Optimal Direct Parameter Extraction of a Lithium-Ion Equivalent Circuit Cell Model for Electric Vehicle Application
Abstract
1. Introduction
2. 3-RC Thevenin Equivalent Circuit Model
2.1. Equivalent Circuit Model Structure for Parameterization
2.2. Unscaled Parameter Set Extraction
2.3. Capacitive Compensation for RC Links, Scaled Parameter Set
3. ECM Parameterization
3.1. Experimental Testbench Development
3.2. Pulse Discharge Protocol
- Charge the cell to full capacity and let it rest for voltage and current stabilization.
- Apply a pulse of current for “t” seconds to remove 2% of the SOC per pulse and let the cell rest for one hour between pulses. Repeat this process a total of 10 times. At this point, 20% of the SOC should be removed.
- Apply a pulse of current for “t” seconds to remove 5% of the SOC per pulse and let the cell rest for one hour between pulses. Repeat this process a total of 12 times. At this point, 80% of the SOC should be removed.
- Repeat step (2) until the remaining 20% of the SOC is discharged.
4. Parameter Extraction and Model Development
4.1. Parameter Set Development
4.2. Implementing the Thevenin 3-RC Circuit in Simulation
5. Model Validation and Results
5.1. Error Quantification and Model Pulse Discharge Tracking
5.2. Transient Profile Testing and Performance Quantification
5.3. Optimal Method of Parameterization for Thevenin Equivalent Circuit Cell Model with 3-RC Pairs
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| EV | Electric Vehicle |
| BMS | Battery Management System |
| ECM | Equivalent Circuit Cell Model |
| DP | Dual Polarization |
| RC | Resistive Capacitive |
| PD | Pulse Discharge |
| DC | Direct Current |
| SOC | State of Charge |
| RMSE | Root Mean Squared Error |
| MAE | Mean Absolute Error |
| RSQ | Coefficient of Determination |
| WLTC | Worldwide Harmonized Light Vehicles Test Cycle |
| HC | High Current |
| HEV | Hybrid Electric Vehicle |
References
- Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430. [Google Scholar] [CrossRef]
- Iclodean, C.; Varga, B.; Burnete, N.; Cimerdean, D.; Jurchiş, B. Comparison of different battery types for electric vehicles. IOP Conf. Ser. Mater. Sci. Eng. 2017, 252, 012058. [Google Scholar] [CrossRef]
- Hidrue, M.K.; Parsons, G.R.; Kempton, W.; Gardner, M.P. Willingness to pay for electric vehicles and their attributes. Resour. Energy Econ. 2011, 33, 686–705. [Google Scholar] [CrossRef]
- Hannan, M.A.; Hoque, M.M.; Hussain, A.; Yusof, Y.; Ker, P.J. State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: Issues and recommendations. IEEE Access 2018, 6, 19362–19378. [Google Scholar] [CrossRef]
- Jeevarajan, J.A. Hazards associated with high voltage high-capacity lithium-ion batteries. ECS Trans. 2011, 33, 22. [Google Scholar] [CrossRef]
- Pillai, P.; Sundaresan, S.; Pattipati, K.R.; Balasingam, B. Optimizing current profiles for efficient online estimation of battery equivalent circuit model parameters based on Cramer–Rao lower bound. Energies 2022, 15, 8441. [Google Scholar] [CrossRef]
- Nikolian, A.; De Hoog, J.; Fleurbay, K.; Timmermans, J.M.; Van De Bossche, P.; Van Mierlo, J. Classification of electric modeling and characterization methods of lithium-ion batteries for vehicle applications. In Proceedings of the European Electric Vehicle Congress, Brussels, Belgium, 2–5 December 2014. [Google Scholar]
- Lai, X.; Wang, S.; Ma, S.; Xie, J.; Zheng, Y. Parameter sensitivity analysis and simplification of equivalent circuit model for the state of charge of lithium-ion batteries. Electrochim. Acta 2020, 330, 135239. [Google Scholar]
- Ahmed, R.; Rahimifard, S.; Habibi, S. Offline parameter identification and SOC estimation for new and aged electric vehicles batteries. In Proceedings of the 2019 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 19–21 June 2019. [Google Scholar]
- Peng, J.; Meng, J.; Wu, J.; Deng, Z.; Lin, M.; Mao, S.; Stroe, D.-I. A comprehensive overview and comparison of parameter benchmark methods for lithium-ion battery application. J. Energy Storage 2023, 71, 108197. [Google Scholar] [CrossRef]
- Chen, M.; Rincon-Mora, G.A. Accurate electrical battery model capable of predicting runtime and I-V performance. IEEE Trans. Energy Convers. 2006, 21, 504–511. [Google Scholar] [CrossRef]
- Tekin, M.; Karamangil, M.İ. Comparative analysis of equivalent circuit battery models for electric vehicle battery management systems. J. Energy Storage 2024, 86, 111327. [Google Scholar] [CrossRef]
- Hu, X.; Li, S.; Peng, H. A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources 2012, 198, 359–367. [Google Scholar] [CrossRef]
- Skoog, S. Parameterization of equivalent circuit models for high power lithium-ion batteries in HEV applications. In Proceedings of the 18th European Conference on Power Electronics and Applications, Karlsruhe, Germany, 5–9 September 2016; pp. 1–10. [Google Scholar]
- Ahmed, R.; Gazzarri, J.; Onori, S.; Habibi, S.; Jackey, R.; Rzemien, K.; Tjong, J.; LeSage, J. Model-based parameter identification of healthy and aged Li-ion batteries for electric vehicle applications. SAE Int. J. Altern. Powertrains 2015, 4, 233–247. [Google Scholar] [CrossRef]
- Cittanti, D.; Ferraris, A.; Airale, A.; Fiorot, S.; Scavuzzo, S.; Carello, M. Modeling Li-ion batteries for automotive application: A trade-off between accuracy and complexity. In Proceedings of the International Conference of Electrical and Electronic Technologies for Automotive, Turin, Italy, 15–16 June 2017. [Google Scholar]
- Yao, L.W.; Aziz, J.A.; Kong, P.Y.; Idris, N.R.N. Modeling of lithium-ion battery using MATLAB/Simulink. In Proceedings of the Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 1729–1734. [Google Scholar]
- Schweighofer, B.; Raab, K.M.; Brasseur, G. Modeling of high-power automotive batteries by the use of an automated test system. IEEE Trans. Instrum. Meas. 2003, 52, 1087–1091. [Google Scholar] [CrossRef]
- Haghjoo, Y.; Khaburi, D.A. Modeling, simulation, and parameters identification of a lithium-ion battery used in electric vehicles. In Proceedings of the 9th Iranian Conference on Renewable Energy & Distributed Generation (ICREDG), Mashhad, Iran, 23–24 February 2022; pp. 1–7. [Google Scholar]
- Liao, C.; Li, H.; Wang, L. A dynamic equivalent circuit model of LiFePO4 cathode material for lithium-ion batteries on hybrid electric vehicles. In Proceedings of the IEEE Vehicle Power and Propulsion Conference, Dearborn, MI, USA, 7–10 September 2009; pp. 1662–1665. [Google Scholar]
- Hentunen, A.; Lehmuspelto, T.; Suomela, J. Time-domain parameter extraction method for Thévenin-equivalent circuit battery models. IEEE Trans. Energy Convers. 2014, 29, 558–566. [Google Scholar] [CrossRef]
- LG Chem. Lithium Ion INR21700 M50 18.20Wh. LRB-PS-CY18.2Wh-M50 Datasheet. August 2016. Available online: https://www.dnkpower.com/wp-content/uploads/2019/02/LG-INR21700-M50-Datasheet.pdf (accessed on 14 March 2024).
- Belt, J. Battery Test Manual for Plug-In Hybrid Electric Vehicles. The INL is a U.S. Department of Energy National Laboratory Operated by Battelle Energy Alliance. September 2010. Available online: https://inldigitallibrary.inl.gov/sites/sti/sti/4655291.pdf (accessed on 14 March 2024).
- O’Kane, S.E.; Ai, W.; Madabattula, G.; Alonso-Alvarez, D.; Timms, R.; Sulzer, V.; Edge, J.S.; Wu, B.; Offer, G.J.; Marinescu, M. Lithium-ion battery degradation: How to model it. Phys. Chem. 2022, 24, 7909–7922. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, Y.-Y. Two time-scaled battery model identification with application to battery state estimation. IEEE Trans. Control. Syst. Technol. 2015, 23, 1180–1188. [Google Scholar]
- Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature effect and thermal impact in lithium-ion batteries: A review. Prog. Nat. Sci. 2018, 28, 653–666. [Google Scholar] [CrossRef]
- Xiao, T.; Shi, X.; Zhou, B.; Wang, X. Comparative Study of EKF and UKF for SOC Estimation of Lithium-ion Batteries. In Proceedings of the IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Chengdu, China, 21–24 May 2019; pp. 1570–1575. [Google Scholar]
- Yun, J.; Choi, Y.; Lee, J.; Choi, S.; Shin, C. State-of-Charge Estimation Method for Lithium-Ion Batteries Using Extended Kalman Filter with Adaptive Battery Parameters. IEEE Access 2023, 11, 90901–90915. [Google Scholar] [CrossRef]















| C-Rate (C) | 2% SOC Step | 5% SOC Step |
|---|---|---|
| 0.50 | 144 s 1 | 360 s |
| 0.80 | 90 s | 225 s |
| 1.00 | 72 s | 180 s |
| Cost Function for Minimization | Nonlinear Least Squares (16) | ||||||
| Algorithm for Minima Finding | Trust Region | ||||||
| Parameter | a1 | a2 | a3 | c | |||
| Initial Value | 0.5 • Vrel | 1 | 0.3 • Vrel | 100 | 0.2 • Vrel | 1000 | 2.5 |
| Lower Bound | −0.1 1 | 0 | −0.1 | 0 | −0.1 | 0 | 2.5 |
| Upper Bound | +0.1 | 100 | +0.1 | 500 | +0.1 | 4000 | 4.2 |
| C-Rate (C) and Profile 1 | Method 1 | Method 2 | ||
|---|---|---|---|---|
| RMSE (mV) | Maximum Error (Mv) | RMSE (mV) | Maximum Error (mV) | |
| 0.5 PD | 25.64 | 347.23 | 14.46 | 265.11 |
| 0.8 PD | 14.42 | 483.44 | 9.98 | 414.94 |
| 1 PD | 15.78 | 339.64 | 9.99 | 312.12 |
| 0.5 WLTC | 10.02 | 86.34 | 14.36 | 119.09 |
| 0.8 WLTC | 21.16 | 142.95 | 24.55 | 163.49 |
| 1 WLTC | 23.35 | 127.39 | 20.78 | 165.94 |
| 0.5 HC | 21.67 | 186.07 | 40.81 | 277.51 |
| 0.8 HC | 28.01 | 273.76 | 36.31 | 215.77 |
| 1 HC | 52.60 | 419.18 | 30.10 | 260.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewoc, P.; Korta, P.; Iyer, L.V.; Kar, N.C. Optimal Direct Parameter Extraction of a Lithium-Ion Equivalent Circuit Cell Model for Electric Vehicle Application. Energies 2025, 18, 5645. https://doi.org/10.3390/en18215645
Lewoc P, Korta P, Iyer LV, Kar NC. Optimal Direct Parameter Extraction of a Lithium-Ion Equivalent Circuit Cell Model for Electric Vehicle Application. Energies. 2025; 18(21):5645. https://doi.org/10.3390/en18215645
Chicago/Turabian StyleLewoc, Philip, Philip Korta, Lakshmi Varaha Iyer, and Narayan C. Kar. 2025. "Optimal Direct Parameter Extraction of a Lithium-Ion Equivalent Circuit Cell Model for Electric Vehicle Application" Energies 18, no. 21: 5645. https://doi.org/10.3390/en18215645
APA StyleLewoc, P., Korta, P., Iyer, L. V., & Kar, N. C. (2025). Optimal Direct Parameter Extraction of a Lithium-Ion Equivalent Circuit Cell Model for Electric Vehicle Application. Energies, 18(21), 5645. https://doi.org/10.3390/en18215645
