Carbon Dioxide Bio-Sequestration and Biomass Production for Energy Purposes During C. vulgaris Cultivation Powered by Real Exhaust Gases from a Municipal Thermal Power Plant
Abstract
1. Introduction
2. Materials and Methods
2.1. Organisation of Experimental Work
2.2. Research Location
2.3. Materials
2.3.1. Microalgae Biomass
2.3.2. Cultivation Medium
2.3.3. CO2 Source
2.4. Experimental Stations and Procedures
2.5. Analytical, Computational and Statistical Methods
3. Results and Discussion
3.1. Process and Efficiency of C. vulgaris Cultivation
3.2. Characteristics of C. vulgaris Biomass
3.3. Changes in the pH of the Culture Medium and CO2 Fixation by C. vulgaris
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almeida, D.V.; Kolinjivadi, V.; Ferrando, T.; Roy, B.; Herrera, H.; Gonçalves, M.V.; Van Hecken, G. The “Greening” of Empire: The European Green Deal as the EU first agenda. Polit. Geogr. 2023, 105, 102925. [Google Scholar] [CrossRef]
- Hanson, E.; Nwakile, C.; Hammed, V.O. Carbon capture, utilization, and storage (CCUS) technologies: Evaluating the effectiveness of advanced CCUS solutions for reducing CO2 emissions. Results Surf. Interfaces 2025, 18, 100381. [Google Scholar] [CrossRef]
- Devi, K.U.; Swapna, G.; Suman, K. Bio-sequestration of CO2–Potential and Challenges. In Carbon Capture, Storage and Utilization; Goel, M., Sudhakar, M., Shahi, R.V., Eds.; CRC Press: London, UK, 2019; pp. 189–206. [Google Scholar] [CrossRef]
- Eloka-Eboka, A.C.; Inambao, F.L. Effects of CO2 sequestration on lipid and biomass productivity in microalgal biomass production. Appl. Energy 2017, 195, 1100–1111. [Google Scholar] [CrossRef]
- Rupesh, K.J.; Prahaaladhan, V.; Matheshwaran, S.; Rahul, S.; Sudalai, S.; Arumugam, A. Carbon dioxide capture using algae. In Advances and Technology Development in Greenhouse Gases: Emission, Capture and Conversion; Rahimpour, M.R., Makarem, M.A., Meshksar, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 331–350. [Google Scholar] [CrossRef]
- Dudek, M.; Dębowski, M.; Kazimierowicz, J.; Zieliński, M.; Quattrocelli, P.; Nowicka, A. The Cultivation of Biohydrogen-Producing Tetraselmis subcordiformis Microalgae as the Third Stage of Dairy Wastewater Aerobic Treatment System. Sustainability 2022, 14, 12085. [Google Scholar] [CrossRef]
- Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, I.; Dutta, S.; Pohrmen, C.B.; Verma, R.; Singh, D. Microalgae-based carbon sequestration to mitigate climate change and application of nanomaterials in algal biorefinery. Octa J. Biosci. 2020, 8, 129–136. [Google Scholar]
- Roudbari, M.S. Algae-Based Building Materials: Applications, Challenges, and Prospects. In Proceedings of the 3rd International Conference on Recent Advances in Engineering, Innovation & Technology, Brussel, Belgium, 10 March 2025; Available online: https://www.researchgate.net/publication/389761372_Algae-Based_Building_Materials_Applications_Challenges_and_Prospects (accessed on 10 October 2025).
- Zhang, S.; Liu, Z. Advances in the biological fixation of carbon dioxide by microalgae. J. Chem. Technol. Biotechnol. 2021, 96, 1475–1495. [Google Scholar] [CrossRef]
- Yadav, G.; Sen, R. Microalgal green refinery concept for biosequestration of carbon-dioxide vis-à-vis wastewater remediation and bioenergy production: Recent technological advances in climate research. J. CO2 Util. 2017, 17, 188–206. [Google Scholar] [CrossRef]
- Matsumoto, H.; Hamasaki, A.; Sioji, N.; Ikuta, Y. Influence of CO2, SO2 and NO in flue gas on microalgae productivity. J. Chem. Eng. Jpn. 1997, 30, 620–624. [Google Scholar] [CrossRef]
- Pires, J.C.M.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Simões, M. Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept. Renew. Sustain. Energy Rev. 2012, 16, 3043–3053. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, D.K.; Lee, J.P.; Park, S.C.; Koh, J.H.; Cho, H.S.; Kim, S.W. Effects of SO2 and NO on growth of Chlorella sp. KR-1. Bioresour. Technol. 2002, 82, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Huang, Y.; Xia, X.; Zhu, X.; Zhu, X.; Chang, J.-S.; Liao, Q. How the sulfur dioxide in the flue gas influence microalgal carbon dioxide fixation: From gas dissolution to cells growth. Renew. Energy 2022, 198, 114–122. [Google Scholar] [CrossRef]
- Crofcheck, C.; Shea, A.; Montross, M.; Crocker, M.; Andrews, R. Influence of flue gas components on the growth rate of Chlorella vulgaris and Scenedesmus acutus. Trans. ASABE 2013, 56, 1421–1429. [Google Scholar] [CrossRef]
- Comley, J.G.; Scott, J.A.; Laamanen, C.A. Utilizing CO2 in industrial off-gas for microalgae cultivation: Considerations and solutions. Crit. Rev. Biotechnol. 2024, 44, 910–923. [Google Scholar] [CrossRef]
- Alvarez, A.L.; Weyers, S.L.; Goemann, H.M.; Peyton, B.M.; Gardner, R.D. Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Res. 2021, 54, 102200. [Google Scholar] [CrossRef]
- Kisielewska, M.; Zieliński, M.; Dębowski, M.; Kazimierowicz, J.; Romanowska-Duda, Z.; Dudek, M. Effectiveness of Scenedesmus sp. Biomass Grow and Nutrients Removal from Liquid Phase of Digestates. Energies 2020, 13, 1432. [Google Scholar] [CrossRef]
- Wang, R.; Wang, X.; Zhu, T. Research progress and application of carbon sequestration in industrial flue gas by microalgae: A review. J. Environ. Sci. 2025, 152, 14–28. [Google Scholar] [CrossRef]
- Al-Hammadi, M.; Güngörmüşler, M. New insights into Chlorella vulgaris applications. Biotechnol. Bioeng. 2024, 121, 1486–1502. [Google Scholar] [CrossRef]
- Kiseleva, S.V.; Chernova, N.I.; Vlaskin, M.S.; Grigorenko, A.V.; Chunzhuk, E.A.; Malaniy, S.Y.; Bakumenko, E.A.; Rositskaya, T.V. Carbon Dioxide Absorption by Microalgae: Analysis of Technologies and Energy Costs. Therm. Eng. 2024, 71, 1038–1048. [Google Scholar] [CrossRef]
- Dębowski, M.; Michalski, R.; Zieliński, M.; Kazimierowicz, J. A Comparative Analysis of Emissions from a Compression–Ignition Engine Powered by Diesel, Rapeseed Biodiesel, and Biodiesel from Chlorella protothecoides Biomass Cultured under Different Conditions. Atmosphere 2021, 12, 1099. [Google Scholar] [CrossRef]
- Lananan, F.; Jusoh, A.; Ali, N.; Lam, S.S.; Endut, A. Effect of Conway Medium and f/2 Medium on the growth of six genera of South China Sea marine microalgae. Bioresour. Technol. 2013, 141, 75–82. [Google Scholar] [CrossRef]
- John, D.M.; Whitton, B.A.; Brook, A.J. The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae, 2nd ed.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Listing the World’s Algae. Available online: https://www.algaebase.org/ (accessed on 10 October 2025).
- Ma, M.; Yuan, D.; He, Y.; Park, M.; Gong, Y.; Hu, Q. Effective control of Poterioochromonas malhamensis in pilot-scale culture of Chlorella sorokiniana GT-1 by maintaining CO2-mediated low culture pH. Algal Res. 2017, 26, 436–444. [Google Scholar] [CrossRef]
- Scapini, T.; Woiciechowski, A.L.; Manzoki, M.C.; Molina-Aulestia, D.T.; Martinez-Burgos, W.J.; Fanka, L.S.; Duda, L.J.; Vale, A.S.; de Carvalho, J.C.; Soccol, C.R. Microalgae-mediated biofixation as an innovative technology for flue gases towards carbon neutrality: A comprehensive review. J. Environ. Manag. 2024, 363, 121329. [Google Scholar] [CrossRef]
- Li, K.-Y.; Zhou, J.-L.; Guo, S.-Y.; Dou, X.-X.; Gu, J.-J.; Gao, F. Advances of microalgae-based enhancement strategies in industrial flue gas treatment: From carbon sequestration to lipid production. Bioresour. Technol. 2025, 423, 132250. [Google Scholar] [CrossRef]
- Cheah, W.Y.; Show, P.L.; Chang, J.-S.; Ling, T.C.; Juan, J.C. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour. Technol. 2015, 184, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.N.; Lee, J.S.; Shin, C.S.; Park, S.C.; Kim, S.W. Methods to enhance tolerances of Chlorella KR-1 to toxic compounds in flue gas. Appl. Biochem. Biotechnol. 2000, 84–86, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Abinandan, S.; Venkateswarlu, K.; Megharaj, M. Phenotypic changes in microalgae at acidic pH mediate their tolerance to higher concentrations of transition metals. Curr. Res. Microb. Sci. 2021, 2, 100081. [Google Scholar] [CrossRef] [PubMed]
- Abinandan, S.; Subashchandrabose, S.R.; Cole, N.; Dharmarajan, R.; Venkateswarlu, K.; Megharaj, M. Sustainable production of biomass and biodiesel by acclimation of non-acidophilic microalgae to acidic conditions. Bioresour. Technol. 2019, 271, 316–324. [Google Scholar] [CrossRef]
- Abinandan, S.; Subashchandrabose, S.R.; Pannerselvan, L.; Venkateswarlu, K.; Megharaj, M. Potential of acid-tolerant microalgae, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, in heavy metal removal and biodiesel production at acidic pH. Bioresour. Technol. 2019, 278, 9–16. [Google Scholar] [CrossRef]
- Narayan, O.P.; Kumar, P.; Yadav, B.; Dua, M.; Johri, A.K. Sulfur nutrition and its role in plant growth and development. Plant Signal. Behav. 2023, 18, 2030082. [Google Scholar] [CrossRef]
- Kong, F.X.; Hu, W.; Chao, S.Y.; Sang, W.L.; Wang, L.S. Physiological responses of the lichen Xanthoparmelia mexicana to oxidative stress of SO2. Environ. Exp. Bot. 1999, 42, 201–209. [Google Scholar] [CrossRef]
- Li, J.; Tang, X.; Pan, K.; Zhu, B.; Wang, Z.; Zhao, Y. Application study for the high CO2 tolerant Chlorella strain by flue gas culture: Evaluation of growth performance and adaptive mechanisms. Chem. Eng. J. 2024, 479, 147700. [Google Scholar] [CrossRef]
- Li, Z.-G.; Li, X.-E.; Chen, H.-Y. Sulfur Dioxide: An Emerging Signaling Molecule in Plants. Front. Plant Sci. 2022, 13, 891626. [Google Scholar] [CrossRef]
- Ishibashi, Y.; Kasa, S.; Sakamoto, M.; Aoki, N.; Kai, K.; Yuasa, T.; Hanada, A.; Yamaguchi, S.; Iwaya-Inoue, M. A role for reactive oxygen species produced by NADPH oxidases in the embryo and aleurone cells in barley seed germination. PLoS ONE 2015, 10, e0143173. [Google Scholar] [CrossRef]
- Li, L.; Yi, H. Effect of sulfur dioxide on ROS production, gene expression, and antioxidant enzyme activity in Arabidopsis plants. Plant Physiol. Biochem. 2012, 58, 46–53. [Google Scholar] [CrossRef]
- Guo, Z.; Zhao, J.; Wang, M.; Song, S.; Xia, Z. Sulfur dioxide promotes seed germination by modulating reactive oxygen species production in maize. Plant Sci. 2021, 312, 111027. [Google Scholar] [CrossRef]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; Van Breusegem, F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Muneer, S.; Kim, T.H.; Choi, B.C.; Lee, B.S.; Lee, J.H. Effect of CO, NOx and SO2 on ROS production, photosynthesis and ascorbate-glutathione pathway to induce Fragaria × annasa as a hyperaccumulator. Redox Biol. 2014, 2, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Vdovychenko, A.; Golub, N.; Zieliński, M.; Levtun, I. Effect of acids on biomass growth and development of Chlorella vulgaris culture. Innov. Biosyst. Bioeng. 2024, 8, 39–47. [Google Scholar] [CrossRef]
- Dyachok, V.; Mandryk, S.; Huhlych, S.; Slyvka, M. Study of the impact of activators in the presence of an inhibitor on the dynamics of carbon dioxide absorption by chlorophyll-synthesizing microalgae. J. Ecol. Eng. 2020, 21, 189–196. [Google Scholar] [CrossRef]
- Pfanz, H.; Würth, G.; Oppmann, B.; Schultz, G. Sulfite oxidation in, and sulfate uptake from the cell wall of leaves. In muro studies. Phyton Ann. Rei Bot. Horn 1992, 32, 95–98. [Google Scholar]
- Peiser, G.D.; Yang, S.F. Chlorophyll destruction by the bisulfite-oxygen system. Plant Physiol. 1977, 60, 277–281. [Google Scholar] [CrossRef]
- Singh, G.; Patel, A.; Tiwari, S.; Gupta, D.; Prasad, S.M. Signaling molecules hydrogen sulfide (H2S) and nitric oxide (NO): Role in microalgae under adverse environmental conditions. Acta Physiol. Plant. 2022, 44, 68. [Google Scholar] [CrossRef]
- Schmidt, W.; Neubauer, C.; Kolbowski, J.; Schreiber, U.; Urbach, W. Comparison of effects of air pollutants (SO2, O3, NO2) on intact leaves by measurements of chlorophyll fluorescence and P700 absorbance changes. Photosynth. Res. 1990, 25, 241–248. [Google Scholar] [CrossRef]
- Covello, P.S.; Chang, A.; Dumbroff, E.B.; Thompson, J.E. Inhibition of Photosystem II precedes thylakoid membrane lipid peroxidation in bisulfite-treated leaves of Phaseolus vulgaris. Plant Physiol. 1989, 90, 1492–1497. [Google Scholar] [CrossRef]
- Zaidi, A.A.; Khan, S.Z.; Almohamadi, H.; Filho, E.P.B.; Akber, N.S.; Khan, M.I.; Riaz, F.; Farooq, M. Enhancing bio-hydrogen and biogas yields through optimized ultrasonic pretreatment of algal biomass for sustainable energy production. Energy Nexus 2025, 18, 100430. [Google Scholar] [CrossRef]
- Zabed, H.M.; Qi, X.; Yun, J.; Zhang, H. Anaerobic Digestion of Microalgae Biomass for Methane Production. In Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment; Alam, M., Wang, Z., Eds.; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Walter, J.M.; Greses, S.; Hagen, L.H.; Schiml, V.C.; Pope, P.B.; González-Fernández, C.; Arntzen, M.Ø. Anaerobic digestion of microalgae: Microbial response and recovery after organic loading disturbances. mSystems 2025, 10, e01674-24. [Google Scholar] [CrossRef] [PubMed]
- Silveira, E.O.; Felizzola, N.M.; Hickmann, E.V.; Konrad, O.; Lutterbeck, C.A.; Machado, E.L.; Rodrigues, L.R. Energy recovery by anaerobic digestion of algal biomass from integrated microalgae/constructed wetland wastewater treatment. Environ. Sci. Pollut. Res. 2023, 30, 13317–13326. [Google Scholar] [CrossRef] [PubMed]
- Perera, I.A.; Abinandan, S.; Subashchandrabose, S.R.; Venkateswarlu, K.; Naidu, R.; Megharaj, M. Microalgal-bacterial consortia unveil distinct physiological changes to facilitate growth of microalgae. FEMS Microbiol. Ecol. 2021, 97, fiab012. [Google Scholar] [CrossRef]
- Borowitzka, M.A. Chapter 3—Biology of Microalgae. In Microalgae in Health and Disease Prevention; Levine, I.A., Fleurence, J., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 23–72. [Google Scholar] [CrossRef]
- Kwak, H.S.; Kim, J.Y.H.; Woo, H.M.; Jin, E.; Min, B.K.; Sim, S.J. Synergistic effect of multiple stress conditions for improving microalgal lipid production. Algal Res. 2016, 19, 215–224. [Google Scholar] [CrossRef]
- Buayam, N.; Davey, M.P.; Smith, A.G.; Pumas, C. Effects of copper and pH on the growth and physiology of Desmodesmus sp. AARLG074. Metabolites 2019, 9, 84. [Google Scholar] [CrossRef]
- Osundeko, O.; Dean, A.P.; Davies, H.; Pittman, J.K. Acclimation of microalgae to wastewater environments involves increased oxidative stress tolerance activity. Plant Cell Physiol. 2014, 55, 1848–1857. [Google Scholar] [CrossRef] [PubMed]
- Khalil, Z.I.; Asker, M.M.S.; El-Sayed, S.; Kobbia, I.A. Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. World J. Microbiol. Biotechnol. 2010, 26, 1225–1231. [Google Scholar] [CrossRef]
- Singh, V.P.; Srivastava, P.K.; Prasad, S.M. UV-B induced differential effect on growth and nitrogen metabolism in two cyanobacteria under copper toxicity. Cell Mol. Biol. 2012, 58, 85–95. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Hare, P.D.; Cress, W.A. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 1997, 21, 79–102. [Google Scholar] [CrossRef]
- Trovato, M.; Forlani, G.; Signorelli, S.; Funck, D. Proline metabolism and its functions in development and stress tolerance. In Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants; Hossain, M.A., Kumar, V., Burritt, D., Fujita, M., Mäkelä, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 41–72. [Google Scholar] [CrossRef]
- Dorion, S.; Ouellet, J.C.; Rivoal, J. Glutathione metabolism in plants under stress: Beyond reactive oxygen species detoxification. Metabolites 2021, 11, 641. [Google Scholar] [CrossRef]
- Moller, I.M.; Jensen, P.E.; Hansson, A. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 2007, 58, 459–481. [Google Scholar] [CrossRef]
- Hancock, J.; Desikan, R.; Harrison, J.; Bright, J.; Hooley, R.; Neill, S. Doing the unexpected: Proteins involved in hydrogen peroxide perception. J. Exp. Bot. 2006, 57, 1711–1718. [Google Scholar] [CrossRef]
- Prasad, R.; Gupta, S.K.; Shabnam, N.; Oliveira, C.Y.B.; Nema, A.K.; Ansari, F.A.; Bux, F. Role of microalgae in global CO2 sequestration: Physiological mechanism, recent development, challenges, and future prospective. Sustainability 2021, 13, 13061. [Google Scholar] [CrossRef]
- Gao, K. Approaches and involved principles to control pH/pCO2 stability in algal cultures. J. Appl. Phycol. 2021, 33, 3497–3505. [Google Scholar] [CrossRef]
- Aditya, L.; Vu, H.P.; Johir, M.A.H.; Mahlia, T.M.I.; Silitonga, A.S.; Zhang, X.; Nghiem, L.D. Role of culture solution pH in balancing CO2 input and light intensity for maximising microalgae growth rate. Chemosphere 2023, 343, 140255. [Google Scholar] [CrossRef] [PubMed]
- Yadav, G.; Mathimani, T.; Sekar, M.; Sindhu, R.; Pugazhendhi, A. Strategic evaluation of limiting factors affecting algal growth—An approach to waste mitigation and carbon dioxide sequestration. Sci. Total Environ. 2021, 796, 149049. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; Wang, Z.; Wen, X.; Ding, Y.; Hou, X.; Geng, Y.; Li, Y. Effects of carbon concentration, pH, and bubbling depth on carbon dioxide absorption ratio in microalgae medium. Environ. Sci. Pollut. Res. 2019, 26, 32902–32910. [Google Scholar] [CrossRef]
- Yahaya, E.; Yeo, W.S.; Nandong, J. Optimization of microalgae cultivation and CO2 capture in a three-stage bubble column photobioreactor: Evaluation of control strategies. Process Saf. Environ. Prot. 2025, 196, 106906. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, P. Effect of CO2 concentration on algal growth: A review. Renew. Sustain. Energy Rev. 2014, 38, 172–179. [Google Scholar] [CrossRef]
- González-López, C.V.; Acién Fernández, F.G.; Fernández-Sevilla, J.M.; Sánchez Fernández, J.F.; Molina Grima, E. Development of a process for efficient use of CO2 from flue gases in the production of photosynthetic microorganisms. Biotechnol. Bioeng. 2012, 109, 1637–1650. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wen, X.; Xu, Y.; Ding, Y.; Geng, Y.; Li, Y. Maximizing CO2 biofixation and lipid productivity of oleaginous microalga Graesiella sp. WBG1 via CO2-regulated pH in indoor and outdoor open reactors. Sci. Total Environ. 2018, 619–620, 827–833. [Google Scholar] [CrossRef]
- Zhao, B.; Su, Y. Process effect of microalgal-carbon dioxide fixation and biomass production: A review. Renew. Sustain. Energy Rev. 2014, 31, 121–132. [Google Scholar] [CrossRef]
- Yamano, T.; Fukuzawa, H. Carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analyses. J. Basic Microbiol. 2009, 49, 42–51. [Google Scholar] [CrossRef]
- Miri, R.; Aagaard, P.; Hellevang, H. Examination of CO2–SO2 solubility in water by SAFT. Implications for CO2 transport and storage. J. Phys. Chem. B 2014, 118, 10214–10223. [Google Scholar] [CrossRef] [PubMed]
- Wappel, D.; Joswig, S.; Khan, A.A.; Smith, K.H.; Kentish, S.E.; Shallcross, D.C.; Stevens, G.W. The solubility of sulfur dioxide and carbon dioxide in an aqueous solution of potassium carbonate. Int. J. Greenh. Gas Control. 2011, 5, 1454–1459. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, C.; Vaidyanathan, S. Microalgae: A robust “green bio-bridge” between energy and environment. Crit. Rev. Biotechnol. 2018, 38, 351–368. [Google Scholar] [CrossRef]
- Wijayasekera, S.C.N.; Cooray, B.Y.; Premaratne, M.; Ariyadasa, T.U. Assessment of the potential of CO2 sequestration from cement flue gas using locally isolated microalgae. In Proceedings of the Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 28–30 July 2020; pp. 124–129. [Google Scholar] [CrossRef]
- Yen, H.-W.; Ho, S.-H.; Chen, C.-Y.; Chang, J.S. CO2, NOx and SOx removal from flue gas via microalgae cultivation: A critical review. Biotechnol. J. 2015, 10, 829–839. [Google Scholar] [CrossRef]
- Huang, Y.; Fu, J.; Xia, A.; Zhu, X.; Zhu, X.; Liao, Q. Step-wise SO2-feeding strategies for microalgae-based CO2 fixation from flue gas and bioenergy production. Chem. Eng. J. 2023, 468, 143646. [Google Scholar] [CrossRef]
- Yang, S.; Wang, J.; Cong, W.; Cai, Z.; Ouyang, F. Effects of bisulfite and sulfite on the microalga Botryococcus braunii. Enzyme Microb. Technol. 2004, 35, 46–50. [Google Scholar] [CrossRef]
- Chiu, S.-Y.; Kao, C.-Y.; Huang, T.-T.; Lin, C.-J.; Ong, S.-C.; Chen, C.-D.; Chang, J.-S.; Lin, C.-S. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresour. Technol. 2011, 102, 9135–9142. [Google Scholar] [CrossRef] [PubMed]
- Gorelova, O.; Baulina, O.; Ismagulova, T.; Kokabi, K.; Lobakova, E.; Selyakh, I.; Semenova, L.; Chivkunova, O.; Karpova, O.; Scherbakov, P.; et al. Stress-induced changes in the ultrastructure of the photosynthetic apparatus of green microalgae. Protoplasma 2019, 256, 261–277. [Google Scholar] [CrossRef]




| Indicator | Unit | Series | ||
|---|---|---|---|---|
| S1 | S2 | S3 | ||
| CO2 | % obj. | 0.042 ± 0.001 | 5.92 ± 0.31 | 5.61 ± 0.22 |
| O2 | % obj. | 21.0 ± 0.2 | 10.2 ± 2.1 | 9.8 ± 1.6 |
| CO | mg/m3 | 0.0 ± 0.0 | 241 ± 92 | 233 ± 74 |
| NOx | mg/m3 | 8.2 ± 0.9 | 284 ± 21 | 277 ± 33 |
| SOx | mg/m3 | 11 ± 1.1 | 801 ± 91 | 0.0 ± 0.0 |
| dust | mg/m3 | not marked | 4.3 ± 0.6 | 0.0 ± 0.0 |
| Series | Unit | Value |
|---|---|---|
| S1 | mg VS/L·d | 186.6 ± 7.4 |
| S2 | 147.2 ± 12.1 | |
| S3 | 281 ± 16.2 | |
| S1 | mg Chl-a/L·d | 7.72 ± 0.34 |
| S2 | 6.37 ± 0.32 | |
| S3 | 12.92 ± 0.41 |
| Parameter | Unit | S1 | S2 | S3 |
|---|---|---|---|---|
| Volatile solids (VS) | [%TS] | 88.9 ± 1.4 a | 86.3 ± 1.5 b | 88.7 ± 1.6 a |
| Total nitrogen (TN) | [mg/gTS] | 47.1 ± 1.5 a | 46.2 ± 1.3 a | 47.4 ± 1.7 a |
| Total phosphorus (TP) | [mg/gTS] | 8.4 ± 0.8 a | 8.6 ± 1.1 a | 8.5 ± 0.9 a |
| Total carbon (TC) | [mg/gTS] | 540 ± 18 a | 573 ± 22 b | 549 ± 20 ab |
| Total organic carbon (TOC) | [mg/gTS] | 471 ± 14 a | 466 ± 13 b | 477 ± 15 a |
| Proteins | [%TS] | 29.2 ± 1.2 a | 28.4 ± 1.1 a | 29.3 ± 1.4 a |
| Lipids | [%TS] | 7.0 ± 0.7 a | 5.9 ± 0.8 b | 7.3 ± 0.9 a |
| Saccharides | [%TS] | 36.1 ± 1.5 a | 34.3 ± 1.4 b | 35.7 ± 1.6 a |
| Series | Volume of Air Introduced Into the V-PBR [m3] | Volume of Exhaust Gases Introduced Into the V-PBR [m3] | CO2 Content in Gases Introduced Into the V-PBR [% vol.] | Amount of CO2 Introduced into the V-PBR During the Cultivation Cycle [gCO2] | CO2 Content in Gases Discharged from the V-PBR [% vol.] | Amount of CO2 Discharged from the V-PBR During the Cultivation Cycle [gCO2] | CO2 Bound During the Cultivation Process in the V-PBR [gCO2] | Total Amount of C. vulgaris Biomass Obtained During the Cultivation Cycle [g] | CO2 Utilisation Efficiency [%] |
|---|---|---|---|---|---|---|---|---|---|
| S1 | 1920 | - | 0.042 | 1586.6 | 0.022 | 793.3 | 793.3 | 232.0 | 53.8 |
| S2 | - | 19.2 | 5.92 | 2231.8 | 4.63 | 1745.5 | 486.3 | 67.4 | 24.1 |
| S3 | - | 38.4 | 5.61 | 4229.9 | 3.87 | 2917.9 | 1311.9 | 294.0 | 41.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zieliński, M.; Barczak, Ł.; Kisielewska, M.; Vdovychenko, A.; Kazimierowicz, J.; Dębowski, M. Carbon Dioxide Bio-Sequestration and Biomass Production for Energy Purposes During C. vulgaris Cultivation Powered by Real Exhaust Gases from a Municipal Thermal Power Plant. Energies 2025, 18, 6086. https://doi.org/10.3390/en18236086
Zieliński M, Barczak Ł, Kisielewska M, Vdovychenko A, Kazimierowicz J, Dębowski M. Carbon Dioxide Bio-Sequestration and Biomass Production for Energy Purposes During C. vulgaris Cultivation Powered by Real Exhaust Gases from a Municipal Thermal Power Plant. Energies. 2025; 18(23):6086. https://doi.org/10.3390/en18236086
Chicago/Turabian StyleZieliński, Marcin, Łukasz Barczak, Marta Kisielewska, Alona Vdovychenko, Joanna Kazimierowicz, and Marcin Dębowski. 2025. "Carbon Dioxide Bio-Sequestration and Biomass Production for Energy Purposes During C. vulgaris Cultivation Powered by Real Exhaust Gases from a Municipal Thermal Power Plant" Energies 18, no. 23: 6086. https://doi.org/10.3390/en18236086
APA StyleZieliński, M., Barczak, Ł., Kisielewska, M., Vdovychenko, A., Kazimierowicz, J., & Dębowski, M. (2025). Carbon Dioxide Bio-Sequestration and Biomass Production for Energy Purposes During C. vulgaris Cultivation Powered by Real Exhaust Gases from a Municipal Thermal Power Plant. Energies, 18(23), 6086. https://doi.org/10.3390/en18236086

