Progress and Policy Considerations to Achieve Energy Transition and Carbon Mitigation
1. Introduction
2. An Overview of Published Articles
2.1. Advancing the Global Energy Transition: A Systematic Review of Policy, Stakeholder, and Technological Determinants
2.2. Forward-Looking Methodologies in Energy Transition Research
2.3. Multi-Dimensional Drivers of Energy and Emission Dynamics
2.4. Stakeholder Dynamics in the Energy Transition Paradigm
2.5. Behavioral Heterogeneity Across Stakeholder Groups
2.6. Policy Architecture for Effective Decarbonization
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Galecka, A.; Pyra, M. Changes in the Global Structure of Energy Consumption and the Energy Transition Process. Energies 2024, 17, 5644. https://doi.org/10.3390/en17225644.
- Brodny, J.; Tutak, M.; Grebski, W. Empirical Assessment of the Efficiency of Poland’s Energy Transition Process in the Context of Implementing the European Union’s Energy Policy. Energies 2024, 17, 2689. https://doi.org/10.3390/en17112689.
- Fields, N.; Ryves, D.; Yeganyan, R.; Cannone, C.; Tan, N.; Howells, M. Evidence-Based Policymaking: Insights and Recommendations for the Implementation of Clean Energy Transition Pathways for Kenya’s Power Sector. Energies 2023, 16, 7904. https://doi.org/10.3390/en16237904.
- Kou, J.; Sun, F.; Li, W.; Jin, J. Could China Declare a “Coal Phase-Out”? An Evolutionary Game and Empirical Analysis Involving the Government, Enterprises, and the Public. Energies 2022, 15, 531. https://doi.org/10.3390/en15020531.
- Li, Y.; Yang, L.; Luo, T. Energy System Low-Carbon Transition under Dual-Carbon Goals: The Case of Guangxi, China Using the EnergyPLAN Tool. Energies 2023, 16, 3416. https://doi.org/10.3390/en16083416.
- Chahuán-Jiménez, K.; Rubilar-Torrealba, R.; de la Fuente-Mella, H.; Geldres-Weiss, V.V. Cluster Analysis and Macroeconomic Indicators and Their Effects on the Evolution of the Use of Clean Energies. Energies 2023, 16, 7561. https://doi.org/10.3390/en16227561.
- Li, Y.; Sun, X.; Bai, X. Differences of Carbon Emission Efficiency in the Belt and Road Initiative Countries. Energies 2022, 15, 1576. https://doi.org/10.3390/en15041576.
- Miao, X.; Wu, Y.; Ren, F. A Study on the Measurement of Regional Energy Consumption Efficiency and Decomposition of Its Influencing Factors in China: New Evidence for Achieving SDGs. Energies 2024, 17, 531. https://doi.org/10.3390/en17020531.
- Zeng, Y.; Zhang, W.; Sun, J.; Sun, L.A.; Wu, J. Research on Regional Carbon Emission Reduction in the Beijing–Tianjin–Hebei Urban Agglomeration Based on System Dynamics: Key Factors and Policy Analysis. Energies 2023, 16, 6654. https://doi.org/10.3390/en16186654.
- Tan, L.; Gao, D.; Liu, X. Can Environmental Information Disclosure Improve Energy Efficiency in Manufacturing? Evidence from Chinese Enterprises. Energies 2024, 17, 2342. https://doi.org/10.3390/en17102342.
- Pylak, K.; Pizo’n, J.; Łazuka, E. Evolution of Regional Innovation Strategies Towards the Transition to Green Energy in Europe 2014–2027. Energies 2024, 17, 5669. https://doi.org/10.3390/en17225669.
- Cherepovitsyna, A.; Sheveleva, N.; Riadinskaia, A.; Danilin, K. Decarbonization Measures: A Real Effect or Just a Declaration? An Assessment of Oil and Gas Companies’ Progress towards Carbon Neutrality. Energies 2023, 16, 3575. https://doi.org/10.3390/en16083575.
- Finnie, D.A.; Masood, R.; Goldsworthy, S.; Harding, B. Embodied Carbon in New Zealand Commercial Construction. Energies 2024, 17, 2629. https://doi.org/10.3390/en17112629.
- Zhang, J.; Ma, L.; Li, J. Why Low-Carbon Publicity Effect Limits? The Role of Heterogeneous Intention in Reducing Household Energy Consumption. Energies 2021, 14, 7634. https://doi.org/10.3390/en14227634.
- Szeląg-Sikora, A.; Oleksy-Gębczyk, A.; Ciuła, J.; Cembruch-Nowakowski, M.; Peter-Bombik, K.; Rydwańska, P.; Zacłona, T. Energy Transformation Within the Framework of Sustainable Development and Consumer Behavior. Energies 2024, 18, 75. https://doi.org/10.3390/en18010075.
- Xiang, N.; Wang, L.; Zhong, S.; Zheng, C.; Wang, B.; Qu, Q. How Does the World View China’s Carbon Policy? A Sentiment Analysis on Twitter Data. Energies 2021, 14, 7782. https://doi.org/10.3390/en14227782.
- Elshkaki, A.; Shen, L. Energy Transition towards Carbon Neutrality. Energies 2022, 15, 4967. https://doi.org/10.3390/en15144967.
- Muhirwa, F.; Shen, L.; Elshkaki, A.; Velempini, K.; Hirwa, H.; Zhong, S.; Mbandi, A.M. Decoupling Energy, Water, and Food Resources Production from GHG Emissions: A Footprint Perspective Review of Africa from 1990 to 2017. Energies 2021, 14, 6326. https://doi.org/10.3390/en14196326.
- Dalder, J.; Oluleye, G.; Cannone, C.; Yeganyan, R.; Tan, N.; Howells, M. Modelling Policy Pathways to Maximise Renewable Energy Growth and Investment in the Democratic Republic of the Congo Using OSeMOSYS (Open Source Energy Modelling System). Energies 2024, 17, 342. https://doi.org/10.3390/en17020342.
- Paraschiv, F.; Schmid, H.; Schmitz, M.; Dünwald, V.; Groos, E. The Interplay Between China’s Regulated and Voluntary Carbon Markets and Its Influence on Renewable Energy Development—A Literature Review. Energies 2024, 17, 5587. https://doi.org/10.3390/en17225587.
References
- Barazza, E.; Strachan, N. The key role of historic path-dependency and competitor imitation on the electricity sector low-carbon transition. Energy Strat. Rev. 2021, 33, 100588. [Google Scholar] [CrossRef]
- Loktionov, V.I. Analysis of the Current Energy Transition Through the Lens of the Path Dependence Concept. J. Institutional Stud. 2024, 16, 61–72. [Google Scholar] [CrossRef]
- Fouquet, R. Path dependence in energy systems and economic development. Nat. Energy 2016, 1, 16098. [Google Scholar] [CrossRef]
- Zhou, P.; Lv, Y.; Wen, W. The Low-Carbon Transition of Energy Systems: A Bibliometric Review from an Engineering Management Perspective. Engineering 2023, 29, 147–158. [Google Scholar] [CrossRef]
- Foster, V.; Trotter, P.A.; Werner, S.; Niedermayer, M.; Mulugetta, Y.; Achakulwisut, P.; Brophy, A.; Dubash, N.K.; Fankhauser, S.; Hawkes, A.; et al. Development transitions for fossil fuel-producing low and lower–middle income countries in a carbon-constrained world. Nat. Energy 2024, 9, 242–250. [Google Scholar] [CrossRef]
- Solé, J.; Samsó, R.; García-Ladona, E.; García-Olivares, A.; Ballabrera-Poy, J.; Madurell, T.; Turiel, A.; Osychenko, O.; Álvarez, D.; Bardi, U.; et al. Modelling the renewable transition: Scenarios and pathways for a decarbonized future using pymedeas, a new open-source energy systems model. Renew. Sustain. Energy Rev. 2020, 132, 110105. [Google Scholar] [CrossRef]
- Backe, S.; Skar, C.; del Granado, P.C.; Turgut, O.; Tomasgard, A. EMPIRE: An open-source model based on multi-horizon programming for energy transition analyses. SoftwareX 2022, 17, 100877. [Google Scholar] [CrossRef]
- Limpens, G.; Moret, S.; Jeanmart, H.; Maréchal, F. EnergyScope TD: A novel open-source model for regional energy systems. Appl. Energy 2019, 255, 113729. [Google Scholar] [CrossRef]
- Fang, Y.; Xu, H. Research on Decarbonization Pathway of China’s Coal-Fired Power Industry from the Perspective of Conflict Mediation. Front. Environ. Sci. 2022, 10, 930322. [Google Scholar] [CrossRef]
- Ye, J.; Chen, J.; Shi, J.; Jiang, X.; Zhou, S. Novel synergy mechanism for carbon emissions abatement in shipping decarbonization. Transp. Res. Part D Transp. Environ. 2024, 127, 104059. [Google Scholar] [CrossRef]
- Zhang, S.; Feng, C. Evolutionary game model for decarbonization of shipping under green shipping corridor. Int. J. Low-Carbon Technol. 2024, 19, 2502–2511. [Google Scholar] [CrossRef]
- Yu, W.; Xia, L.; Cao, Q. A machine learning algorithm to explore the drivers of carbon emissions in Chinese cities. Sci. Rep. 2024, 14, 23609. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, X.; Liang, M.; Ren, X.; Liu, X. Construction and analysis of China’s carbon emission model based on machine learning. Sci. Rep. 2025, 15, 13349. [Google Scholar] [CrossRef] [PubMed]
- Yao, J. A Fusion Method Integrated Econometrics and Deep Learning to Improve the Interpretability of Prediction: Evidence from Chinese Carbon Emissions Forecast Based on OLS-CNN Model. Comput. Econ. 2025, 66, 2987–3006. [Google Scholar] [CrossRef]
- Acheampong, A.O.; Boateng, E.B. Modelling carbon emission intensity: Application of artificial neural network. J. Clean. Prod. 2019, 225, 833–856. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, K.; Huang, C. Cooperative Innovation Under the “Belt and Road Initiative” for Reducing Carbon Emissions: An Estimation Based on the Spatial Difference-in-Differences Model. Sustainability 2024, 16, 10504. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, W.; Chiu, Y.-H.; Zhang, L.; Shi, Z.; Shi, C. Deep mitigation for trade-embodied carbon emissions among the Belt and Road Initiative countries. iScience 2024, 27, 110054. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, F.; Xian, C.; Ouyang, Z. Urban development and resource endowments shape natural resource utilization efficiency in Chinese cities. J. Environ. Sci. 2023, 126, 806–816. [Google Scholar] [CrossRef]
- Jäger, J.; Brutschin, E.; Pianta, S.; Omann, I.; Kammerlander, M.; Vishwanathan, S.S.; Vrontisi, Z.; MacDonald, J.; van Ruijven, B. Stakeholder engagement and decarbonization pathways: Meeting the challenges of the COVID-19 pandemic. Front. Sustain. 2023, 3, 1063719. [Google Scholar] [CrossRef]
- Waisman, H.; Bataille, C.; Winkler, H.; Jotzo, F.; Shukla, P.; Colombier, M.; Buira, D.; Criqui, P.; Fischedick, M.; Kainuma, M.; et al. A pathway design framework for national low greenhouse gas emission development strategies. Nat. Clim. Change 2019, 9, 261–268. [Google Scholar] [CrossRef]
- Block, J.H.; Sharma, P.; Benz, L. Stakeholder Pressures and Decarbonization Strategies in Mittelstand Firms. J. Bus. Ethics 2024, 193, 511–533. [Google Scholar] [CrossRef]
- Seroka-Stolka, O. Enhancing Environmental Sustainability: Stakeholder Pressure and Corporate CO2-Related Performance—An Examination of the Mediating and Moderating Effects of Corporate Decarbonization Strategies. Sustainability 2023, 15, 14257. [Google Scholar] [CrossRef]
- Lecocq, F.; Nadaï, A.; Cassen, C. Getting models and modellers to inform deep decarbonization strategies. Clim. Policy 2022, 22, 695–710. [Google Scholar] [CrossRef]
- Peñasco, C.; Anadón, L.D.; Verdolini, E. Systematic review of the outcomes and trade-offs of ten types of decarbonization policy instruments. Nat. Clim. Change 2021, 11, 257–265. [Google Scholar] [CrossRef]
- Grubb, M.; Poncia, A.; Drummond, P.; Neuhoff, K.; Hourcade, J.-C. Policy complementarity and the paradox of carbon pricing. Oxf. Rev. Econ. Policy 2023, 39, 711–730. [Google Scholar] [CrossRef]
- Khurshid, A.; Rauf, A.; Qayyum, S.; Calin, A.C.; Duan, W. Green innovation and carbon emissions: The role of carbon pricing and environmental policies in attaining sustainable development targets of carbon mitigation—Evidence from Central-Eastern Europe. Environ. Dev. Sustain. 2023, 25, 8777–8798. [Google Scholar] [CrossRef]
- Khalefa, M.A.E.; Makled, R.A.; Abdel-Rahman, S. Assessment of Technological Innovations and Policy Frameworks in Promoting Green Energy Transition: Global Perspectives. Int. J. Green Manag. Bus. Stud. 2024, 4, 65–80. [Google Scholar] [CrossRef]
- Lilliestam, J.; Patt, A.; Bersalli, G. The effect of carbon pricing on technological change for full energy decarbonization: A review of empirical ex-post evidence. WIREs Clim. Change 2021, 12, e681. [Google Scholar] [CrossRef]
- Bergh, J.v.D.; Botzen, W. Low-carbon transition is improbable without carbon pricing. Proc. Natl. Acad. Sci. USA 2020, 117, 23219–23220. [Google Scholar] [CrossRef] [PubMed]
- Abrha, T.G. Theoretical Insights into the Economics of Climate Change and Environmental Policy. Int. J. Econ. Energy Environ. 2025, 10, 52–56. [Google Scholar] [CrossRef]
- Bataille, C.G.F. Physical and policy pathways to net-zero emissions industry. WIREs Clim. Change 2020, 11, e633. [Google Scholar] [CrossRef]
- Colbertaldo, P.; Parolin, F.; Campanari, S. A comprehensive multi-node multi-vector multi-sector modelling framework to investigate integrated energy systems and assess decarbonisation needs. Energy Convers. Manag. 2023, 291, 117168. [Google Scholar] [CrossRef]
- Tangi, M.; Amaranto, A. Designing integrated and resilient multi-energy systems via multi-objective optimization and scenario analysis. Appl. Energy 2025, 382, 125281. [Google Scholar] [CrossRef]
- Baecker, B.R.; Hamacher, T.; Slednev, V.; Müller, G.; Sehn, V.; Winkler, J.; Bailey, I.; Gardian, H.; Gils, H.C.; Muschner, C.; et al. Comprehensive and open model structure for the design of future energy systems with sector coupling. Renew. Sustain. Energy Transit. 2024, 6, 100094. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; Arto, I.; Polanco-Martínez, J.M.; González-Eguino, M.; Neumann, M.B. Likelihood of climate change pathways under uncertainty on fossil fuel resource availability. Energy Environ. Sci. 2016, 9, 2482–2496. [Google Scholar] [CrossRef]
- Sreenu, N. Impact of FDI, crude oil price and economic growth on CO2 emission in India: -symmetric and asymmetric analysis through ARDL and non -linear ARDL approach. Environ. Sci. Pollut. Res. 2022, 29, 42452–42465. [Google Scholar] [CrossRef]
- Rottner, E.; von Graevenitz, K. What drives carbon emissions in German manufacturing: Scale, technique or composition? Environ. Resour. Econ. 2024, 87, 2521–2542. [Google Scholar] [CrossRef]
- Aller, C.; Ductor, L.; Grechyna, D. Robust determinants of CO2 emissions. Energy Econ. 2021, 96, 105154. [Google Scholar] [CrossRef]
- Xu, S.; Dong, M.; Chen, X. Information transparency of government environmental supervision and corporate green innovation in Chinese highly polluting sectors. Environ. Dev. Sustain. 2024, 1–35. [Google Scholar] [CrossRef]
- Qu, Z.; He, Z. Carbon information disclosure as a driving force for corporate digital transformation: A textual analysis from China. Environ. Dev. Sustain. 2024, 27, 21567–21592. [Google Scholar] [CrossRef]
- Rissman, J.; Bataille, C.; Masanet, E.; Aden, N.; Morrow, W.R.; Zhou, N.; Elliott, N.; Dell, R.; Heeren, N.; Huckestein, B.; et al. Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Appl. Energy 2020, 266, 114848. [Google Scholar] [CrossRef]
- Schot, J.; Kanger, L.; Verbong, G. The roles of users in shaping transitions to new energy systems. Nat. Energy 2016, 1, 16054. [Google Scholar] [CrossRef]
- Di Foggia, G.; Beccarello, M. Decarbonization in the European steel industry: Strategies, risks, and commitments. Environ. Challenges 2024, 16, 100988. [Google Scholar] [CrossRef]
- Sipilä, J.; Tarkiainen, A.; Levänen, J. Exploration of public discussion around sustainable consumption on social media. Resour. Conserv. Recycl. 2024, 204, 107505. [Google Scholar] [CrossRef]
- Confetto, M.G.; Covucci, C.; Addeo, F.; Normando, M. Sustainability advocacy antecedents: How social media content influences sustainable behaviours among Generation Z. J. Consum. Mark. 2023, 40, 758–774. [Google Scholar] [CrossRef]
- Williges, K.; Meyer, L.H.; Steininger, K.W.; Kirchengast, G. Fairness critically conditions the carbon budget allocation across countries. Glob. Environ. Change 2022, 74, 102481. [Google Scholar] [CrossRef]
- Rastegar, H.; Eweje, G.; Sajjad, A. The impact of environmental policy on renewable energy innovation: A systematic literature review and research directions. Sustain. Dev. 2024, 32, 3859–3876. [Google Scholar] [CrossRef]
- Ma, X.; Pan, Y.; Zhang, M.; Ma, J.; Yang, W. Impact of carbon emission trading and renewable energy development policy on the sustainability of electricity market: A stackelberg game analysis. Energy Econ. 2024, 129, 107199. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, L.; Elshkaki, A.; Li, D.; Zhong, S.; Wu, X.; Hu, X. Progress and Policy Considerations to Achieve Energy Transition and Carbon Mitigation. Energies 2025, 18, 5680. https://doi.org/10.3390/en18215680
Shen L, Elshkaki A, Li D, Zhong S, Wu X, Hu X. Progress and Policy Considerations to Achieve Energy Transition and Carbon Mitigation. Energies. 2025; 18(21):5680. https://doi.org/10.3390/en18215680
Chicago/Turabian StyleShen, Lei, Ayman Elshkaki, Delong Li, Shuai Zhong, Xinyi Wu, and Xueyue Hu. 2025. "Progress and Policy Considerations to Achieve Energy Transition and Carbon Mitigation" Energies 18, no. 21: 5680. https://doi.org/10.3390/en18215680
APA StyleShen, L., Elshkaki, A., Li, D., Zhong, S., Wu, X., & Hu, X. (2025). Progress and Policy Considerations to Achieve Energy Transition and Carbon Mitigation. Energies, 18(21), 5680. https://doi.org/10.3390/en18215680

