-Carbon Energy Industry: Financial and Reputational Resilience Strategies of Integrated Energy Companies. In Proceedings of the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 4–6 August 2025; p. D021S011R006. [Google Scholar]
- Li, J.; Peng, X.; Gao, J.; Tang, Q. Detecting Greenwashing Behaviour in Decarbonization Performance. Account. Financ. 2025, early view. [Google Scholar] [CrossRef]
- Ma, M.-T.; Li, K.-J.; Si, Y.; Cao, P.-J.; Lu, H.-Z.; Guo, A.-M.; Wang, G.-D. Hydrogen embrittlement of advanced high-strength steel for automobile application: A review. Acta Metall. Sin. Engl. Lett. 2023, 36, 1144–1158. [Google Scholar] [CrossRef]
- Kurc, B.; Gross, X.; Szymlet, N.; Rymaniak, Ł.; Woźniak, K.; Pigłowska, M. Hydrogen-Powered Vehicles: A Paradigm Shift in Sustainable Transportation. Energies 2024, 17, 4768. [Google Scholar] [CrossRef]
- Meng, X.; Sun, C.; Mei, J.; Tang, X.; Hasanien, H.M.; Jiang, J.; Fan, F.; Song, K. Fuel cell life prediction considering the recovery phenomenon of reversible voltage loss. J. Power Sources 2025, 625, 235634. [Google Scholar] [CrossRef]
- Yazdi, M.; Moradi, R.; Pirbalouti, R.G.; Zarei, E.; Li, H. Enabling safe and sustainable hydrogen mobility: Circular economy-driven management of hydrogen vehicle safety. Processes 2023, 11, 2730. [Google Scholar] [CrossRef]
- Mohammadfam, I.; Zarei, E. Safety risk modeling and major accidents analysis of hydrogen and natural gas releases: A comprehensive risk analysis framework. Int. J. Hydrogen Energy 2015, 40, 13653–13663. [Google Scholar] [CrossRef]
- Cekerevac, Z.; Cekerevac, D. Hydrogen hazards, risks, and protection: An in-depth review. FBIM Trans. 2025, 13, 23–48. [Google Scholar] [CrossRef]
- Sakib, A.N.; Islam, T.; Resnick, P.M.; Habib, A.A.; Chowdhury, S.R. Comprehensive Safety Assessment of Hydrogen: From Production to Application in Energy Systems. Int. J. Energy Res. 2025, 2025, 8857513. [Google Scholar] [CrossRef]
- Carluccio, L.M.; Gritti, A.; Pellegrini, L. Beyond HazOp: Modelling of HILP (High Intensity Low Probability) Scenarios in Hydrogen Production and Storage Plants. CET J. Chem. Eng. Trans. 2024, 111, 397. [Google Scholar]
- Montijn-Dorgelo, F.N.; Midden, C.J. The role of negative associations and trust in risk perception of new hydrogen systems. J. Risk Res. 2008, 11, 659–671. [Google Scholar] [CrossRef]
- Mulky, L.; Srivastava, S.; Lakshmi, T.; Sandadi, E.R.; Gour, S.; Thomas, N.A.; Shanmuga Priya, S.; Sudhakar, K. An overview of hydrogen storage technologies—Key challenges and opportunities. Mater. Chem. Phys. 2024, 325, 129710. [Google Scholar] [CrossRef]
- Service-Oriented Architecture (SOA) Engineers. SAE International. SAE J2600 Compressed Hydrogen Surface Vehicle Fueling Connection Devices. Available online: https://www.sae.org/standards/content/j2600_201211/ (accessed on 25 August 2025).
- Toyota Motor Corporation. Mirai Product Information. Available online: https://www.toyota.it/gamma/nuova-mirai?utm_campaign=OEM-IT-IT-Brand-Model-Mirai-Conv&gclsrc=aw.ds&gad_source=1&gad_campaignid=21021732207&gbraid=0AAAAADtL0njoB_3O4EhAxpMVzM2geUDV5&gclid=CjwKCAiAl-_JBhBjEiwAn3rN7T_obZLkD6jdw8AnY8pDfG-KIZcNsHPKU9zJ3qYG5SRvhWqNa63e7hoCCqoQAvD_BwE (accessed on 10 December 2025).
- Barreto, L.; Makihira, A.; Riahi, K. The hydrogen economy in the 21st century: A sustainable development scenario. Int. J. Hydrogen Energy 2003, 28, 267–284. [Google Scholar] [CrossRef]
- Rossini, F.D. Report on International Practical Temperature Scale of 1968. J. Chem. Thermodyn. 1970, 2, 447–459. [Google Scholar] [CrossRef]
- Babac, G.; Sisman, A.; Cimen, T. Two-dimensional thermal analysis of liquid hydrogen tank insulation. Int. J. Hydrogen Energy 2009, 34, 6357–6363. [Google Scholar] [CrossRef]
- Krasae-in, S.; Stang, J.H.; Neksa, P. Development of large-scale hydrogen liquefaction processes from 1898 to 2009. Int. J. Hydrogen Energy 2010, 35, 4524–4533. [Google Scholar] [CrossRef]
- Meneghelli, B.; Tamburello, D.; Fesmire, J.; Swanger, A. Integrated Insulation System for Automotive Cryogenic. Available online: https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/review17/st141_meneghelli_2017_o.pdf?Status=Master (accessed on 10 December 2025).
- Song, K.; Hou, T.; Jiang, J.; Grigoriev, S.A.; Fan, F.; Qin, J.; Wang, Z.; Sun, C. Thermal management of liquid-cooled proton exchange membrane fuel cell: A review. J. Power Sources 2025, 648, 237227. [Google Scholar] [CrossRef]
- Brunner, T.; Kampitsch, M.; Kircher, O. Cryo-compressed hydrogen storage. In Fuel Cells: Data, Facts and Figures; Wiley-VCH: Weinheim, Germany, 2016; pp. 162–172. [Google Scholar]
- Argonne National Laboratory. Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications; Argonne National Laborator: Oak Ridge, TN, USA, 2009. [Google Scholar]
- Ahluwalia, R.K.; Peng, J.K.; Roh, H.S.; Hua, T.Q.; Houchins, C.; James, B.D. Supercritical cryo-compressed hydrogen storage for fuel cell electric buses. Int. J. Hydrogen Energy 2018, 43, 10215–10231. [Google Scholar] [CrossRef]
- Brzhezinskaya, M.; Belenkov, E.; Greshnyakov, V.; Yalovega, G.; Bashkin, I. New aspects in the study of carbon-hydrogen interaction in hydrogenated carbon nanotubes for energy storage applications. J. Alloys Compd. 2019, 792, 713–720. [Google Scholar] [CrossRef]
- Pakhira, S.; Mendoza-Cortes, J.L. Quantum nature in the interaction of molecular hydrogen with porous materials: Implications for practical hydrogen storage. J. Phys. Chem. C 2020, 124, 6454–6460. [Google Scholar] [CrossRef]
- Zhao, X.; Xiao, B.; Fletcher, A.; Thomas, K. Hydrogen adsorption on functionalized nanoporous activated carbons. J. Phys. Chem. B 2005, 109, 8880–8888. [Google Scholar] [CrossRef]
- Pinjari, S.; Bera, T.; Kapur, G.; Kjeang, E. The mechanism and sorption kinetic analysis of hydrogen storage at room temperature using acid functionalized carbon nanotubes. Int. J. Hydrogen Energy 2023, 48, 1930–1942. [Google Scholar] [CrossRef]
- Elyasi, S.; Saha, S.; Hameed, N.; Mahon, P.J.; Juodkazis, S.; Salim, N. Emerging trends in biomass-derived porous carbon materials for hydrogen storage. Int. J. Hydrogen Energy 2024, 62, 272–306. [Google Scholar] [CrossRef]
- Bénard, P.; Chahine, R. Storage of hydrogen by physisorption on carbon and nanostructured materials. Scr. Mater. 2007, 56, 803–808. [Google Scholar] [CrossRef]
- Bianco, S.; Giorcelli, M.; Musso, S.; Castellino, M.; Agresti, F.; Khandelwal, A.; Lo Russo, S.; Kumar, M.; Ando, Y.; Tagliaferro, A. Hydrogen adsorption in several types of carbon nanotubes. J. Nanosci. Nanotechnol. 2009, 9, 6806–6812. [Google Scholar] [CrossRef] [PubMed]
- Sethia, G.; Sayari, A. Activated carbon with optimum pore size distribution for hydrogen storage. Carbon 2016, 99, 289–294. [Google Scholar] [CrossRef]
- Yang, S.J.; Jung, H.; Kim, T.; Park, C.R. Recent advances in hydrogen storage technologies based on nanoporous carbon materials. Prog. Nat. Sci. Mater. Int. 2012, 22, 631–638. [Google Scholar] [CrossRef]
- Meduri, S.; Nandanavanam, J. Materials for hydrogen storage at room temperature–An overview. Mater. Today Proc. 2022, 72, 1–8. [Google Scholar] [CrossRef]
- Le, T.H.; Kim, M.P.; Park, C.H.; Tran, Q.N. Recent developments in materials for physical hydrogen storage: A review. Materials 2024, 17, 666. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, P.; Zhang, Y. The application of MOFs for hydrogen storage. Inorganica Chim. Acta 2023, 557, 121683. [Google Scholar] [CrossRef]
- Yuvaraj, A.; Jayarama, A.; Sharma, D.; Nagarkar, S.S.; Duttagupta, S.P.; Pinto, R. Role of metal-organic framework in hydrogen gas storage: A critical review. Int. J. Hydrogen Energy 2024, 59, 1434–1458. [Google Scholar] [CrossRef]
- Amin, A.M.; Croiset, E.; Epling, W. Review of methane catalytic cracking for hydrogen production. Int. J. Hydrogen Energy 2011, 36, 2904–2935. [Google Scholar] [CrossRef]
- Ganguli, A.; Bhatt, V. Hydrogen production using advanced reactors by steam methane reforming: A review. Front. Therm. Eng. 2023, 3, 1143987. [Google Scholar] [CrossRef]
- Negro, V.; Noussan, M.; Chiaramonti, D. The potential role of ammonia for hydrogen storage and transport: A critical review of challenges and opportunities. Energies 2023, 16, 6192. [Google Scholar] [CrossRef]
- Demirci, U.B. Ammonia borane, a material with exceptional properties for chemical hydrogen storage. Int. J. Hydrogen Energy 2017, 42, 9978–10013. [Google Scholar] [CrossRef]
- Zhao, W.; Li, H.; Zhang, H.; Yang, S.; Riisager, A. Ammonia borane-enabled hydrogen transfer processes: Insights into catalytic strategies and mechanisms. Green Energy Environ. 2022, 8, 948–971. [Google Scholar] [CrossRef]
- Bartoli, M.; Etzi, M.; Lettieri, S.; Ferraro, G.; Pirri, C.F.; Chiodoni, A.M.; Bocchini, S. Complex Waste Stream Utilization for Hydrogen Evolution: Ammonia Borane Hydrolysis Over Red Mud Catalyst Under Mild Conditions. Catal. Lett. 2025, 155, 273. [Google Scholar] [CrossRef]
- Gianola, G.; Bartoli, M.; Pirri, C.F.; Bocchini, S. Hydrogen evolution through ammonia borane hydrolysis over iron tailored pig manure catalyst. Int. J. Hydrogen Energy 2024, 51, 21–28. [Google Scholar] [CrossRef]
- Astorino, C.; De Nardo, E.; Lettieri, S.; Ferraro, G.; Bartoli, M.; Etzi, M.; Chiodoni, A.M.; Pirri, C.F.; Bocchini, S. Investigation of Solid-State Thermal Decomposition of Ammonia Borane Mix with Sulphonated Poly(ellagic Acid) for Hydrogen Release. Polymers 2024, 16, 3471. [Google Scholar] [CrossRef] [PubMed]
- Bartoli, M.; Ferraro, G.; Etzi, M.; Lettieri, S.; Pirri, C.F.; Bocchini, S. Tuning the Solid-State Hydrogen Release of Ammonia Borane by Entrapping the Intermediates: The Role of High-Boiling-Point Amines. Molecules 2025, 30, 4057. [Google Scholar] [CrossRef] [PubMed]
- Bartoli, M.; Etzi, M.; Lettieri, S.; Ferraro, G.; Pirri, C.F.; Bocchini, S. Ultrasound induced hydrogen release from ammonia borane mediated by oxidized multiwalled carbon nanotube under hydrolytic conditions. Appl. Surf. Sci. 2025, 717, 164800. [Google Scholar] [CrossRef]
- Bartoli, M.; Pirri, C.F.; Bocchini, S. Unraveling the Effect of Carbon Nanotube Oxidation on Solid-State Decomposition of Ammonia Borane/Carbon Nanotube Composites. J. Phys. Chem. C 2022, 126, 16587–16594. [Google Scholar] [CrossRef]
- Uijthof, E.; Chavan, B.; Sluijer, M.; Komath, V.; van der Ham, A.; van den Berg, H.; Lange, J.P.; Higler, A.; Wijnans, S. Liquid organic hydrogen carriers: Process design and economic analysis for manufacturing N-ethylcarbazole. J. Adv. Manuf. Process. 2024, 6, e10173. [Google Scholar] [CrossRef]
- Amende, M.; Gleichweit, C.; Werner, K.; Schernich, S.; Zhao, W.; Lorenz, M.P.; Höfert, O.; Papp, C.; Koch, M.; Wasserscheid, P. Model catalytic studies of liquid organic hydrogen carriers: Dehydrogenation and decomposition mechanisms of dodecahydro-N-ethylcarbazole on Pt (111). ACS Catal. 2014, 4, 657–665. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Z.; Jin, X.; Zhang, X.; Jin, R.; Lin, Y.; Xie, Z.; Huang, Y.; Liu, T.; Li, X. Promoting Catalytic Performance of Metal Hydrides for Reversible Hydrogen Storage in N-ethylcarbazole by Electronic Structure and Hydrogen Chemical Potential Tuning. ACS Catal. 2024, 14, 10519–10528. [Google Scholar] [CrossRef]
- Li, Y.; Ye, J.; Xu, T.; Xia, G.; Yu, X. Boosting dehydrogenation of dodecahydro-N-ethylcarbazole over Pd nanoclusters with tailored electronic structures loaded on nitrogen-doped carbon. Int. J. Hydrogen Energy 2024, 65, 769–778. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Kang, M.-G.; Kim, T.-G.; Kang, C.-W. Toxicity of methylcyclohexane and its effect on the reproductive system in SD rats. Saf. Health Work 2011, 2, 290–300. [Google Scholar] [CrossRef]
- Yin, D.; Wang, X.; Wu, F.; Shang, D.; Li, H.; Huang, P.; Zhang, L. A mini review on the state-of-the-art progress of LiBH4 for hydrogen storage: Challenges and perspectives. J. Alloys Compd. 2025, 1041, 183883. [Google Scholar] [CrossRef]
- Liu, C.; Yuan, Z.; Li, X.; Sun, Y.; Zhai, T.; Han, Z.; Zhang, L.; Li, T. Review on improved hydrogen storage properties of MgH2 by adding new catalyst. J. Energy Storage 2024, 97, 112786. [Google Scholar] [CrossRef]
- Nemukula, E.; Mtshali, C.; Nemangwele, F. Metal hydrides for sustainable hydrogen storage: A review. Int. J. Energy Res. 2025, 2025, 6300225. [Google Scholar] [CrossRef]
- Mekonnin, A.S.; Wacławiak, K.; Humayun, M.; Zhang, S.; Ullah, H. Hydrogen Storage Technology, and Its Challenges: A Review. Catalysts 2025, 15, 260. [Google Scholar] [CrossRef]
- Bakker, S. The car industry and the blow-out of the hydrogen hype. Energy Policy 2010, 38, 6540–6544. [Google Scholar] [CrossRef]
- Fang, L.; Dong, X.; Wang, H.; Gong, M. Economic analysis of compressed gaseous hydrogen, liquid hydrogen, and cryo-compressed hydrogen storage methods for large-scale storage and transportation. Int. J. Hydrogen Energy 2025, 162, 150725. [Google Scholar] [CrossRef]
- Heldebrant, D.J.; Karkamkar, A.; Linehan, J.C.; Autrey, T. Synthesis of ammonia borane for hydrogen storage applications. Energy Environ. Sci. 2008, 1, 156–160. [Google Scholar] [CrossRef]
- Li, H.; Yang, Q.; Chen, X.; Shore, S.G. Ammonia borane, past as prolog. J. Organomet. Chem. 2014, 751, 60–66. [Google Scholar] [CrossRef]
- Ramachandran, P.V.; Gagare, P.D. Preparation of ammonia borane in high yield and purity, methanolysis, and regeneration. Inorg. Chem. 2007, 46, 7810–7817. [Google Scholar] [CrossRef]
- Smythe, N.C.; Gordon, J.C. Ammonia borane as a hydrogen carrier: Dehydrogenation and regeneration. Eur. J. Inorg. Chem. 2010, 2010, 509–521. [Google Scholar] [CrossRef]
- Azzouz, A. Achievement in hydrogen storage on adsorbents with high surface-to-bulk ratio—Prospects for Si-containing matrices. Int. J. Hydrogen Energy 2012, 37, 5032–5049. [Google Scholar] [CrossRef]
- Zheng, J.; Zhou, H.; Wang, C.-G.; Ye, E.; Xu, J.W.; Loh, X.J.; Li, Z. Current research progress and perspectives on liquid hydrogen rich molecules in sustainable hydrogen storage. Energy Storage Mater. 2021, 35, 695–722. [Google Scholar] [CrossRef]
- Younas, M.; Rezakazemi, M.; Arbab, M.S.; Shah, J.; Rehman, W.U. Green hydrogen storage and delivery: Utilizing highly active homogeneous and heterogeneous catalysts for formic acid dehydrogenation. Int. J. Hydrogen Energy 2022, 47, 11694–11724. [Google Scholar] [CrossRef]
- Pukazhselvan, D.; Kumar, V.; Singh, S.K. High capacity hydrogen storage: Basic aspects, new developments and milestones. Nano Energy 2012, 1, 566–589. [Google Scholar] [CrossRef]
- Abe, J.O.; Popoola, A.; Ajenifuja, E.; Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrogen Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- Moradi, R.; Groth, K.M. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. Int. J. Hydrogen Energy 2019, 44, 12254–12269. [Google Scholar] [CrossRef]
- Rivard, E.; Trudeau, M.; Zaghib, K. Hydrogen storage for mobility: A review. Materials 2019, 12, 1973. [Google Scholar] [CrossRef] [PubMed]
- Mohan, M.; Sharma, V.K.; Kumar, E.A.; Gayathri, V. Hydrogen storage in carbon materials—A review. Energy Storage 2019, 1, e35. [Google Scholar] [CrossRef]
- Usman, M.R. Hydrogen storage methods: Review and current status. Renew. Sustain. Energy Rev. 2022, 167, 112743. [Google Scholar] [CrossRef]
- Hassan, I.; Ramadan, H.S.; Saleh, M.A.; Hissel, D. Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives. Renew. Sustain. Energy Rev. 2021, 149, 111311. [Google Scholar] [CrossRef]
- Niaz, S.; Manzoor, T.; Pandith, A.H. Hydrogen storage: Materials, methods and perspectives. Renew. Sustain. Energy Rev. 2015, 50, 457–469. [Google Scholar] [CrossRef]
- Fetting, C. The European green deal. ESDN Rep. 2020, 2, 53. [Google Scholar]
- Leonard, M.; Pisani-Ferry, J.; Shapiro, J.; Tagliapietra, S.; Wolff, G.B. The Geopolitics of the European Green Deal; Bruegel policy contribution: Brussels, Belgium, 2021. [Google Scholar]


| Technology | Gravimetric Density (wt.% kg H2) | Volumetric Density (kg H2/m3) | Cost ($/kg-H2) | Issues | Reversibility |
|---|---|---|---|---|---|
| Compressed H2 | 4–5 | 20–30 | 500–1000 |
|
|
| Liquid H2 | 6–7 | ~70–80 | 200–270 |
|
|
| Cryo-Compressed H2 | 5–6 | 40–50 | 18 (questionable) |
|
|
| Physiosorbed H2 | <3 wt.% | <20 | >1000 |
|
|
| Chemically bound | 20 | 50–100 | 200–800 |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartoli, M.; Pirri, C.F.; Bocchini, S. A Perspective on Hydrogen Storage in the Energetic Transition Scenario. Energies 2025, 18, 6564. https://doi.org/10.3390/en18246564
Bartoli M, Pirri CF, Bocchini S. A Perspective on Hydrogen Storage in the Energetic Transition Scenario. Energies. 2025; 18(24):6564. https://doi.org/10.3390/en18246564
Chicago/Turabian StyleBartoli, Mattia, Candido Fabrizio Pirri, and Sergio Bocchini. 2025. "A Perspective on Hydrogen Storage in the Energetic Transition Scenario" Energies 18, no. 24: 6564. https://doi.org/10.3390/en18246564
APA StyleBartoli, M., Pirri, C. F., & Bocchini, S. (2025). A Perspective on Hydrogen Storage in the Energetic Transition Scenario. Energies, 18(24), 6564. https://doi.org/10.3390/en18246564
