The Effects of Biosyngas and Biogas on the Operation of Dual-Fuel Diesel Engines: A Review
Abstract
1. Introduction
2. Biomass Gases
2.1. Biosyngas (and Producer Gas)
| Biomass | Gasifier Type | Gasifying Agent | Species (vol.%) | LHV (MJ/Nm3) | Ref. | |||
|---|---|---|---|---|---|---|---|---|
| H2 | CO | CH4 | CO2 | |||||
| coconut shell | downdraft fixed bed | air | 18.84 | 23.02 | 1.13 | 7.05 | 5.35 | [45] |
| oil palm fronds | downdraft | air | 9.37 | 15.27 | 8.78 | 15.03 | 6.62 | [46] |
| samanea saman twig | updraft | compressed air | 7.33 | 30.3 | 1.2 | 8.75 | 5.13 | [47] |
| prosopis juliflora wood | downdraft | N/A | 11.08 | 17.44 | 4.03 | 2.43 | 4.75 | [48] |
| municipal solid waste | downdraft | air | 23.8 | 21.5 | 3 | 5.8 | 5.77 | [49] |
| torrefied rice husk & north east indian coal | dual fluidized bed gasifier | air | 22.1 | 24.6 | 7.2 | 16.8 | 8.1 | [50] |
| sugarcane bagasse | microwave-assisted chemical looping gasification system | air | 34.18 | 36.19 | 5.6 | 11.42 | 16.31 (HHV) | [51] |
| rice husk | two-stage fixed-bed reactor system | steam | 33.58 | 31.86 | 11.93 | 20.38 | - | [52] |
2.2. Biogas
3. Application of Biomass Gases in Diesel Engines
4. Influence of Biomass Gases on Engine Performance
4.1. Influence of Biosyngas on Engine Performance
| Fuels | Engine Type | Operating Conditions | Combustion | Performance | Emission | Ref. |
|---|---|---|---|---|---|---|
| PG-diesel | Multi-fuel VCR (variable compression ratio) engine | Load: 90% Speed: 1500 rpm IT: 23° BTDC | - | BTE: ↓ (Max: 26%) BSEC: ↓ (Min: 14.7 MJ/kWh) | CO: ↑(Min: 0.07 vol.%) HC: ↑(M: 28.8 ppm) NOx: ↓ Smoke: ↓ (Min: 17.5%) | [92] |
| PG-H2-diesel | 4-stroke, 1-cylinder, direct injection diesel engine | Load: 90% Speed: 1500 rpm IT: 27° BTDC | - | (at 5% EGR vs. 10% EGR)BTE: ↓2.1% | (at 5% EGR vs. 10% EGR) HC: ↓8.01% CO: ↓14.5% NOx: ↑32.2% Smoke: ↓10.2% | [93] |
| PG-biodiesel-diethyl ether | 4-stroke, 2-cylinder diesel engine | Power: 14 hp Speed: 1500 rpm | CP: ↓ HRR: ↓ MCT: ↓ | BTE: ↓5.9% | - | [90] |
| Syngas–biodiesel | 4-cylinder diesel engine | - | - | - | CO: ↑ HC: ↑ NOx: ↓ Smoke: ↑ | [94] |
| PG-diesel | 4-stroke, 1-cylinder, direct injection diesel engine | BMEP: 0–700 kN/m2 Speed: 1500 rpm | - | BTE: ↓ BSEC: ↑ | CO: ↑ CO2: ↑ Smoke: ↓ | [95] |
| PG-diesel | 4-stroke, 1-cylinder, VCR diesel engine | Load: 19.6 N–117.6 N Compression ratio: 18 | - | BTE: ↓ (Min: 2.76%; Max: 23.34%) BSEC: ↓ | CO: ↑(Max: 0.0253 vol.%) HC: ↑ NOx: ↓69.5% (Max: 42 ppm) | [96] |
| PG-diesel | Direct injection diesel engine | Load: 75% Speed: 1500 rpm | - | BTE: ↑40% | CO: ↓ HC: ↓ NOx: ↑ Smoke: ↓ | [97] |
4.2. Influence of Biogas on Engine Performance
| Fuel | Engine Type | Operating Conditions | Combustion | Performance | Emission | Ref. |
|---|---|---|---|---|---|---|
| Biogas–diesel | 4-stroke, 1-cylinder diesel engine | Biogas Flow Rate: 8–16 L/min Torque: 5–15 N-m Intake Temperature: 35–80 °C | - | BSFC: ↑ BTE: ↓ | HC: ↓ Smoke: ↓ NOx: ↑ | [113] |
| Biogas–diesel | 4-stroke, 1-cylinder, direct injection diesel engine | Load: 100% Speed: 1500 rpm | - | BSFC: ↑36% BTE: ↓6.2% | CO: ↑17% HC: ↑30% CO2: ↓42% NOx: ↓39% Smoke: ↓49% | [114] |
| Biogas–diesel | 4-stroke, 1-cylinder, direct injection, VCR diesel engine | Load: 20–100% Speed: 1500 rpm IT: 23–32° BTDC CR: 17–18 | CP: ↓ HRR: ↓ | BSFC: ↑(Optimized Value: 1.98 kg/h) BTE: ↓(Optimized Value: 19.38%) | HC: ↑(Optimized Value: 0.314 g/kWh) CO: ↑(Optimized Value: 0.694 g/kWh) CO2: ↓(Optimized Value: 276.34 g/kWh) NOx: ↓(Optimized Value: 0.381 g/kWh) | [115] |
| Biogas–diesel | 4-stroke, 1-cylinder diesel engine | Load: 20–100% Speed: 1500 rpm IT: 23° BTDC CR: 16 | - | BTE: ↓30.0% | CO: ↓ HC: ↑ NOx: ↓ | [116] |
| Biogas–diesel–MWCNT | 4-stroke, 3-cylinder, direct injection diesel engine | Load: 0–100% Speed: 1500 rpm | CP: ↑ | BSFC: ↑ BTE: ↓8.0% | CO: ↑ HC: ↑ NOx: ↓23.0% | [117] |
| HEB-diesel | 4-stroke, 1-cylinder, direct injection diesel engine | Load: 20–100% Speed: 1500 rpm IT: 13° BTDC | - | BSFC: ↓ | CO: ↑ HC: ↑ NOx: ↓ Smoke: ↓ | [118] |
| HEB-diesel | 4-stroke, 1-cylinder, CRDI diesel engine | Load: 80% Speed: 1800 rpm IT: 20.84° BTDC | - | BSFC: ↓13.6% BTE: ↑10.5% | HC: ↓ Smoke: ↓ NOx: ↑ | [119] |
| HEB-diesel | 4-stroke, 1-cylinder, VCR diesel engine | BMEP: 3.5–1500 bar CR = 16–18 | CP: ↑ HRR: ↓ | BTE: ↑12.8% | CO: ↓ HC: ↓ NOx: ↑ Smoke: ↓ | [120] |
5. Influence of Biomass Gases on Exhaust Emissions
5.1. Influence of Biosyngas on Exhaust Emissions
5.2. Influence of Biogas on Exhaust Emissions
6. Discussion and Scope for Future Prospects
7. Novelty and Limitations
7.1. Novelty of This Review
7.2. Limitations of This Review
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AD | Anaerobic Digestion |
| BMEP | Brake Mean Effective Pressure |
| BSEC | Brake Specific Energy Consumption |
| BSFC | Brake Specific Fuel Consumption |
| BTE | Brake Thermal Efficiency |
| CH4 | Methane |
| CI | Compression Ignition |
| CP | Compression Pressure |
| CO | Carbon Monoxide |
| CO2 | Carbon Dioxide |
| CR | Compression Ratio |
| DF | Dual Fuel |
| EGR | Exhaust Gas Recirculation |
| HRR | Heat Release Rate |
| HCCI | Homogeneous Charge Compression Ignition |
| HHV | High Heating Value |
| ICE | Internal Combustion Engine |
| LHV | Low Heating Value |
| LTC | Low-Temperature Combustion |
| MCT | Mean Combustion Temperature |
| NOx | Nitrogen Oxides |
| PPCI | Premixed Partially Controlled Ignition |
| PG | Producer Gas |
| RSM | Response Surface Methodology |
| RCCI | Reactivity Controlled Compression Ignition |
| VCR | Variable Compression Ratio |
| UHCs | Unburned Hydrocarbons |
| PM | Particulate Matter |
| SOx | Sulfur Oxides |
| H2 | Hydrogen |
References
- Gürbüz, H.; Demirtürk, S.; Akçay, İ.H.; Akçay, H. Effect of Port Injection of Ethanol on Engine Performance, Exhaust Emissions and Environmental Factors in a Dual-Fuel Diesel Engine. Energy Environ. 2021, 32, 784–802. [Google Scholar] [CrossRef]
- Giakoumis, E.G.; Sarakatsanis, C.K. A Comparative Assessment of Biodiesel Cetane Number Predictive Correlations Based on Fatty Acid Composition. Energies 2019, 12, 422. [Google Scholar] [CrossRef]
- Wirawan, S.S. Biodiesel Implementation in Indonesia: Experiences and Future Perspectives. Renew. Sustain. Energy Rev. 2024, 189, 113911. [Google Scholar] [CrossRef]
- Hajjari, M.; Tabatabaei, M.; Aghbashlo, M.; Ghanavati, H. A Review on the Prospects of Sustainable Biodiesel Production: A Global Scenario with an Emphasis on Waste-Oil Biodiesel Utilization. Renew. Sustain. Energy Rev. 2017, 72, 445–464. [Google Scholar] [CrossRef]
- Niyogi, A.; Sarkar, P.; Bhattacharyya, S.; Pal, S.; Mukherjee, S. Harnessing the Potential of Agriculture Biomass: Reuse, Transformation and Applications in Energy and Environment. Environ. Sci. Pollut. Res. 2025, 32, 19180–19203. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, A.K.; Ağbulut, Ü. A Comprehensive Review on Biomass-Derived Producer Gas as an Alternative Fuel: A Waste Biomass-to-Energy Perspective. J. Therm. Anal. Calorim. 2025, 150, 8913–8932. [Google Scholar] [CrossRef]
- Vasileiadou, A. Advancements in Waste-to-Energy (WtE) Combustion Technologies: A Review of Current Trends and Future Developments. Discov. Appl. Sci. 2025, 7, 457. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Cho, K.; Choi, Y.; Hwang, B.; Park, Y.-K.; Nam, H.; Lee, D. Biomass-Derived Materials for Energy Storage and Electrocatalysis: Recent Advances and Future Perspectives. Biochar 2024, 6, 96. [Google Scholar] [CrossRef]
- Chang, W.; Wang, X.; Xie, X.; Xing, L.; Li, H.; Liu, M.; Miao, L.; Huang, Y. Recent Progress on the Synergistic Preparation of Liquid Fuels by Co-Pyrolysis of Lignocellulosic Biomass and Plastic Wastes. J. Energy Inst. 2025, 119, 102019. [Google Scholar] [CrossRef]
- Balopi, B.; Moyo, M.; Gorimbo, J.; Liu, X. Biomass-to-Electricity Conversion Technologies: A Review. Waste Dispos. Sustain. Energy 2025, 7, 323–351. [Google Scholar] [CrossRef]
- Nguyen, V.N.; Nayak, S.K.; Le, H.S.; Kowalski, J.; Deepanraj, B.; Duong, X.Q.; Truong, T.H.; Tran, V.D.; Cao, D.N.; Nguyen, P.Q.P. Performance and Emission Characteristics of Diesel Engines Running on Gaseous Fuels in Dual-Fuel Mode. Int. J. Hydrogen Energy 2024, 49, 868–909. [Google Scholar] [CrossRef]
- Srivastava, A.; Meena, P.K.; Meena, D.; Shelare, S.; Wagle, C.S. Innovative Low-Cost Approaches to Biogas Purification in Developing Economies. Energy Sustain. Dev. 2025, 88, 101834. [Google Scholar] [CrossRef]
- EL-Seesy, A.I.; Waly, M.S.; El-Batsh, H.M.; El-Zoheiry, R.M. Enhancement of the Waste Cooking Oil Biodiesel Usability in the Diesel Engine by Using n-Decanol, Nitrogen-Doped, and Amino-Functionalized Multi-Walled Carbon Nanotube. Energy Convers. Manag. 2023, 277, 116646. [Google Scholar] [CrossRef]
- Mohite, A.; Bora, B.J.; Sharma, P.; Sarıdemir, S.; Mallick, D.; Sarıdemir, S.; Ağbulut, Ü. Performance Enhancement and Emission Control through Adjustment of Operating Parameters of a Biogas-Biodiesel Dual Fuel Diesel Engine: An Experimental and Statistical Study with Biogas as a Hydrogen Carrier. Int. J. Hydrogen Energy 2024, 52, 752–764. [Google Scholar] [CrossRef]
- Li, D.; Devanesan, S.; Kim, T.P.; Brindhadevi, K. Enhanced Combustion Performance and Emission Reduction in Diesel Engines Fuelled by Microalgae Biodiesel Blends with TiO2 Nanoparticles and Hydrogen-Rich Biogas. Int. J. Hydrogen Energy 2025, 185, 151933. [Google Scholar] [CrossRef]
- Khan, O.; Alsaduni, I.; Equbal, A.; Parvez, M.; Yadav, A.K. Performance and Emission Analysis of Biodiesel Blends Enriched with Biohydrogen and Biogas in Internal Combustion Engines. Process Saf. Environ. Prot. 2024, 183, 1013–1037. [Google Scholar] [CrossRef]
- Khokhar, A.R.; Ratlamwala, T.A.H.; Kamal, K.; Alkahtani, M.; Zafar, S. Decarbonization Pathways for Gas Turbines: A Thermodynamic and Lifecycle Evaluation of Hydrogen and Biogas Blends. Int. J. Hydrogen Energy 2025, 143, 561–581. [Google Scholar] [CrossRef]
- Paramasivam, P.; Alnamasi, K.; Alsharif, A.M.A.; Kanti, P.K. Performance and Emission Analysis of a Dual-Fuel Engine Using Biogas and Algal Biodiesel: Machine Learning Prediction and Response Surface Optimization. Case Stud. Therm. Eng. 2025, 75, 107227. [Google Scholar] [CrossRef]
- Girmay, H.; Yeneneh, K.; Gopal, R. Comprehensive Analysis and Prediction of Biogas-Diesel Dual-Fuel Combustion in Direct Injection Diesel Engines: Experimental and Artificial Neural Network Approach. Results Eng. 2025, 28, 107773. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, C.; Wang, Z.; Cheng, X. Comparison of Diesel Single/Double/Triple Injection Strategies and Early/Late Compression Ignition Regimes in an Ammonia/Diesel Dual-Fuel Engine. Energy 2025, 322, 135753. [Google Scholar] [CrossRef]
- Serrano, R.; Uriondo, Z.; Portillo, L.D.; Basterretxea, A. A Study on the Optimal Adjustment of a Turbocharged Marine Compression-Ignition Engine with Double Pilot Fuel Injection Operating under a Diesel—H2 Dual Fuel. Appl. Therm. Eng. 2025, 270, 126233. [Google Scholar] [CrossRef]
- Ogunjide, S.B.; Zhong, W.; Pachiannan, T.; Zhu, Y.; He, Z.; Wang, Q. A Review of Combustion, Performance and Emissions Characteristics of Diesel Engines Fueled with n-Pentanol Blends for Agricultural Use. Results Eng. 2025, 27, 106768. [Google Scholar] [CrossRef]
- Shi, Z.; Qian, Y.; Mi, S.; Lu, X. Application of Different Injection Strategies under Methanol/Diesel Dual-Fuel Intelligent Charge Compression Ignition (ICCI) Mode with High Methanol Energy Ratio at Low Engine Loads. Fuel 2026, 405, 136561. [Google Scholar] [CrossRef]
- Dewangan, A.; Ahmad, A.; Yadav, A.K. Innovative Research on Waste Tire Recycling for Sustainable Biofuel Production: Assessment of Its Usability on Multi-Cylinder Diesel Engine Employing Constant Injection of Oxyhydrogen and Biogas through a Premixing Device. Int. J. Hydrogen Energy 2024, 84, 155–163. [Google Scholar] [CrossRef]
- Goyal, D.; Goyal, T.; Mahla, S.K.; Goga, G.; Dhir, A.; Balasubramanian, D.; Hoang, A.T.; Wae-Hayee, M.; Josephin, J.S.F.; Sonthalia, A.; et al. Application of Taguchi Design in Optimization of Performance and Emissions Characteristics of n-Butanol/Diesel/Biogas under Dual Fuel Mode. Fuel 2023, 338, 127246. [Google Scholar] [CrossRef]
- Deheri, C.; Acharya, S.K.; Thatoi, D.N.; Mohanty, A.P. A Review on Performance of Biogas and Hydrogen on Diesel Engine in Dual Fuel Mode. Fuel 2020, 260, 116337. [Google Scholar] [CrossRef]
- Ramalingam, S.; Subramanian, S.; Subramanian, A. Utilization of Pyrolytic Oil and Hydrogen Enriched Syngas from Single Feedstock (Delonix Regia) through Pyrolysis Process and Its Influence on Performance and Emission Characteristics in CI Engine. Int. J. Hydrogen Energy 2022, 47, 36749–36762. [Google Scholar] [CrossRef]
- Bouaik, H.; Madihi, S.; El Harfi, M.; Khiraoui, A.; Aboulkas, A.; El Harfi, K. Pyrolysis of Macroalgal Biomass: A Comprehensive Review on Bio-Oil, Biochar, and Biosyngas Production. Sustain. Chem. One World 2025, 5, 100050. [Google Scholar] [CrossRef]
- Rafiq, M.H.; Hustad, J.E. Biosyngas Production by Autothermal Reforming of Waste Cooking Oil with Propane Using a Plasma-Assisted Gliding Arc Reactor. Int. J. Hydrogen Energy 2011, 36, 8221–8233. [Google Scholar] [CrossRef]
- Sang, J.; Li, Y.; Yang, J.; Wu, T.; Xiang, L.; Zhao, Y.; Guan, W.; Xu, J.; Chai, M.; Singhal, S.C. Energy Harvesting from Algae Using Large-Scale Flat-Tube Solid Oxide Fuel Cells. Cell Rep. Phys. Sci. 2023, 4, 101454. [Google Scholar] [CrossRef]
- Salvi, B.L.; Paliwal, A. Development and Performance Study of Modified Cookstove Burner for Biosyngas as Green Fuel toward Sustainable Energy System. Energy Sustain. Dev. 2025, 87, 101737. [Google Scholar] [CrossRef]
- Roy, P.; Dutta, A.; Deen, B. Greenhouse Gas Emissions and Production Cost of Ethanol Produced from Biosyngas Fermentation Process. Bioresour. Technol. 2015, 192, 185–191. [Google Scholar] [CrossRef]
- Molino, A.; Larocca, V.; Chianese, S.; Musmarra, D. Biofuels Production by Biomass Gasification: A Review. Energies 2018, 11, 811. [Google Scholar] [CrossRef]
- Kashyap, D.; Das, S.; Kalita, P. Exploring the Efficiency and Pollutant Emission of a Dual Fuel CI Engine Using Biodiesel and Producer Gas: An Optimization Approach Using Response Surface Methodology. Sci. Total Environ. 2021, 773, 145633. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, Q.; Zhang, Z.; Xie, G.; Luo, Z. Kinetics Simulation Study of Biomass Partial Gasification for Producer Gas and Biochar Co-Production in the Fluidized Bed. Energy 2025, 318, 134919. [Google Scholar] [CrossRef]
- Jančauskas, A.; Striūgas, N.; Zakarauskas, K.; Skvorčinskienė, R.; Eimontas, J.; Buinevičius, K. Experimental Investigation of Sorted Municipal Solid Wastes Producer Gas Composition in an Updraft Fixed Bed Gasifier. Energy 2024, 289, 130063. [Google Scholar] [CrossRef]
- Freda, C.; Catizzone, E.; Villone, A.; Cornacchia, G. Biomass Gasification in Rotary Kiln Integrated with a Producer Gas Thermal Cleaning Unit: An Experimental Investigation. Results Eng. 2024, 21, 101763. [Google Scholar] [CrossRef]
- Parathesi, M.; Winsly, B.W.; Singh Vincent, C.J. Char Reduction and Producer Gas Quality Enrichment of Rice Husk by Co-Gasifying Tyre Waste in Downdraft Gasifier. Fuel 2025, 390, 134744. [Google Scholar] [CrossRef]
- Qin, L.; Zhao, B.; Zhou, B.; Chen, W.; Han, J. Numerical Simulation of Biosyngas Injection in Air-Blown and Full-Oxygen Blast Furnaces with Lower Carbon Emissions. Appl. Therm. Eng. 2025, 279, 127798. [Google Scholar] [CrossRef]
- Ouyang, T.; Zhang, M.; Qin, P.; Liu, W.; Shi, X. Converting Waste into Electric Energy and Carbon Fixation through Biosyngas-Fueled SOFC Hybrid System: A Simulation Study. Renew. Energy 2022, 193, 725–743. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Cao, B.; Liu, C.; Yang, J.; Chen, W. Optimisation of Downdraft Gasifier in Biomass-Fuelled Power Generation System: Experimental Analysis and Chemical Kinetics Modelling with Tar Cracking. Energy 2024, 313, 133924. [Google Scholar] [CrossRef]
- Liu, S.; Ren, L.; Shi, Y.; Wan, L.; Mei, D.; Fang, Z.; Tu, X. Magnetically Accelerated Gliding Arc Discharge for Enhanced Biomass Tar Decomposition: Influence of Producer Gas Components. J. Energy Inst. 2025, 120, 102039. [Google Scholar] [CrossRef]
- Szul, M.; Zuwała, J.; Iluk, T. Research and Development of a Mature and Reliable Method for Filtration of Hot Producer Gases. Sep. Purif. Technol. 2024, 347, 127629. [Google Scholar] [CrossRef]
- Kumar, A. Experimental Analysis of Dual-Stage Ignition Biomass Downdraft Gasifier Based on Various Gasification Media for the Generation of High-Quality Producer Gas. Fuel 2024, 361, 130708. [Google Scholar] [CrossRef]
- Hoque, M.E.; Rashid, F.; Aziz, M. Gasification and Power Generation Characteristics of Rice Husk, Sawdust, and Coconut Shell Using a Fixed-Bed Downdraft Gasifier. Sustainability 2021, 13, 2027. [Google Scholar] [CrossRef]
- Umar, H.A.; Sulaiman, S.A.; Said, M.A.; Gungor, A.; Ahmad, R.K.; Inayat, M. Syngas Production from Gasification and Co-Gasification of Oil Palm Trunk and Frond Using a down-Draft Gasifier. Int. J. Energy Res. 2021, 45, 8103–8115. [Google Scholar] [CrossRef]
- Supriatna, N.K.; Zuldian, P.; Purawiardi, I.; Aprianti, N.; Gunawan, Y.; Fariza, O.; Raksodewanto, A.A.; Alamsyah, R.; Hasanuzzaman, M.; Surjosatyo, A. Experimental Investigation and Performance Evaluation of Samanea Saman Leaves and Twigs Gasification from Urban Residential Garden Waste as Alternative Future Energy. Bioresour. Technol. Rep. 2024, 27, 101950. [Google Scholar] [CrossRef]
- Vásquez-Martínez, R.; Cuervo, J.; Ramos, P.A.; Castro, Y.A. Characterization and Pilot-Scale Downdraft Gasification of Invasive Forestry Species Biomass in the Dominican Republic. Biomass Bioenergy 2024, 191, 107476. [Google Scholar] [CrossRef]
- Saravanakumar, A.; Chen, W.-H.; Arunachalam, K.D.; Park, Y.-K.; Chyuan Ong, H. Pilot-Scale Study on Downdraft Gasification of Municipal Solid Waste with Mass and Energy Balance Analysis. Fuel 2022, 315, 123287. [Google Scholar] [CrossRef]
- Banik, R.K.; Kalita, P. Experimental Investigation for Maximization of Syngas Production Generated through Co-Gasification of Torrefied Biomass and Desulphurized North-East Indian Coal in a Dual Fluidized Bed Gasifier. Appl. Therm. Eng. 2025, 279, 127583. [Google Scholar] [CrossRef]
- Ahmad, F.; Zhang, Y.; Fu, W.; Zhao, W.; Xiong, Q.; Li, B. Microwave-Assisted Chemical Looping Gasification of Sugarcane Bagasse Biomass Using Fe3O4 as Oxygen Carrier for H2/CO-Rich Syngas Production. Chem. Eng. J. 2024, 501, 157675. [Google Scholar] [CrossRef]
- Akubo, K.; Nahil, M.A.; Williams, P.T. Pyrolysis-Catalytic Steam Reforming of Agricultural Biomass Wastes and Biomass Components for Production of Hydrogen/Syngas. J. Energy Inst. 2019, 92, 1987–1996. [Google Scholar] [CrossRef]
- Enomoto, H.; Saito, K. Effects of the Hydrogen and Methane Fractions in Biosyngas on the Stability of a Small Reciprocated Internal Combustion Engine. Energy 2020, 213, 118518. [Google Scholar] [CrossRef]
- Cavalli, A.; Chundru, P.; Brunner, T.; Obernberger, I.; Mirabelli, I.; Makkus, R.; Aravind, P.V. Interactions of High Temperature H2S and HCl Cleaning Sorbents with Biosyngas Main Components and Testing in a Pilot Integrated Biomass Gasifier SOFC System. Renew. Energy 2021, 180, 673–682. [Google Scholar] [CrossRef]
- Tian, Y.; Luo, Z.; He, D.; Yang, Y.; Liang, S.; Liu, W.; Yuan, L. Co-Gasification of Biomass and Polyethylene: A Simulation Study by Considering Tar Formation. Biomass Conv. Bioref. 2024, 14, 4081–4089. [Google Scholar] [CrossRef]
- Tian, Y.; He, D.; Zeng, Y.; Hu, L.; Du, J.; Luo, Z.; Ma, W.; Zhang, Z. Experimental Research on Hydrogen-Rich Syngas Yield by Catalytic Biomass Air-Gasification over Ni/Olivine as in-Situ Tar Destruction Catalyst. J. Energy Inst. 2023, 108, 101263. [Google Scholar] [CrossRef]
- Janczak, D.; Lucejko, J.J.; Zborowska, M.; Francesconi, S.; Krupka, M.; Pochwatka, P.; Gikas, P.; Czekała, W.; Qiao, W.; Dach, J. Evaluation of Tree Leaf Properties for Potential Biogas Production. J. Environ. Manag. 2025, 393, 127018. [Google Scholar] [CrossRef]
- Shaibur, M.R.; Al Helal, A.S.; Siddique, A.B.; Husain, H.; Khan, M.W.; Sarwar, S.; Farzana, F.; Nahar, N.; Hossain, M.S.; Arpon, S.H.; et al. Cow Dung Management, Biogas Production and the Uses of Bio-Slurry for Sustainable Agriculture. Clean. Waste Syst. 2025, 10, 100201. [Google Scholar] [CrossRef]
- Sasongko, N.A.; Ayre, J.; Noguchi, R.; Moheimani, N.R.; Bahri, P.A.; Anda, M.; Nakajima, M.; Soekotjo, E.S.A.; Pertiwi, G.A.; Handayani, T.; et al. Utilization and Integration of Microalgae Consortium in Treating Undiluted Anaerobic Digestate Animal Effluent to Produce Animal Feed, Bio-Oil, and Biogas. Bioresour. Technol. 2025, 416, 131788. [Google Scholar] [CrossRef]
- Godara, R.; Gakkhar, N.; Jha, M.K.; Vijay, V. Comprehensive Thermal Assessment of Anaerobic Digestion Process in Biogas Plants. Renew. Sustain. Energy Rev. 2026, 226, 116265. [Google Scholar] [CrossRef]
- Leal Morais Luna, N.A.; Lopes da Silva, M.G.; Cezar Menezes, R.S.; Dutra, E.D.; Albuquerque, A.A. Simulation Refinement of the Biogas Production Process via Anaerobic Digestion: Validation of Properties, Phase Equilibrium and Database Construction. Chem. Eng. Sci. 2025, 316, 121908. [Google Scholar] [CrossRef]
- Lalhriatpuia, S.; Hauchhum, L.; Mustafa, M.G.; Pal, A. Optimization of Biogas Production Using Novel Mixing Design and Advanced Modelling Techniques. Fuel 2026, 405, 136517. [Google Scholar] [CrossRef]
- Heller, R.; Hülsemann, B.; Lemmer, A.; Oechsner, H. Enhancing Methane Yield from Agricultural Feedstocks Including Horse Manure and Residues: Ball Mill Pretreatment in Full-Scale Biogas Plant. Bioresour. Technol. 2025, 435, 132866. [Google Scholar] [CrossRef]
- Karimipour-Fard, P.; Chio, C.; Brunone, A.; Marway, H.; Thompson, M.; Abdehagh, N.; Qin, W.; Yang, T.C. Lignocellulosic Biomass Pretreatment: Industrial Oriented High-Solid Twin-Screw Extrusion Method to Improve Biogas Production from Forestry Biomass Resources. Bioresour. Technol. 2024, 393, 130000. [Google Scholar] [CrossRef] [PubMed]
- Thakur, R.; Chandrahas; Tarafdar, A.; Yadav, S.; Godara, R.; Singh, M.; Deo, C.; Narayan, R. From Litter to Energy: Effect of Alkali Pretreatment on Biogas Production from Poultry Litter and Slurry Characteristics. Energy Sustain. Dev. 2025, 88, 101799. [Google Scholar] [CrossRef]
- Sun, J.; Tan, L.; Guo, A.; Wang, X.; Wang, W.; Zhang, Z.; Liu, J.; Zhang, S. Biogas Conversion of Forestry Waste Enhanced by Compound Microbial Pretreatment: Microbial and Metabolomic Insights during Anaerobic Digestion. J. Environ. Chem. Eng. 2025, 13, 119288. [Google Scholar] [CrossRef]
- Frontiers Enhancing and Upgrading Biogas and Biomethane Production in Anaerobic Digestion: A Comprehensive Review. Available online: https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2023.1170133/full (accessed on 29 October 2025).
- Passos, F.; Ferrer, I. Influence of Hydrothermal Pretreatment on Microalgal Biomass Anaerobic Digestion and Bioenergy Production. Water Res. 2015, 68, 364–373. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, N.; García-Bernet, D.; Domínguez, J.M. Extrusion and Enzymatic Hydrolysis as Pretreatments on Corn Cob for Biogas Production. Renew. Energy 2017, 107, 597–603. [Google Scholar] [CrossRef]
- Shah, V.; Patel, N.; Prajapati, P.; Jouhara, H. Unlocking Biogas Potential: A Comprehensive Study on Pretreatment Techniques of Organic Substrate for Enhanced Anaerobic Digestion. Energy 2025, 335, 138244. [Google Scholar] [CrossRef]
- Brito, J.; Frade-González, C.; Almenglo, F.; González-Cortés, J.J.; Valle, A.; Durán-Ruiz, M.C.; Ramírez, M. Anoxic Desulfurization of Biogas Rich in Hydrogen Sulfide through Feedback Control Using Biotrickling Filters: Operational Limits and Multi-Omics Analysis. Bioresour. Technol. 2025, 428, 132439. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Chen, J.; Chen, Z.; Gong, H.; Guo, X.; Chen, L. Feasibility Study of Polydimethylsiloxane (PDMS) Membranes for Siloxane Removal from Biogas. Sep. Purif. Technol. 2025, 379, 135047. [Google Scholar] [CrossRef]
- Ma, C.; Song, E.-Z.; Yao, C.; Long, Y.; Ding, S.-L.; Xu, D. Analysis of PPCI Mode and Multi-Objective Comprehensive Optimization for a Dual-Fuel Engine. Fuel 2021, 303, 121296. [Google Scholar] [CrossRef]
- Feroskhan, M.; Gobinath, N. Experimental Study of Butanol Blending in Biogas-Biodiesel Fueled CI Engine under Dual Fuel, RCCI and HCCI Combustion Modes. Case Stud. Therm. Eng. 2024, 58, 104349. [Google Scholar] [CrossRef]
- Cattaneo, C.R.; Muñoz, R.; Korshin, G.V.; Naddeo, V.; Belgiorno, V.; Zarra, T. Biological Desulfurization of Biogas: A Comprehensive Review on Sulfide Microbial Metabolism and Treatment Biotechnologies. Sci. Total Environ. 2023, 893, 164689. [Google Scholar] [CrossRef] [PubMed]
- Schestak, I.; Williams, A.P. Centralised, Energy Positive Wastewater Treatment Shows High Potential for Carbon Neutrality with Emissions Offset through Biogas and Biosolids Use. J. Water Process Eng. 2025, 77, 108634. [Google Scholar] [CrossRef]
- Li, H.; Zhang, W.; Qian, Y.; Hu, Y.; Peng, Y.; Ju, D.; Liang, G.; Lu, X. Combustion and Emission Characteristics of an Ammonia Diesel Dual-Fuel Medium-Speed Marine Engine under High-Load Conditions. Fuel 2026, 406, 137042. [Google Scholar] [CrossRef]
- De Bellis, V.; De Felice, M.; Malfi, E.; Bozza, F.; Cafari, A.; Cimarello, A.; Ahlskog, A.; Grahn, V.; Hyvonen, J. Development and Validation of Phenomenological Models for Combustion and Emissions of a Dual-Fuel Marine Engine Supplied with Ammonia. Int. J. Hydrogen Energy 2025, 170, 151020. [Google Scholar] [CrossRef]
- Sitorus, T.B.; Nur, T.B. An Integrative Review of Dual-Fuel Strategies, Nano-Additives, and Emission Control in Compression Ignition Engines Fueled by Renewable Energy Sources. Appl. Energy 2025, 400, 126614. [Google Scholar] [CrossRef]
- Wu, Y.; Yuan, Y.; Xia, C.; Alahmadi, T.A.; Alharbi, S.A.; Sekar, M.; Pugazhendhi, A. Production of Waste Tyre Pyrolysis Oil as the Replacement for Fossil Fuel for Diesel Engines with Constant Hydrogen Injection via Air Intake Manifold. Fuel 2024, 355, 129458. [Google Scholar] [CrossRef]
- Chakraborty, A.; Biswas, S.; Kakati, D.; Banerjee, R. Leveraging Hydrogen as the Low Reactive Component in the Optimization of the PPCI-RCCI Transition Regimes in an Existing Diesel Engine under Varying Injection Phasing and Reactivity Stratification Strategies. Energy 2022, 244, 122629. [Google Scholar] [CrossRef]
- Chen, Z.; Ju, P.; Wang, Z.; Huang, D.; Shi, L.; Deng, K. Research on Multi-Objective Control of PPCI Diesel Engine Combustion Process Based on Data Driven Modelling. Energy AI 2025, 19, 100472. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rahman, M.M. Homogeneous Charge Compression Ignition Combustion: Advantages over Compression Ignition Combustion, Challenges and Solutions. Renew. Sustain. Energy Rev. 2016, 57, 282–291. [Google Scholar] [CrossRef]
- Almatrafi, E.; Siddiqui, M.A. Thermodynamic Investigation of a Hydrogen Enriched Natural Gas Fueled HCCI Engine for the Efficient Production of Power, Heating, and Cooling. Int. J. Hydrogen Energy 2024, 82, 111–122. [Google Scholar] [CrossRef]
- Qin, W.; Shi, J.; Cheng, Q. Numerical Simulation Study on Cycle-to-Cycle Variations of Diesel-Natural Gas-Hydrogen RCCI Engine. Int. J. Hydrogen Energy 2025, 118, 449–456. [Google Scholar] [CrossRef]
- Fakhari, A.H.; Salahi, M.M.; Gharehghani, A.; Hunicz, J.; Mikulski, M.; Andwari, A.M. Novel Chemical Kinetic Mechanism for CFD Simulation of Hydrogen-Enriched Natural Gas/Diesel RCCI Combustion. Int. J. Hydrogen Energy 2025, 105, 1408–1424. [Google Scholar] [CrossRef]
- Fiore, M.; Magi, V.; Viggiano, A. Internal Combustion Engines Powered by Syngas: A Review. Appl. Energy 2020, 276, 115415. [Google Scholar] [CrossRef]
- Caligiuri, C.; Renzi, M.; Antolini, D.; Patuzzi, F.; Baratieri, M. Diesel Fuel Substitution Using Forestry Biomass Producer Gas: Effects of Dual Fuel Combustion on Performance and Emissions of a Micro-CHP System. J. Energy Inst. 2021, 98, 334–345. [Google Scholar] [CrossRef]
- Farkhondeh, S.A.; Abbaspour-Fard, M.H.; Zareei, J. Investigation of the Effects of Syngas-Biogas Blends on RCCI Engine with Direct Diesel Injection: A Computational Study of Performance, Knock, and Emissions. Energy Convers. Manag. X 2025, 26, 101021. [Google Scholar] [CrossRef]
- Dash, P.K.; Das, H.C.; Jena, S.P. Investigation on Combustion Parameters of a Producer Gas-Biodiesel-Diethyl Ether Operated Dual Fuel Engine. Mater. Today Proc. 2022, 62, 5928–5933. [Google Scholar] [CrossRef]
- Yaliwal, V.S.; Banapurmath, N.R.; Hosmath, R.S.; Khandal, S.V.; Budzianowski, W.M. Utilization of Hydrogen in Low Calorific Value Producer Gas Derived from Municipal Solid Waste and Biodiesel for Diesel Engine Power Generation Application. Renew. Energy 2016, 99, 1253–1261. [Google Scholar] [CrossRef]
- Prasad, G.A.; Murugan, P.C.; Wincy, W.B.; Sekhar, S.J. Response Surface Methodology to Predict the Performance and Emission Characteristics of Gas-Diesel Engine Working on Producer Gases of Non-Uniform Calorific Values. Energy 2021, 234, 121225. [Google Scholar] [CrossRef]
- Sateesh, K.A.; Gaddigoudar, P.; Yaliwal, V.S.; Banapurmath, N.R.; Harari, P.A. Influence of Hydrogen and Exhaust Gas Recirculation on the Performance and Emission Characteristics of a Diesel Engine Operated on Dual Fuel Mode Using Dairy Scum Biodiesel and Low Calorific Value Gas. Mater. Today Proc. 2022, 52, 1429–1435. [Google Scholar] [CrossRef]
- Costa, M.; La Villetta, M.; Massarotti, N.; Piazzullo, D.; Rocco, V. Numerical Analysis of a Compression Ignition Engine Powered in the Dual-Fuel Mode with Syngas and Biodiesel. Energy 2017, 137, 969–979. [Google Scholar] [CrossRef]
- Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. Power Generation Using Coir-Pith and Wood Derived Producer Gas in Diesel Engines. Fuel Process. Technol. 2006, 87, 849–853. [Google Scholar] [CrossRef]
- Singh, H.; Mohapatra, S.K. Production of Producer Gas from Sugarcane Bagasse and Carpentry Waste and Its Sustainable Use in a Dual Fuel CI Engine: A Performance, Emission, and Noise Investigation. J. Energy Inst. 2018, 91, 43–54. [Google Scholar] [CrossRef]
- Yaliwal, V.S.; Harari, P.A.; Banapurmath, N.R. Experimental Investigation on RCCI Engine Operated with Dairy Scum Oil Methyl Ester and Producer Gas. In Smart Technologies for Energy, Environment and Sustainable Development; Kolhe, M.L., Jaju, S.B., Diagavane, P.M., Eds.; Springer Nature: Singapore, 2022; Volume 1, pp. 695–706. [Google Scholar]
- Sharma, M.; Kaushal, R. Performance and Emission Analysis of a Dual Fuel Variable Compression Ratio (VCR) CI Engine Utilizing Producer Gas Derived from Walnut Shells. Energy 2020, 192, 116725. [Google Scholar] [CrossRef]
- Sharma, M.; Kaushal, R. Performance and Exhaust Emission Analysis of a Variable Compression Ratio (VCR) Dual Fuel CI Engine Fuelled with Producer Gas Generated from Pistachio Shells. Fuel 2021, 283, 118924. [Google Scholar] [CrossRef]
- Singh, D.K.; Tirkey, J.V. Performance Optimization through Response Surface Methodology of an Integrated Coal Gasification and CI Engine Fuelled with Diesel and Low-Grade Coal-Based Producer Gas. Energy 2022, 238, 121982. [Google Scholar] [CrossRef]
- Prajapati, L.K.; Tirkey, J.V. Effect of Injection Pressure and Nozzle Strategy Optimization for the Performance Improvement on CI Engine Fuelled with Diesel and Co-Gasified Biomass Producer Gas: A Diesel-RK and RSM-Based Approach. Process Saf. Environ. Prot. 2025, 198, 107197. [Google Scholar] [CrossRef]
- Mahgoub, B.K.M.; Hassan, S.; Sulaiman, S.A. Effect of H2 and CO Content in Syngas on the Performance and Emission of Syngas-Diesel Dual Fuel Engine—A Review. Appl. Mech. Mater. 2015, 699, 648–653. [Google Scholar] [CrossRef]
- Jamsran, N.; Park, H.; Lee, J.; Oh, S.; Kim, C.; Lee, Y.; Kang, K. Influence of Syngas Composition on Combustion and Emissions in a Homogeneous Charge Compression Ignition Engine. Fuel 2021, 306, 121774. [Google Scholar] [CrossRef]
- Ambarita, H. Performance and Emission Characteristics of a Small Diesel Engine Run in Dual-Fuel (Diesel-Biogas) Mode. Case Stud. Therm. Eng. 2017, 10, 179–191. [Google Scholar] [CrossRef]
- Verma, S.; Das, L.M.; Kaushik, S.C. Effects of Varying Composition of Biogas on Performance and Emission Characteristics of Compression Ignition Engine Using Exergy Analysis. Energy Convers. Manag. 2017, 138, 346–359. [Google Scholar] [CrossRef]
- Yavuz, M.; Yilmaz, I.T. Influence of Pilot Diesel Ratio and Engine Load on Combustion Behaviour in a Biogas-Fueled RCCI Engine. Fuel Process. Technol. 2025, 277, 108307. [Google Scholar] [CrossRef]
- Ramar, K.; Subbiah, G.; Almoallim, H.S. Ammonia-Enriched Biogas as an Alternative Fuel in Diesel Engines: Combustion, Performance and Emission Analysis. Fuel 2024, 369, 131755. [Google Scholar] [CrossRef]
- Patra, P.K.; Nayak, S.K.; Mishra, P.C.; Subbiah, G.; Kaliappan, N.; Priya, K. Experimental Insights into Injection Timing Effects upon VCR Diesel Engine Fuelled with Injected Waste Cooking Oil Ethyl Ester-Diesel Blends and Induced Biogas Operated in Dual Fuel Mode. Results Eng. 2025, 27, 106196. [Google Scholar] [CrossRef]
- Verma, S.; Das, L.M.; Bhatti, S.S.; Kaushik, S.C. A Comparative Exergetic Performance and Emission Analysis of Pilot Diesel Dual-Fuel Engine with Biogas, CNG and Hydrogen as Main Fuels. Energy Convers. Manag. 2017, 151, 764–777. [Google Scholar] [CrossRef]
- Kumar, P.; Pal, A.K. Study on the Performance and Emissions Characteristics of Reformulated Engine Blended with Producer Gas, Biogas, and Pongamia Pinnata Biodiesel. Next Sustain. 2025, 5, 100138. [Google Scholar] [CrossRef]
- Khayum, N.; Anbarasu, S.; Murugan, S. Optimization of Fuel Injection Parameters and Compression Ratio of a Biogas Fueled Diesel Engine Using Methyl Esters of Waste Cooking Oil as a Pilot Fuel. Energy 2021, 221, 119865. [Google Scholar] [CrossRef]
- Kumar Das, A.; Mohapatra, T.; Kumar Panda, A. Multiple Response Optimization for Performance and Emission of a CI Engine Using Waste Plastic Oil and Biogas in Dual Fuel Mode Operation. Sustain. Energy Technol. Assess. 2023, 57, 103170. [Google Scholar] [CrossRef]
- Ramachandran, S.P.; Shrivastava, A.; Sharma, A.; Feroskhan, M.; Manoj Kuma, R.; Dasharath, S.M. Performance, Emission and Combustion Characteristics of a Biogas–Diesel Dual Fuel Engine Using Taguchi Method. Mater. Today Proc. 2022, 54, 548–556. [Google Scholar] [CrossRef]
- Barik, D.; Murugan, S. Investigation on Combustion Performance and Emission Characteristics of a DI (Direct Injection) Diesel Engine Fueled with Biogas–Diesel in Dual Fuel Mode. Energy 2014, 72, 760–771. [Google Scholar] [CrossRef]
- Das, S.; Kashyap, D.; Bora, B.J.; Kalita, P.; Kulkarni, V. Thermo-Economic Optimization of a Biogas-Diesel Dual Fuel Engine as Remote Power Generating Unit Using Response Surface Methodology. Therm. Sci. Eng. Prog. 2021, 24, 100935. [Google Scholar] [CrossRef]
- Narayanaswamy, N.; Ramesh, C.; Bharath, N.; Bharath Reddy, P.; Sabarish, D. Experimental Study on the Effect of Biogas Diesel Engines Driven by Silkworm Larval Litter, Cyperus Rotundus and Cattle Urine. Mater. Today Proc. 2021, 47, 4617–4623. [Google Scholar] [CrossRef]
- Atelge, M.R.; Arslan, E.; Krisa, D.; Al-Samaraae, R.R.; Abut, S.; Ünalan, S.; Atabani, A.E.; Kahraman, N.; Akansu, S.O.; Kaya, M.; et al. Comparative Investigation of Multi-Walled Carbon Nanotube Modified Diesel Fuel and Biogas in Dual Fuel Mode on Combustion, Performance, and Emission Characteristics. Fuel 2022, 313, 123008. [Google Scholar] [CrossRef]
- Bouguessa, R.; Tarabet, L.; Loubar, K.; Belmrabet, T.; Tazerout, M. Experimental Investigation on Biogas Enrichment with Hydrogen for Improving the Combustion in Diesel Engine Operating under Dual Fuel Mode. Int. J. Hydrogen Energy 2020, 45, 9052–9063. [Google Scholar] [CrossRef]
- Sharma, H.; Mahla, S.K.; Dhir, A. Effect of Utilization of Hydrogen-Rich Reformed Biogas on the Performance and Emission Characteristics of Common Rail Diesel Engine. Int. J. Hydrogen Energy 2022, 47, 10409–10419. [Google Scholar] [CrossRef]
- Rosha, P.; Kumar, S.; Senthil Kumar, P.; Kowthaman, C.N.; Kumar Mohapatra, S.; Dhir, A. Impact of Compression Ratio on Combustion Behavior of Hydrogen Enriched Biogas-Diesel Operated CI Engine. Fuel 2022, 310, 122321. [Google Scholar] [CrossRef]
- Das, S.; Tamang, S.K.; Kalita, P. An Integrated ANFIS-TOPSIS Approach for Enhanced Performance and Emissions Characteristics in Syngas-Diesel Powered Dual-Fuel Engine. Int. J. Hydrogen Energy 2025, 139, 1116–1132. [Google Scholar] [CrossRef]
- Arslan, A.; Dev, S.; Stevenson, D.; Butler, J.; Guo, H.; Birouk, M. Diesel Direct Injection and EGR Optimization for a Syngas-Diesel Dual-Fuel Generator Operating at Constant Load. Int. J. Hydrogen Energy 2024, 77, 84–100. [Google Scholar] [CrossRef]
- Kumar Singh, D.; Raj, R.; Tirkey, J.V. Performance and Emission Analysis of Triple Fuelled CI Engine Utilizing Producer Gas, Biodiesel and Diesel: An Optimization Study Using Response Surface Methodology. Therm. Sci. Eng. Prog. 2022, 36, 101486. [Google Scholar] [CrossRef]
- Mahgoub, B.K.M.; Sulaiman, S.A.; Karim, Z.A.A.; Hagos, F.Y. Experimental Study on the Effect of Varying Syngas Composition on the Emissions of Dual Fuel CI Engine Operating at Various Engine Speeds. IOP Conf. Ser. Mater. Sci. Eng. 2015, 100, 012006. [Google Scholar] [CrossRef]
- Jamsran, N.; Park, H.; Lee, J.; Oh, S.; Kim, C.; Lee, Y.; Kang, K. Syngas Composition for Improving Thermal Efficiency in Boosted Homogeneous Charge Compression Ignition Engines. Fuel 2022, 321, 124130. [Google Scholar] [CrossRef]
- Xu, Z.; Jia, M.; Li, Y.; Chang, Y.; Xu, G.; Xu, L.; Lu, X. Computational Optimization of Fuel Supply, Syngas Composition, and Intake Conditions for a Syngas/Diesel RCCI Engine. Fuel 2018, 234, 120–134. [Google Scholar] [CrossRef]
- Singh, J.; Singh, S.; Mohapatra, S.K. Production of Syngas from Agricultural Residue as a Renewable Fuel and Its Sustainable Use in Dual-Fuel Compression Ignition Engine to Investigate Performance, Emission, and Noise Characteristics. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 41–55. [Google Scholar] [CrossRef]
- Rabello de Castro, R.; Brequigny, P.; Mounaïm-Rousselle, C. A Multiparameter Investigation of Syngas/Diesel Dual-Fuel Engine Performance and Emissions with Various Syngas Compositions. Fuel 2022, 318, 123736. [Google Scholar] [CrossRef]
- Manimaran, R.; Cv, P.; Samavedam, A.S.; Khan, T.M.Y.; Almakayeel, N.; Manavalla, S.; Feroskhan, M. Investigating Ternary Biogas-Hydrogen-Diethyl Ether Blends for Emission Reduction and Performance Enhancement in CI Engines: A Taguchi Approach. Results Eng. 2025, 26, 104870. [Google Scholar] [CrossRef]
- Lalhriatpuia, S.; Pal, A. Computational Optimization of Engine Performance and Emission Responses for Dual Fuel CI Engine Powered with Biogas and Co3O4 Nanoparticles Doped Biodiesel. Fuel 2023, 344, 127892. [Google Scholar] [CrossRef]
- Yoon, S.H.; Lee, C.S. Experimental Investigation on the Combustion and Exhaust Emission Characteristics of Biogas–Biodiesel Dual-Fuel Combustion in a CI Engine. Fuel Process. Technol. 2011, 92, 992–1000. [Google Scholar] [CrossRef]
- Ilhak, M.I. Effects of Using Acetylene-Enriched Biogas on Performance and Exhaust Emissions of a Dual Fuel Stationary Diesel Engine. Process Saf. Environ. Prot. 2024, 188, 1318–1325. [Google Scholar] [CrossRef]
- Aghel, B.; Behaein, S.; Wongwises, S.; Shadloo, M.S. A Review of Recent Progress in Biogas Upgrading: With Emphasis on Carbon Capture. Biomass Bioenergy 2022, 160, 106422. [Google Scholar] [CrossRef]
- Liang, F.; Meng, X.; Bi, T.; Shi, Z.; Pezzuolo, A.; Tu, T.; Yan, S.; Feng, Q. Integrated Carbon Sequestration and Agricultural Efficiency Enhancement: Reconstruction of Tomato Ecosystem Carbon Cycle via Carbonized Biomass Ash-Biogas Slurry System. Chem. Eng. J. 2025, 522, 168298. [Google Scholar] [CrossRef]
- Palanivelrajan, A.R.; Manimaran, R.; Manavalla, S.; Yunus Khan, T.M.; Almakayeel, N.; Feroskhan, M. Performance and Emission Characteristics of Biogas Fuelled Dual Fuel Engine with Waste Plastic Oil as Secondary Fuel. Case Stud. Therm. Eng. 2024, 57, 104337. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, W.; Cho, H.M. The Effects of Biosyngas and Biogas on the Operation of Dual-Fuel Diesel Engines: A Review. Energies 2025, 18, 5810. https://doi.org/10.3390/en18215810
Ai W, Cho HM. The Effects of Biosyngas and Biogas on the Operation of Dual-Fuel Diesel Engines: A Review. Energies. 2025; 18(21):5810. https://doi.org/10.3390/en18215810
Chicago/Turabian StyleAi, Wenbo, and Haeng Muk Cho. 2025. "The Effects of Biosyngas and Biogas on the Operation of Dual-Fuel Diesel Engines: A Review" Energies 18, no. 21: 5810. https://doi.org/10.3390/en18215810
APA StyleAi, W., & Cho, H. M. (2025). The Effects of Biosyngas and Biogas on the Operation of Dual-Fuel Diesel Engines: A Review. Energies, 18(21), 5810. https://doi.org/10.3390/en18215810
