Lithium-Ion Battery SOH Prediction Method Based on ICEEMDAN+FC-BiLSTM
Abstract
1. Introduction
2. SOH Prediction of Lithium-Ion Batteries Based on ICEEMDAN+FC-BiLSTM
2.1. Architecture of the SOH Prediction Model
2.2. Extraction and Analysis of Input Features
3. Deep Learning Model for SOH Prediction Based on ICEEMDAN+FC-BiLSTM
3.1. Analysis of the Principles of ICEEMDAN
3.2. Analysis of the Principles of FC-BiLSTM
4. Experimental and Results
4.1. Design of Prediction Model Parameters
4.2. SOH Prediction Results Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| SOH | State Of Health |
| EOL | End-Of-Life |
| PCCs | Pearson correlation coefficients |
| ICEEMDAN | Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise |
| CEEMDAN | Complete Ensemble Empirical Mode Decomposition with Adaptive Noise |
| EEMD | Ensemble Empirical Mode Decomposition |
| EMD | Empirical Mode Decomposition |
| IMF | intrinsic mode function |
| IMFs | intrinsic mode functions |
| FC-BiLSTM | Fully Connected Bidirectional Long Short-Term Memory Network |
| FC | Fully Connected |
| BiLSTM | Bidirectional Long Short-Term Memory Network |
| RNN | recurrent neural network |
References
- Zhang, J.; Huang, H.; Zhang, G.; Dai, Z.; Wen, Y.; Jiang, L. Cycle Life Studies of Lithium-Ion Power Batteries for Electric Vehicles: A Review. J. Energy Storage 2024, 93, 112231. [Google Scholar] [CrossRef]
- Alsuwian, T.; Ansari, S.; Zainuri, M.A.A.M.; Ayob, A.; Hussain, A.; Hossain Lipu, M.S.; Alhawari, A.R.H.; Almawgani, A.H.M.; Almasabi, S.; Taher Hindi, A. A Review of Expert Hybrid and Co-Estimation Techniques for SOH and RUL Estimation in Battery Management System with Electric Vehicle Application. Expert Syst. Appl. 2024, 246, 123123. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, J.; Sun, Z.; Wang, L.; Xu, R.; Li, M.; Chen, Z. A Comprehensive Review of Battery Modeling and State Estimation Approaches for Advanced Battery Management Systems. Renew. Sustain. Energy Rev. 2020, 131, 110015. [Google Scholar] [CrossRef]
- Soon, K.L.; Lai, N.S.; Chow, C.-O.; Kanesan, J.; Yen, K.S.; Soon, L.T. A Quantum-Enhanced Ensemble Model to Forecast Battery State of Health under Varying Discharging Load. Measurement 2025, 256, 118318. [Google Scholar] [CrossRef]
- Wu, M.; Yang, S.; Li, D.; Liu, L.; Bian, C. DCML-CSAR: A Deep Cascaded Framework with Dual-Coupled Memory Learning and Orthogonal Feature Extraction via Recursive Parameter Transfer for SOH-RUL Assessment. Reliab. Eng. Syst. Saf. 2025, 264, 111380. [Google Scholar] [CrossRef]
- Lin, Z.; Hu, H.; Liu, W.; Zhang, Z.; Zhang, Y.; Geng, N.; Liao, Q. State of Health Estimation of Lithium-Ion Batteries Based on Remaining Area Capacity. J. Energy Storage 2023, 63, 107078. [Google Scholar] [CrossRef]
- Sun, H.; Wen, X.; Liu, W.; Wang, Z.; Liao, Q. State-of-Health Estimation of Retired Lithium-Ion Battery Module Aged at 1C-Rate. J. Energy Storage 2022, 50, 104618. [Google Scholar] [CrossRef]
- Vennam, G.; Sahoo, A. A Dynamic SOH-Coupled Lithium-Ion Cell Model for State and Parameter Estimation. IEEE Trans. Energy Convers. 2023, 38, 1186–1196. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, S.; Huang, R.; Huang, L.; Shi, Z.; Meng, Y. A Two-Stage Estimation Strategy Based on a Multistate Model for State-of-Health of Lithium-Ion Batteries. IEEE Trans. Transp. Electrif. 2024, 10, 7996–8008. [Google Scholar] [CrossRef]
- Li, Q.; Xue, W. A Review of Feature Extraction toward Health State Estimation of Lithium-Ion Batteries. J. Energy Storage 2025, 112, 115453. [Google Scholar] [CrossRef]
- Echabarri, S.; Do, P.; Vu, H.-C.; Liegeois, P.-Y. A Modified TimeGAN-Based Data Augmentation Approach for the State of Health Prediction of Lithium-Ion Batteries. Reliab. Eng. Syst. Saf. 2025, 264, 111297. [Google Scholar] [CrossRef]
- Huang, J.; Kuang, Z. Enhanced Robust Estimation Method for State of Health of Graphene Battery Based on CNN-ATTLSTM-Transformer Model Using Causal Algorithm. J. Power Sources 2025, 657, 237818. [Google Scholar] [CrossRef]
- Bao, J.; Mao, Y.; Zhang, W.; Zhang, Z.; Zhang, Y. Multi-Task Neural Network Combined with Adaptive Dual Kalman Filter for Joint Estimation of Battery State-of-Charge and State-of-Health. J. Power Sources 2025, 656, 238036. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Zhou, X.; Chen, H.; Duan, H.; Liang, K.; Chen, B.; Cao, Y.; Wang, W.; Yang, D.; et al. State of Health Prediction of Lithium-Ion Batteries Based on Incremental Capacity Analysis and Adaptive Genetic Algorithm Optimized Elman Neural Network Model. Energy 2025, 335, 137955. [Google Scholar] [CrossRef]
- Sun, Y.; Xie, H.; Diao, Q.; Xu, H.; Tan, X.; Fan, Y.; Wei, L. A Novel SOH Estimation Method With Attentional Feature Fusion Considering Differential Temperature Features for Lithium-Ion Batteries. IEEE Trans. Instrum. Meas. 2024, 73, 1–11. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, M.; Liu, C.; Feng, Z.; Xu, Y. Reliability Enhancement of State of Health Assessment Model of Lithium-Ion Battery Considering the Uncertainty with Quantile Distribution of Deep Features. Reliab. Eng. Syst. Saf. 2024, 245, 110002. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Zhang, Y.; Wu, C.; Zhang, S.; Sun, C. Data-Driven Lithium-Ion Battery SOH Prediction: A Novel SHMM-Transformer-BiGRU Hybrid Neural Network Method. Measurement 2026, 257, 118579. [Google Scholar] [CrossRef]
- Zhu, R.; Hu, J.; Peng, W. Bayesian Calibrated Physics-Informed Neural Networks for Second-Life Battery SOH Estimation. Reliab. Eng. Syst. Saf. 2025, 264, 111432. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, L.; Li, Y.; Wang, W. A Data-Efficient Method for Lithium-Ion Battery State-of-Health Estimation Based on Real-Time Frequent Itemset Image Encoding. Appl. Energy 2025, 398, 126416. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, C.; Jiang, J.; Zhang, W.; Zhang, L.; Wang, Y. Review on State-of-Health of Lithium-Ion Batteries: Characterizations, Estimations and Applications. J. Clean. Prod. 2021, 314, 128015. [Google Scholar] [CrossRef]
- Wu, W.; Lu, S. Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Data Preprocessing and Improved ELM. IEEE Trans. Instrum. Meas. 2023, 72, 1–14. [Google Scholar] [CrossRef]
- Ren, Z.; Wei, Y. State of Health Estimation for Lithium-Ion Batteries Using Hybrid Signal Decomposition and Deep Feature Fusion. J. Electrochem. Soc. 2025, 172, 090542. [Google Scholar] [CrossRef]








| Input Features | PCC of PV | PCC of PI | PCC of PMA |
|---|---|---|---|
| B0005 | 0.99773 | 0.99827 | 0.99665 |
| B0006 | 0.99554 | 0.99662 | 0.99346 |
| B0007 | 0.99713 | 0.99829 | 0.99640 |
| Laboratory-measured dataset | 0.94682 | 0.97975 | 0.92384 |
| Average | 0.98431 | 0.99323 | 0.97759 |
| Dataset | RMSE | MAE | RMSE (Mean ± SD) | |
|---|---|---|---|---|
| B0005 | BiLSTM | 0.013770 | 0.011186 | 0.01377 ± 0.00061 |
| ICEEMDAN+BILSTM | 0.008217 | 0.006853 | 0.00822 ± 0.00042 | |
| ICEEMDAN+FC-BILSTM | 0.007427 | 0.006283 | 0.00743 ± 0.00038 | |
| B0006 | BiLSTM | 0.018124 | 0.013426 | 0.01812 ± 0.00073 |
| ICEEMDAN+BILSTM | 0.013874 | 0.010569 | 0.01387 ± 0.00049 | |
| ICEEMDAN+FC-BILSTM | 0.012493 | 0.009055 | 0.01249 ± 0.00046 | |
| B0007 | BiLSTM | 0.008938 | 0.007398 | 0.00894 ± 0.00040 |
| ICEEMDAN+BILSTM | 0.007479 | 0.006200 | 0.00748 ± 0.00033 | |
| ICEEMDAN+FC-BILSTM | 0.007365 | 0.005868 | 0.00737 ± 0.00031 | |
| laboratory-measured dataset | BiLSTM | 0.002729 | 0.001818 | 0.00273 ± 0.00011 |
| ICEEMDAN+BILSTM | 0.002556 | 0.001682 | 0.00256 ± 0.00010 | |
| ICEEMDAN+FC-BILSTM | 0.002353 | 0.001573 | 0.00235 ± 0.00009 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Zhang, H.; Lan, H.; Cui, S.; Huang, Y.; Li, G.; Dong, Y.; Zhou, S. Lithium-Ion Battery SOH Prediction Method Based on ICEEMDAN+FC-BiLSTM. Energies 2025, 18, 5617. https://doi.org/10.3390/en18215617
Meng X, Zhang H, Lan H, Cui S, Huang Y, Li G, Dong Y, Zhou S. Lithium-Ion Battery SOH Prediction Method Based on ICEEMDAN+FC-BiLSTM. Energies. 2025; 18(21):5617. https://doi.org/10.3390/en18215617
Chicago/Turabian StyleMeng, Xiangdong, Haifeng Zhang, Haitao Lan, Sheng Cui, Yiyi Huang, Gang Li, Yunchang Dong, and Shuyu Zhou. 2025. "Lithium-Ion Battery SOH Prediction Method Based on ICEEMDAN+FC-BiLSTM" Energies 18, no. 21: 5617. https://doi.org/10.3390/en18215617
APA StyleMeng, X., Zhang, H., Lan, H., Cui, S., Huang, Y., Li, G., Dong, Y., & Zhou, S. (2025). Lithium-Ion Battery SOH Prediction Method Based on ICEEMDAN+FC-BiLSTM. Energies, 18(21), 5617. https://doi.org/10.3390/en18215617

