Charting the Landscape of Data Envelopment Analysis in Renewable Energy and Carbon Emission Efficiency
Abstract
1. Introduction
- Examine DEA alongside other methods (thus providing only a limited treatment of DEA itself); or
- Focus on narrow applications such as electricity generation or national-level carbon efficiency, thereby overlooking the broader spectrum of renewable and emission-related studies.
2. Literature Review
2.1. DEA in Energy Efficiency Research
2.2. DEA in Renewable Energy Evaluation
2.3. DEA and Carbon Emission Efficiency
2.4. Methodological Advancements in DEA for Energy and Environment
3. Research Methodology
3.1. Data Collection
3.2. Data Screening and Filtering
PRISMA Workflow (Text Description)
3.3. Research Methods
4. Results
4.1. Publication Trends
4.2. Geographic and Institutional Distribution
4.3. Key Contributors to DEA Research on Renewable Energy and Carbon Efficiency
4.4. Citation Analysis
4.5. Keyword and Thematic Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saleh, H.M.; Hassan, A.I. The challenges of sustainable energy transition: A focus on renewable energy. Appl. Chem. Eng. 2024, 7, 2084. [Google Scholar] [CrossRef]
- Obiora, S.C.; Bamisile, O.; Hu, Y.; Ozsahin, D.U.; Adun, H. Assessing the decarbonization of electricity generation in major emitting countries by 2030 and 2050: Transition to a high share renewable energy mix. Heliyon 2024, 10, e28770. [Google Scholar] [CrossRef]
- Paraschiv, L.S.; Paraschiv, S. Contribution of renewable energy (hydro, wind, solar and biomass) to decarbonization and transformation of the electricity generation sector for sustainable development. Energy Rep. 2023, 9, 535–544. [Google Scholar] [CrossRef]
- Sasse, J.-P.; Trutnevyte, E. Distributional trade-offs between regionally equitable and cost-efficient allocation of renewable electricity generation. Appl. Energy 2019, 254, 113724. [Google Scholar] [CrossRef]
- Lund, P.D. Effectiveness of policy measures in transforming the energy system. Energy Policy 2007, 35, 627–639. [Google Scholar] [CrossRef]
- Lima, M.A.; Mendes, L.F.R.; Mothé, G.A.; Linhares, F.G.; de Castro, M.P.P.; De Silva, M.G.; Sthel, M.S. Renewable energy in reducing greenhouse gas emissions: Reaching the goals of the Paris agreement in Brazil. Environ. Dev. 2020, 33, 100504. [Google Scholar] [CrossRef]
- Keerthana, K.B.; Wu, S.-W.; Wu, M.-E.; Kokulnathan, T. The United States energy consumption and carbon dioxide emissions: A comprehensive forecast using a regression model. Sustainability 2023, 15, 7932. [Google Scholar] [CrossRef]
- Pye, S.; Li, F.G.N.; Price, J.; Fais, B. Achieving net-zero emissions through the reframing of UK national targets in the post-Paris Agreement era. Nat. Energy 2017, 2, 17024. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- San Cristóbal, J.R. A multi criteria data envelopment analysis model to evaluate the efficiency of the Renewable Energy technologies. Renew. Energy 2011, 36, 2742–2746. [Google Scholar] [CrossRef]
- Kumar, R.; Khetrapal, P.; Badoni, M.; Diwania, S. Evaluating the relative operational performance of wind power plants in Indian electricity generation sector using two-stage model. Energy Environ. Dev. 2022, 33, 1441–1464. [Google Scholar] [CrossRef]
- Sözen, A.; Alp, I.; Özdemir, A. Assessment of operational and environmental performance of the thermal power plants in Turkey by using data envelopment analysis. Energy Policy 2010, 38, 6194–6203. [Google Scholar] [CrossRef]
- Zhou, Y.; Kong, Y.; Zhang, T. The spatial and temporal evolution of provincial eco-efficiency in China based on SBM modified three-stage data envelopment analysis. Environ. Sci. Pollut. Res. 2020, 27, 8557–8569. [Google Scholar] [CrossRef]
- Yang, Y.; Lo, K. China’s renewable energy and energy efficiency policies toward carbon neutrality: A systematic cross-sectoral review. Energy Environ. Dev. 2024, 35, 491–509. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Q.; Zhou, Z. A two-stage DEA model for resource allocation in industrial pollution treatment and its application in China. J. Clean. Prod. 2019, 228, 29–39. [Google Scholar] [CrossRef]
- Zhou, A.; Wang, W.; Chu, Z.; Wu, S. Evaluating the efficiency of municipal solid waste collection and disposal in the Yangtze River Delta of China: A DEA-model. J. Air Waste Manag. Assoc. 2022, 72, 1153–1160. [Google Scholar] [CrossRef]
- Lu, W.-M.; Le, T.-T. From Technology to Strategy: The Evolving Role of Smart Grids and Microgrids in Sustainable Energy Management. Energies 2025, 18, 4609. [Google Scholar] [CrossRef]
- Zheng, X.; Heshmati, A. An analysis of energy use efficiency in China by applying stochastic frontier panel data models. Energies 2020, 13, 1892. [Google Scholar] [CrossRef]
- Eguchi, S.; Takayabu, H.; Lin, C. Sources of inefficient power generation by coal-fired thermal power plants in China: A metafrontier DEA decomposition approach. Renew. Sustain. Energy Rev. 2021, 138, 110562. [Google Scholar] [CrossRef]
- Kut, P.; Pietrucha-Urbanik, K. Bibliometric analysis of renewable energy research on the example of the two European countries: Insights, challenges, and future prospects. Energies 2023, 17, 176. [Google Scholar] [CrossRef]
- Zhu, T.; Liu, J.; Zhu, G. Technological Progress and Scale Efficiency Changes in China’s Energy Industry: A Comparison of New and Traditional Energy Under the DEA-Malmquist-Tobit Model. Sustainability 2025, 17, 662. [Google Scholar] [CrossRef]
- Yan, D.; Kong, Y.; Ye, B.; Shi, Y.; Zeng, X. Spatial variation of energy efficiency based on a Super-Slack-Based Measure: Evidence from 104 resource-based cities. J. Clean. Prod. 2019, 240, 117669. [Google Scholar] [CrossRef]
- Yilmaz, I. A hybrid DEA–fuzzy COPRAS approach to the evaluation of renewable energy: A case of wind farms in Turkey. Sustainability 2023, 15, 11267. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.L. Measuring environmental performance under different environmental DEA technologies. Energy Econ. 2008, 30, 1–14. [Google Scholar] [CrossRef]
- Allevi, E.; Basso, A.; Bonenti, F.; Oggioni, G.; Riccardi, R. Measuring the environmental performance of green SRI funds: A DEA approach. Energy Econ. 2019, 79, 32–44. [Google Scholar] [CrossRef]
- Akbari, N.; Jones, D.; Treloar, R. A cross-European efficiency assessment of offshore wind farms: A DEA approach. Renew. Energy 2020, 151, 1186–1195. [Google Scholar] [CrossRef]
- Hu, J.-L.; Wang, S.-C. Total-factor energy efficiency of regions in China. Energy Policy 2006, 34, 3206–3217. [Google Scholar] [CrossRef]
- Ren, J.; Tan, S.; Dong, L.; Mazzi, A.; Scipioni, A.; Sovacool, B.K. Determining the life cycle energy efficiency of six biofuel systems in China: A Data Envelopment Analysis. Bioresour. Technol. 2014, 162, 1–7. [Google Scholar] [CrossRef]
- Smirnova, E.; Kot, S.; Kolpak, E.; Shestak, V. Governmental support and renewable energy production: A cross-country review. Energy 2021, 230, 120903. [Google Scholar] [CrossRef]
- Chodakowska, E.; Nazarko, J.; Nazarko, Ł. Efficiency of Renewable Energy Potential Utilization in European Union: Towards Responsible Net-Zero Policy. Energies 2025, 18, 1175. [Google Scholar] [CrossRef]
- Xue, Y.; Mohsin, M.; Taghizadeh-Hesary, F.; Iqbal, N. Environmental performance assessment of energy-consuming sectors through novel data envelopment analysis. Front. Energy Res. 2022, 9, 713546. [Google Scholar] [CrossRef]
- Kwon, D.S.; Cho, J.H.; Sohn, S.Y. Comparison of technology efficiency for CO2 emissions reduction among European countries based on DEA with decomposed factors. J. Clean. Prod. 2017, 151, 109–120. [Google Scholar] [CrossRef]
- Mehmood, K.; Iftikhar, Y.; Khan, A.N. Assessing eco-technological innovation efficiency using DEA approach: Insights from the OECD countries. Clean Technol. Environ. Policy 2022, 24, 3273–3286. [Google Scholar] [CrossRef]
- Leu, J.-D.; Tsai, W.-H.; Fan, M.-N.; Chuang, S. Benchmarking Sustainable Manufacturing: A DEA-Based Method and Application. Energies 2020, 13, 5962. [Google Scholar] [CrossRef]
- Martín-Gamboa, M.; Iribarren, D.; García-Gusano, D.; Dufour, J. A review of life-cycle approaches coupled with data envelopment analysis within multi-criteria decision analysis for sustainability assessment of energy systems. J. Clean. Prod. 2017, 150, 164–174. [Google Scholar] [CrossRef]
- Guo, X.; Lu, C.-C.; Lee, J.-H.; Chiu, Y.-H. Applying the dynamic DEA model to evaluate the energy efficiency of OECD countries and China. Energy 2017, 134, 392–399. [Google Scholar] [CrossRef]
- Lu, C.-C.; Lu, L.-C.J. Evaluating the energy efficiency of European Union countries: The dynamic data envelopment analysis. Energy Environ. 2019, 30, 27–43. [Google Scholar] [CrossRef]
- Ouyang, W.; Yang, J.-B. The network energy and environment efficiency analysis of 27 OECD countries: A multiplicative network DEA model. Energy 2020, 197, 117161. [Google Scholar] [CrossRef]
- Chen, Z.; Kourtzidis, S.; Tzeremes, P.; Tzeremes, N. A robust network DEA model for sustainability assessment: An application to Chinese Provinces. Oper. Res. 2022, 22, 235–262. [Google Scholar] [CrossRef]
- Wei, W.; Ding, S.; Zheng, S.; Ma, J.; Niu, T.; Li, J. Environmental efficiency evaluation of China’s power industry based on the two-stage network slack-based measure model. Int. J. Environ. Res. Public Health 2021, 18, 12650. [Google Scholar] [CrossRef]
- Meng, M.; Pang, T. Operational efficiency analysis of China’s electric power industry using a dynamic network slack-based measure model. Energy 2022, 251, 123898. [Google Scholar] [CrossRef]
- Liu, J.-P.; Yang, Q.-R.; He, L.J. Total-factor energy efficiency (TFEE) evaluation on thermal power industry with DEA, malmquist and multiple regression techniques. Energies 2017, 10, 1039. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Goto, M. World trend in energy: An extension to DEA applied to energy and environment. J. Econ. Struct. 2017, 6, 13. [Google Scholar] [CrossRef]
- Kolagar, M.; Hosseini, S.M.H.; Felegari, R.; Fattahi, P. Policy-making for renewable energy sources in search of sustainable development: A hybrid DEA-FBWM approach. Environ. Syst. Decis. 2020, 40, 485–509. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Wong, D. VOSviewer. Tech. Serv. Q. 2018, 35, 219–220. [Google Scholar] [CrossRef]
- Egghe, L.; Rousseau, R.; Van Hooydonk, G. Methods for accrediting publications to authors or countries: Consequences for evaluation studies. J. Am. Soc. Inf. Sci. 2000, 51, 145–157. [Google Scholar] [CrossRef]
- Harzing, A.-W.; Alakangas, S. Google Scholar, Scopus and the Web of Science: A longitudinal and cross-disciplinary comparison. Scientometrics 2016, 106, 787–804. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef]
- Bornmann, L.; Daniel, H.D. What do citation counts measure? A review of studies on citing behavior. J. Doc. 2008, 64, 45–80. [Google Scholar] [CrossRef]
- Waltman, L. A review of the literature on citation impact indicators. J. Informetr. 2016, 10, 365–391. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Han, J.Y. Total factor carbon emission performance: A Malmquist index analysis. Energy Econ. 2010, 32, 194–201. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.; Wang, H. Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach. Eur. J. Oper. Res. 2012, 221, 625–635. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, N. Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China. Energy Econ. 2021, 96, 105125. [Google Scholar] [CrossRef]
- Zhang, D.; Mohsin, M.; Rasheed, A.K.; Chang, Y.; Taghizadeh-Hesary, F. Public spending and green economic growth in BRI region: Mediating role of green finance. Energy Policy 2021, 153, 112256. [Google Scholar] [CrossRef]
- Zakari, A.; Khan, I.; Tan, D.; Alvarado, R.; Dagar, V. Energy efficiency and sustainable development goals (SDGs). Energy 2022, 239, 122365. [Google Scholar] [CrossRef]
- Mardani, A.; Zavadskas, E.K.; Streimikiene, D.; Jusoh, A.; Khoshnoudi, M. A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. Renew. Sustain. Energy Rev. 2017, 70, 1298–1322. [Google Scholar] [CrossRef]
- Chen, L.; Jia, G. Environmental efficiency analysis of China’s regional industry: A data envelopment analysis (DEA) based approach. J. Clean. Prod. 2017, 142, 846–853. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, P.; Zhou, D. Efficiency measurement with carbon dioxide emissions: The case of China. Appl. Energy 2012, 90, 161–166. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Q.; Yao, S. Evaluation and difference analysis of regional energy efficiency in China under the carbon neutrality targets: Insights from DEA and Theil models. J. Environ. Manag. 2021, 293, 112958. [Google Scholar] [CrossRef]
- Maral, M. Cross-country analysis of research and development efficiency in higher education: Data envelopment analysis and hybrid multi-criteria decision-making approach. J. Knowl. Econ. 2024, 16, 14427–14460. [Google Scholar] [CrossRef]
- Zhu, J.; Wan, L.; Zhao, H.; Yu, L.; Xiao, S. Evaluation of the integration of industrialization and information-based entropy AHP–cross-efficiency DEA model. Chin. Manag. Stud. 2024, 18, 210–242. [Google Scholar] [CrossRef]
- Mirmozaffari, M.; Shadkam, E.; Khalili, S.M.; Kabirifar, K.; Yazdani, R.; Gashteroodkhani, T.A. A novel artificial intelligent approach: Comparison of machine learning tools and algorithms based on optimization DEA Malmquist productivity index for eco-efficiency evaluation. Int. J. Energy Sect. Manag. 2021, 15, 523–550. [Google Scholar] [CrossRef]
- Gavurova, B.; Kocisova, K.; Behun, M.; Tarhanicova, M. Environmental performance in OECD countries: A non-radial DEA approach. Acta Montan. Slovaca 2018, 23, 206–215. [Google Scholar]
- Morales-Piñero, J.; Morales-Piñero, J.; Morales-Rubiano, M. Technological development and eco-efficiency: Drivers of total factor productivity in OECD countries. Probl. Perspect. Manag. 2024, 22, 174. [Google Scholar] [CrossRef]
- Saini, A.; Truong, D.; Pan, J.Y. Airline efficiency and environmental impacts–data envelopment analysis. Int. J. Transp. Sci. Technol. 2023, 12, 335–353. [Google Scholar] [CrossRef]
- Chowdhury, S.A.; Aziz, S.; Hossan, M.B. Cost efficiency evaluation of thermal power plants in Bangladesh using a two-stage DEA model. Econ. Energy Environ. Policy 2022, 11. [Google Scholar] [CrossRef]
- Qin, Q.; Liu, Y.; Li, X.; Li, H. A multi-criteria decision analysis model for carbon emission quota allocation in China’s east coastal areas: Efficiency and equity. J. Clean. Prod. 2017, 168, 410–419. [Google Scholar] [CrossRef]
- Ratner, S.V.; Lychev, A.V.; Muravleva, E.D.; Muravlev, D.M. Measuring Circular Economy with Data Envelopment Analysis: A Systematic Literature Review. Math. Comput. Appl. 2025, 30, 102. [Google Scholar] [CrossRef]
- Khan, A.; Gulati, R. Productivity growth, catching-up and technology innovation in microfinance institutions in India: Evidence using a bootstrap Malmquist Index approach. Benchmarking Int. J. 2022, 29, 878–904. [Google Scholar] [CrossRef]
- Gavurova, B.; Kocisova, K.; Sopko, J. Health system efficiency in OECD countries: Dynamic network DEA approach. Health Econ. Rev. 2021, 11, 40. [Google Scholar] [CrossRef]
- Demiral, M.; Demiral, Ö. Socio-economic productive capacities and energy efficiency: Global evidence by income level and resource dependence. Environ. Sci. Pollut. Res. 2023, 30, 42766–42790. [Google Scholar] [CrossRef]
- Ren, S.; Li, X.; Yuan, B.; Li, D.; Chen, X. The effects of three types of environmental regulation on eco-efficiency: A cross-region analysis in China. J. Clean. Prod. 2018, 173, 245–255. [Google Scholar] [CrossRef]
- Zhou, Y. Relationship Between Corporate Social Responsibility and Brand Loyalty in Beijing Tourism Service Industry: Mediating Role of Customer Satisfaction and Brand Identity. Uniglobal J. Soc. Sci. Humanit. 2024, 3, 191–203. [Google Scholar]
- Kou, X.; Feng, J.-C.; Li, X.-S.; Wang, Y.; Chen, Z.-Y. Visualization of interactions between depressurization-induced hydrate decomposition and heat/mass transfer. Energy 2022, 239, 122230. [Google Scholar] [CrossRef]
- García-Valderrama, T.; Pérez-González, M.C.; Puentes-Graña, C.; Sánchez-Ortiz, J. Developing an efficiency evaluation model for the circular economy in Europe. Eur. Plan. Stud. 2024, 32, 2160–2181. [Google Scholar] [CrossRef]
- Bin Abu Sofian, A.D.A.; Lim, H.R.; Siti Halimatul Munawaroh, H.; Ma, Z.; Chew, K.W.; Show, P.L. Machine learning and the renewable energy revolution: Exploring solar and wind energy solutions for a sustainable future including innovations in energy storage. Sustain. Dev. 2024, 32, 3953–3978. [Google Scholar] [CrossRef]
- Bhansali, A.; Narasimhulu, N.; de Prado, R.P.; Divakarachari, P.B.; Narayan, D.L. A Review on Sustainable Energy Sources Using Machine Learning and Deep Learning Models. Energies 2023, 16, 6236. [Google Scholar] [CrossRef]
- Charles, V.; Emrouznejad, A. DEA-based index systems for addressing the United Nations’ SDGs. Environ. Sci. Policy 2024, 162, 103950. [Google Scholar] [CrossRef]



| Methodological | Description | Sources |
|---|---|---|
| Dynamic DEA | Captures changes in efficiency over time, useful for monitoring renewable energy adoption and emission reduction progress. | [36,37] |
| Network DEA | Models multi-stage processes, such as energy generation, transmission, and distribution, or production processes with intermediate outputs. | [38,39] |
| Slack-Based Measure (SBM) DEA | Explicitly accounts for input and output slacks, improving the realism of efficiency measurement in energy systems. | [40,41] |
| Malmquist Index DEA | Assesses productivity change over time, particularly relevant for tracking progress toward carbon neutrality. | [27,42] |
| DEA with Undesirable Outputs | Incorporates pollutants and emissions, making it directly applicable to carbon efficiency analysis. | [27,43] |
| Hybrid DEA Models | Combine DEA with machine learning, fuzzy logic, or econometric methods to improve robustness and predictive power. | [23,44] |
| Records identified through WoS search (n = 4280) | |
| ↓ | |
| Duplicates removed (n = 3920) | |
| ↓ | |
| Records screened (title/abstract) (n = 2890) | Records excluded (not SSCI/SCIE) (n = 492) |
| ↓ | |
| SSCI and SCIE records (n = 2398) | Excluded (not Article/Review/Proceeding) (n = 6) |
| ↓ | |
| Articles/Reviews/Proceedings (n = 2392) | Excluded (non-English) (n = 3) |
| ↓ | |
| English-language articles (n = 2389) | |
| ↓ | |
| Full-text articles assessed for eligibility (n = 2389) | |
| ↓ | |
| Final articles included in the analysis (n = 2389) |
| Affiliations | Record Count |
|---|---|
| Chinese Academy of Sciences | 117 |
| Soochow University | 89 |
| Nanjing University of Aeronautics Astronautics | 73 |
| Beijing Institute of Technology | 69 |
| North China Electric Power University | 59 |
| Xiamen University | 56 |
| University of Science Technology of China Cas | 55 |
| Hefei University of Technology | 52 |
| Southeast University China | 48 |
| Hohai University | 45 |
| Authors | Institutes | Country | Research ID | H-Index | Records |
|---|---|---|---|---|---|
| Chiu, Yung-Ho | Soochow University | Taiwan | H-5231-2019 | 33 | 71 |
| Li Y | Nanjing University of Finance & Economics | China | FJK-9617-2022 | 17 | 62 |
| Cui, Qiang | Southeast University | Bangladesh | KLC-0358-2024 | 22 | 37 |
| Lin, Boqiang | Xiamen University | Taiwan | G-3960-2010 | 107 | 34 |
| Lin, Tai-Yu | National Cheng Kung University | Taiwan | AAP-1501-2021 | 11 | 32 |
| Feng, Chao | Chongqing University | China | A-6705-2019 | 48 | 28 |
| Wang, Chia-Nan | National Kaohsiung University of Science & Technology | Taiwan | JZW-4462-2024 | 31 | 28 |
| Sueyoshi, Toshiyuki | Tokyo Institute of Technology | Japan | GDM-5048-2022 | 53 | 27 |
| Zhang, Ning | East China University of Science & Technology | China | HCI-7860-2022 | 57 | 27 |
| Zhou, Peng | China University of Petroleum | China | A-6527-2012 | 73 | 27 |
| Title | 1st Authors | Journal Title | Year | Total Citations | Average per Year |
|---|---|---|---|---|---|
| Total-factor energy efficiency of regions in China | Hu, Jin-Li | Energy Policy | 2006 | 1182 | 59.1 |
| Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach | Zhou, P. | European Journal of Operational Research | 2012 | 735 | 52.5 |
| Total factor carbon emission performance: A Malmquist index analysis | Zhou, P. | Energy Economics | 2010 | 615 | 38.44 |
| The effects of three types of environmental regulation on eco-efficiency: A cross-region analysis in China | Ren, Shenggang | Journal of Cleaner Production | 2018 | 580 | 72.5 |
| Public spending and green economic growth in BRI region: Mediating role of green finance | Zhang, Dongyang | Energy Policy | 2021 | 554 | 110.8 |
| Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure | Choi, Yongrok | Applied Energy | 2012 | 504 | 36 |
| A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency | Mardani, Abbas | Renewable & Sustainable Energy Reviews | 2017 | 486 | 54 |
| Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China | Yu, Yantuan | Energy Economics | 2021 | 454 | 90.8 |
| Measuring environmental performance under different environmental DEA technologies | Zhou, P. | Energy Economics | 2008 | 414 | 23 |
| Energy efficiency and sustainable development goals (SDGs) | Zakari, A. | Energy | 2022 | 406 | 81.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, T.-T.; Lu, W.-M. Charting the Landscape of Data Envelopment Analysis in Renewable Energy and Carbon Emission Efficiency. Energies 2025, 18, 6147. https://doi.org/10.3390/en18236147
Le T-T, Lu W-M. Charting the Landscape of Data Envelopment Analysis in Renewable Energy and Carbon Emission Efficiency. Energies. 2025; 18(23):6147. https://doi.org/10.3390/en18236147
Chicago/Turabian StyleLe, Thu-Thao, and Wen-Min Lu. 2025. "Charting the Landscape of Data Envelopment Analysis in Renewable Energy and Carbon Emission Efficiency" Energies 18, no. 23: 6147. https://doi.org/10.3390/en18236147
APA StyleLe, T.-T., & Lu, W.-M. (2025). Charting the Landscape of Data Envelopment Analysis in Renewable Energy and Carbon Emission Efficiency. Energies, 18(23), 6147. https://doi.org/10.3390/en18236147

