Integrated Spatiotemporal Life Cycle Assessment Framework for Hydroelectric Power Generation in Brazil
Abstract
1. Introduction
2. Literature Review and Research Gaps
2.1. Emergence of Spatiotemporal and Dynamic LCA
2.2. LCA of Hydroelectric Power Generation Systems
2.3. Research Gaps and Study Justification
3. Research Design and Methodology
4. Integrated Spatiotemporal Life Cycle Assessment Framework
4.1. Framework Architecture
4.1.1. Temporal Characterization
- (i)
- ‘Construction and Assembly’ (Years 1–5): Intensive material and energy flows with peak environmental impacts from large-scale civil works;
- (ii)
- ‘Operation and Maintenance’ (Years 6–65): Lower-intensity but continuous environmental interactions with periodic maintenance patterns;
- (iii)
- ‘Repowering’ or ‘Decommissioning’ (Years 66–70): This stage may involve either repowering, characterized by large-scale equipment replacement and structural reinforcements with intensive material and energy use, or alternatively decommissioning, involving the dismantling of civil and electromechanical structures, waste generation, and potential recycling alongside significant ecological disturbances.
4.1.2. Spatial Characterization
4.1.3. Spatiotemporal Integration Methodology for Life Cycle Inventory (LCI)
4.2. Impact Assessment Methodology
4.3. Practical Implementation and Uncertainty Considerations
5. Application to the Sinop Hydroelectric Power Plant
5.1. LCA Goal and Scope Definition
5.2. Life Cycle Inventory (LCI)
5.3. Life Cycle Impact Assessment (LCIA)
5.4. LCA Interpretation and Uncertainty Analysis
6. Discussion
6.1. Added Value of Spatiotemporal Approaches over Conventional LCA
6.2. Comparative Analysis with International References
6.3. Tropical Context Implications
6.4. Policy and Planning Implications
6.5. Framework Limitations and Future Research
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Search History in the Scopus Database
| Keyword Search | Documents | |
|---|---|---|
| #1 | TITLE-ABS-KEY (“life cycle assessment” OR LCA) | 67,931 |
| #2 | TITLE-ABS-KEY (“electricity generation” OR “power generation” OR “energy generation” OR “electric power systems” OR “renewable energy systems”) | 512,343 |
| #3 | TITLE-ABS-KEY (“hydropower” OR “hydroelectric power” OR “hydropower plant” OR “hydroelectric plant” OR “reservoir-based hydropower”) | 63,007 |
| #4 | TITLE-ABS-KEY (“temporal LCA” OR “dynamic LCA” OR “spatial LCA” OR “spatiotemporal LCA” OR “spatio-temporal LCA” OR “spatial-temporal LCA” | 193 |
| #5 | #1 AND #2 | 4085 |
| #6 | #1 AND #3 | 457 |
| #7 | #2 AND #4 | 13 |
| #8 | #3 AND #4 | 0 |
References
- Brazil Ministério de Minas e Energia. Boletim Mensal de Energia; MME: Brasília, Brazil, 2024. Available online: https://www.gov.br/mme/pt-br/assuntos/secretarias/sntep/publicacoes/boletins-mensais-de-energia (accessed on 24 September 2025).
- ISO 14040:2006; Environmental management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Jolliet, O.; Saadé-Sbeith, M.; Shaked, S.; Jolliet, A.; Crettaz, P. Environmental Life Cycle Assessment; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Jordaan, S.M.; Combs, C.; Guenther, E. Life Cycle Assessment of Electricity Generation: A Systematic Review of Spatiotemporal Methods. Adv. Appl. Energy 2021, 3, 100058. [Google Scholar] [CrossRef]
- Kumar, A.; Yang, T.; Sharma, M.P. Long-term Prediction of Greenhouse Gas Risk to the Chinese Hydropower Reservoirs. Sci. Total Environ. 2019, 646, 300–308. [Google Scholar] [CrossRef]
- Gemechu, E.; Kumar, A. A Review of How Life Cycle Assessment Has Been Used to Assess the Environmental Impacts of Hydropower Energy. Renew. Sustain. Energy Rev. 2022, 167, 112684. [Google Scholar] [CrossRef]
- Goswami, D.; Bhattacharjee, A.; Basak, P.; Das, U.; Nandi, C. Life Cycle Assessment: A Perspective of Improvement of Hydro-Plants for Intensify “Green Electricity”. Energy Nexus 2023, 10, 100201. [Google Scholar] [CrossRef]
- Levasseur, A.; Mercier-Blais, S.; Prairie, Y.T.; Tremblay, A.; Turpin, C. Improving the Accuracy of Electricity Carbon Footprint: Estimation of Hydroelectric Reservoir Greenhouse Gas Emissions. Renew. Sustain. Energy Rev. 2021, 136, 110433. [Google Scholar] [CrossRef]
- Kumar, A.; Chaturvedi, A.; Joshi, N.; Mondal, R.; Malyan, S. Greenhouse Gas Emissions from Hydroelectric Reservoirs: Mechanistic Understanding of Influencing Factors and Future Prospect. Environ. Sci. Pollut. Res. 2023, 1–18. [Google Scholar]
- Mwakangale, J.; Cook, D.; Ögmundarson, Ó.; Davíðsdóttir, B. A Systematic Review on the Application of Lifecycle-Based Approaches in Assessing Sustainability of Hydropower. Renew. Sustain. Energy Rev. 2025, 219, 115841. [Google Scholar] [CrossRef]
- Lueddeckens, S.; Saling, P.; Guenther, E. Temporal Issues in Life Cycle Assessment: A Systematic Review. Int. J. Life Cycle Assess. 2020, 25, 1385–1401. [Google Scholar] [CrossRef]
- Beloin-Saint-Pierre, D.; Albers, A.; Hélias, A. Addressing Temporal Considerations in Life Cycle Assessment. Sci. Total Environ. 2020, 743, 140700. [Google Scholar] [CrossRef] [PubMed]
- Messagie, M.; Mertens, J.; Oliveira, L.; Rangaraju, S.; Sanfelix, J.; Coosemans, T.; Mierlo, J.V.; Macharis, C. The hourly life cycle carbon footprint of electricity generation in Belgium, bringing a temporal resolution in life cycle assessment. Appl. Energy 2014, 134, 469–476. [Google Scholar] [CrossRef]
- Pereira, L.; Posen, I.D. Lifecycle Greenhouse Gas Emissions from Electricity in the Province of Ontario at Different Temporal Resolutions. J. Clean. Prod. 2020, 270, 122514. [Google Scholar] [CrossRef]
- Vuarnoz, D.; Jusselme, T. Temporal Variations in the Primary Energy Use and Greenhouse Gas Emissions of The Electricity Provided to the Swiss Grid. Energy 2018, 161, 573–582. [Google Scholar] [CrossRef]
- Potting, J.; Hauschild, M.Z. Spatial differentiation in life cycle impact assessment: A decade of method development to increase the environmental realism of LCIA. Int. J. Life Cycle Assess. 2006, 11, 11–13. [Google Scholar] [CrossRef]
- Mutel, C.L.; Hellweg, S. Regionalized Life Cycle Assessment: Computational Methodology and Application to Inventory Databases. Environ. Sci. Technol. 2009, 43, 5797–5803. [Google Scholar] [CrossRef]
- Mutel, C.L.; Pfister, S.; Hellweg, S. GIS-based Regionalized Life Cycle Assessment: How Big is Small Enough? Methodology and Case Study of Electricity Generation. Environ. Sci. Technol. 2011, 46, 1096–1103. [Google Scholar] [CrossRef]
- Liu, K.F.-R.; Hung, M.-J.; Yeh, P.-C.; Kuo, J.-Y. GIS-based Regionalization of LCA. J. Geosci. Environ. Prot. 2014, 2, 1–8. [Google Scholar] [CrossRef]
- Beloin-Saint-Pierre, D.; Blanc, I. Enhanced Structure Path Analysis: A New Method to Create Spatiotemporally Defined Life Cycle Inventory. In Proceedings of the 21st SETAC Europe Annual Meeting, Milan, Italy, 15–19 May 2011; Available online: https://minesparis-psl.hal.science/hal-00711935v1 (accessed on 24 September 2025).
- Olkkonen, V.; Syri, S. Spatial and Temporal Variations of Marginal Electricity Generation: The Case of the Finnish, Nordic, and European Energy Systems up to 2030. J. Clean. Prod. 2016, 126, 515–525. [Google Scholar] [CrossRef]
- Sacchi, R.; Besseau, R.; Pérez-López, P.; Blanc, I. Exploring Technologically, Temporally and Geographically Sensitive Life Cycle Inventories for Wind Turbines: A Parameterized Model for Denmark. Renew. Energy 2019, 132, 1238–1250. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, S.; Wang, L. Life Cycle Analysis of Greenhouse Gas Emissions of China’s Power Generation on Spatial and Temporal Scale. Energy Sci. Eng. 2022, 10, 1083–1095. [Google Scholar] [CrossRef]
- Raadal, H.L.; Gagnon, L.; Modahl, I.S.; Hanssen, O.J. Life Cycle Greenhouse Gas (GHG) Emissions from the Generation of Wind and Hydro Power. Renew. Sustain. Energy Rev. 2011, 15, 3417–3422. [Google Scholar] [CrossRef]
- Kadiyala, A.; Kommalapati, R.; Huque, Z. Evaluation of the Life Cycle Greenhouse Gas Emissions from Hydroelectricity Generation Systems. Sustainabiliy 2016, 8, 539. [Google Scholar] [CrossRef]
- Teffera, B.; Assefa, B.; Assefa, G. Assessing the Life Cycle Environmental Impacts of Hydroelectric Generation in Ethiopia. Sustain. Energy Technol. Assess 2020, 41, 100795. [Google Scholar] [CrossRef]
- Fearnside, P.M. Hydroelectric Dams in the Brazilian Amazon as Sources of Greenhouse Gases. Environ. Conserv. 1995, 22, 7–19. [Google Scholar] [CrossRef]
- Rosa, L.P.; Schaeffer, R.; Santos, M.A. Are Hydroelectric Dams in the Brazilian Amazon significant Sources of Greenhouse Gases? Environ. Conserv. 1996, 23, 2–6. [Google Scholar] [CrossRef]
- Kemenes, A.; Forsberg, B.R.; Melack, J.M. Methane Release below a Tropical Hydroelectric Dam. Geophys. Res. Lett. 2007, 34, L12809. [Google Scholar] [CrossRef]
- Ribeiro, F.M.; Silva, G.A. Life-cycle inventory for hydroelectric generation: A Brazilian case study. J. Clean. Prod. 2010, 18, 44–54. [Google Scholar] [CrossRef]
- Kemenes, A.; Forsberg, B.R.; Melack, J.M. CO2 Emissions from a Tropical Hydroelectric Reservoir (Balbina, Brazil). J. Geophys. Res. Biogeosci. 2011, 116, G03004. [Google Scholar] [CrossRef]
- Rosa, L.P.; Santos, M.A.; Matvienko, B.; Dos Santos, E.O.; Sikar, E. Greenhouse Gas Emissions from Hydroelectric Reservoirs in Tropical Regions. Clim. Change 2024, 66, 9–21. [Google Scholar] [CrossRef]
- Xia, B.; Qiang, M.; Jiang, H.; Wen, Q.; An, N.; Zhang, D. Phase-Based Externality Analysis for Large Hydropower Projects. Environ. Impact Assess. Rev. 2020, 80, 106332. [Google Scholar] [CrossRef]
- Cusenza, M.A.; Guarino, F.; Longo, S.; Mistretta, M.; Cellura, M. Environmental Assessment of 2030 Electricity Generation Scenarios in Sicily: An Integrated Approach. Renew. Energy 2020, 160, 1148–1159. [Google Scholar] [CrossRef]
- Schomberg, A.C.; Bringezu, S.; Flörke, M.; Biederbick, H. Spatially Explicit Life Cycle Assessments Reveal Hotspots of Environmental Impacts from Renewable Electricity Generation. Commun. Earth Environ. 2022, 3, 197. [Google Scholar] [CrossRef]
- Cho, M.; Qi, J. Determination of Spatial Pattern of Environmental Consequences of Dams in Watersheds. Land 2023, 12, 2154. [Google Scholar] [CrossRef]
- Mahmud, M.; Huda, N.; Farjana, S.H.; Lang, C. A Strategic Impact Assessment of Hydropower Plants in Alpine and Non-Alpine Areas of Europe. Appl. Energy 2019, 250, 198–214. [Google Scholar] [CrossRef]
- Verán-Leigh, D.; Vázquez-Rowe, I. Life Cycle Assessment of Run-of-river Hydropower Plants in the Peruvian Andes: A Policy Support Perspective. Int. J. Life Cycle Assess. 2019, 24, 1376–1395. [Google Scholar] [CrossRef]
- Lazo-Vásquez, D.; Urbina, C.; Rivela, B. On the Potential Environmental Repercussions of Hydroelectricity: A Contribution Based on Life Cycle Assessment of Ecuadorian Hydropower Plants. Rev. Virtual Quím. 2021, 14, 50–55. [Google Scholar] [CrossRef]
- Pehl, M.; Arvesen, A.; Humpenöder, F.; Popp, A.; Hertwich, E.G.; Luderer, G. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling. Nat. Energy 2017, 2, 939–945. [Google Scholar] [CrossRef]
- Briones-Hidrovo, A.; Uche, J.; Martínez-Gracia, A. Determining the net environmental performance of hydropower: A new methodological approach by combining life cycle and ecosystem services assessment. Sci. Total Environ. 2019, 712, 136369. [Google Scholar] [CrossRef]
- Siddiqui, O.; Dincer, I. Comparative Assessment of the Environmental Impacts of Nuclear, Wind and Hydro-Electric Power Plants in Ontario: A Life Cycle Assessment. J. Clean. Prod. 2017, 164, 848–860. [Google Scholar] [CrossRef]
- Song, C.; Gardner, K.; Klein, S.; Souza, S.; Mo, W. Cradle-to-Grave Greenhouse Gas Emissions from Dams in the United States of America. Renew. Sustain. Energy Rev. 2018, 90, 945–956. [Google Scholar] [CrossRef]
- Barros, M.V.; Salvador, R.; Moro, C.; Piekarski, C.M.; Francisco, A.C.; Seixas, F.M.C. Life Cycle Assessment of Electricity Generation: A Review of the Characteristics of Existing Literature. Int. J. Life Cycle Assess. 2020, 25, 36–54. [Google Scholar] [CrossRef]
- Mahmud, M.; Farjana, S.H. Comparative Life Cycle Environmental Impact Assessment of Renewable Electricity Generation Systems: A Practical Approach towards Europe, North America and Oceania. Renew. Energy 2022, 193, 1106–1120. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Liu, Z.; Frans, V.; Xu, Z.; Qiu, X.; Xu, F.; Li, Y. Assessing the Water and Carbon Footprint of Hydropower Stations at a National Scale. Sci. Total Environ. 2019, 676, 595–612. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, Y.; Zheng, X.; Hou, W.; Chen, X.; Xiao, S.; Zhang, X.; Deng, S.; Hao, J.; Luo, H.; et al. Moving towards Co-Benefits of Hydropower: Ecological Efficiency Evaluation Based on LCA and DEA. Environ. Impact Assess. Rev. 2023, 100, 107208. [Google Scholar] [CrossRef]
- Gracey, E.O.; Verones, F. Impacts from Hydropower Production on Biodiversity in an LCA Framework—Review and Recommendations. Int. J. Life Cycle Assess 2016, 21, 412–428. [Google Scholar] [CrossRef]
- Correia, E.; Calili, R.; Pessanha, J.F.; Almeida, M.F. Definition of Regulatory Targets for Electricity Non-technical Losses: Proposition of an Automatic Model-selection Technique for Panel Data Regressions. Energies 2023, 16, 2519. [Google Scholar] [CrossRef]
- Empresa de Pesquisa Energética (EPE). Estudo de Viabilidade: UHE de Sinop; EPE: Brasília, Brazil, 2010. Available online: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/estudos-de-viabilidade-tecnica-e-economica-evte (accessed on 24 September 2025).
- Empresa de Pesquisa Energética (EPE). Relatório de Impacto Ambiental (RIMA): UHE de Sinop; EPE: Brasília, Brazil, 2010. Available online: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-247/Rima%20-%20UHE%20Sinop.pdf (accessed on 24 September 2025).
- PSR Energy Consulting and Solutions. About PSR. 2025. Available online: https://www.psr-inc.com/en/who_we_are/# (accessed on 1 September 2025).
- Ecoinvent Association. Ecoinvent Database v3.10; Ecoinvent Association: Zürich, Switzerland, 2023; Available online: https://ecoinvent.org/ (accessed on 1 September 2025).
- Ciroth, A.; Di Noi, C.; Lohse, T.; Srocka, M. openLCA 2.0. Comprehensive User Manual; GreenDeltaTC: Berlin, Germany, 2019; Available online: https://www.openlca.org/openlca-manual-update-2/ (accessed on 1 September 2025).
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Empresa de Pesquisa Energética (EPE). Repotenciação e Modernização de Usinas Hidrelétricas; EPE-DEE-088/2019-r0; EPE: Brasília, Brazil, 2019.
- Huijbregts, M.A.J. Uncertainty and Variability in Environmental Life-Cycle Assessment. Int. J. Life Cycle Assess. 2002, 173. [Google Scholar] [CrossRef]
- Lloyd, S.M.; Ries, R. Characterizing, Propagating, and Analyzing Uncertainty in Life-Cycle Assessment: A Survey of Quantitative Approaches. J. Ind. Ecol. 2007, 11, 161–179. [Google Scholar] [CrossRef]
- United Nations Economic Commission for Europe (UNECE). Carbon Neutrality in Unece Region: Integrated Life-Cycle Assessment of Electricity Sources; Unece: Geneva, Switzerland, 2022; Available online: https://unece.org/sites/default/files/2022-04/LCA_3_FINAL%20March%202022.pdf (accessed on 1 September 2025).
- United States Department of Energy. National Energy Technology Laboratory (DOE/NETL). Role of Alternative Energy Sources: Hydropower Technology Assessment; DOE/NETL-2011/1519; DOE/NETL: Pittsburg, PA, USA, 2012. Available online: https://www.osti.gov/servlets/purl/1524433 (accessed on 24 September 2025).
| Phase | Stage | Research Questions [Sections] |
|---|---|---|
| Motivation (Why?) | 1. Problem definition and the rationale for the research | Why is it essential to develop a spatiotemporal LCA framework for hydroelectric power generation systems? [Section 1 and Section 2]. |
| Conceptualization and development (What and how?) | 2. State- of- research on the research central issues and identification of research gaps and unsolved problems | Which research gaps and methodological challenges persist in life cycle assessment (LCA) frameworks, with particular emphasis on the integration of spatial and temporal dimensions for hydroelectric power generation systems? [Section 2]. |
| 3. Definition of the research design and methodology | How can a spatiotemporal LCA framework be conceptualized and implemented to address the methodological challenges and research gaps identified in Section 2? [Section 3]. | |
| 4. Development of a spatiotemporal life cycle assessment (LCA) model for hydroelectric power plants. | What are the critical steps for constructing a novel LCA framework that integrates spatial and temporal dimensions? [Section 4]. | |
| Validation (How to demonstrate the applicability of the proposed model?) | 5. Demonstration of the applicability of the proposed model using Brazil’s Sinop hydroelectric power plant as a case study. | How can the proposed model be validated using the Sinop hydroelectric power plant as a case study? [Section 5]. What findings can be derived from comparing the proposed spatiotemporal LCA results with conventional methods? [Section 5] |
| 6. Discussion of the research results and policy implications | What are the key contributions of the spatiotemporal LCA framework to improving environmental assessments of hydroelectric power generation systems? [Section 6]. How can the findings inform policy and planning for more sustainable hydroelectricity development? [Section 6]. |
| Stage | Elementary Process | Inputs | Spatial and Temporal Boundaries | |
|---|---|---|---|---|
| Local | Period | |||
| Construction and Assembly | Deforestation and land preparation | Machinery | RoW | Years 1–2 |
| Deforested area (non-flooded) | BR | |||
| Dam and dike construction | Earth excavation | GLO | Years 2–4 | |
| Rock excavation (explosives) | GLO | |||
| Concrete | BR | |||
| Rock | BR | |||
| Soil | BR | |||
| Structural steel (reinforcement) | GLO | |||
| Installation of gates/grids and mechanical equipment | Steel | GLO | Years 4–5 | |
| Construction and Assembly | Spillway construction | Earth excavation | GLO | Years 2–4 |
| Rock excavation (explosives) | GLO | |||
| Concrete | BR | |||
| Structural steel (reinforcement) | GLO | |||
| Construction of the worksite/camp | Container | ROW | Year 1 | |
| Concrete | BR | |||
| Structural steel (reinforcement) | GLO | |||
| Water intake circuit/penstock | Earth excavation | GLO | Years 1–4 | |
| Rock excavation (explosives) | GLO | |||
| Concrete | BR | |||
| Structural steel (reinforcement) | GLO | |||
| Metallic lining | GLO | |||
| Powerhouse construction | Earth excavation | GLO | Years 2–4 | |
| Rock excavation (explosives) | GLO | |||
| Concrete | BR | |||
| Steel | GLO | |||
| Installation of electrical equipment | Copper | GLO | Years 4–5 | |
| Installation of turbines | Steel | GLO | Years 2–5 | |
| Installation of generators | Steel | GLO | ||
| Copper | GLO | |||
| Access road construction | Road | ROW | Years 4–5 | |
| Reservoir creation | Flooded area | BR -South-eastern/Mid-western | Years 3–5 | |
| Construction and Assembly | Monitoring and control system | Electronic components | GLO | Years 1–5 |
| Employee transportation | Bus transport | BR -South-eastern/Mid-western | Years 1–5 | |
| Materials and equipment transportation | Truck transport | BR -South-eastern/Mid-western | Years 1–5 | |
| Electricity consumption | Electricity | BR -South-eastern/Mid-western | Years 1–5 | |
| River diversion construction | Earth excavation | GLO | ||
| Rock excavation (explosives) | GLO | |||
| Concrete | BR | |||
| Rock (gravel) | BR | |||
| Soil | BR | |||
| Operation and Maintenance | Monitoring and control | Electricity | BR -South-eastern/Mid-western | Years 6–65 |
| Equipment maintenance | Lubricating oil | ROW | Years 6–65 | |
| Copper | GLO | |||
| Steel | GLO | |||
| Category | Subcategory | Elementary Flow | Unity | Stages | Total | |
|---|---|---|---|---|---|---|
| Construction and Assembly | Operation and Maintenance | |||||
| INPUT | ||||||
| Non-renewable material resources | Metallic materials | Carbon steel | kg | 3.2 × 10−4 (1) | 1.45 × 10−6 | 3.27 × 10−4 |
| Stainless steel | kg | 0 | 0 | 0 | ||
| Copper | kg | 5.23 × 10−6 | 2.14 × 10−7 | 5.44 × 10−6 | ||
| Aluminum | kg | 2.17 × 10−5 | 8.92 × 10−7 | 2.26 × 10−5 | ||
| Non-metallic materials | Concrete | m3 | 1.20 × 10−2 (2) | 0 | 1.20 × 10−2 | |
| Cement | kg | 1.85 × 10−3 | 0 | 1.85 × 10−3 | ||
| Aggregates | kg | 1.04 × 10−2 | 0 | 1.04 × 10−2 | ||
| Fossil fuels | Diesel | L | 2.58 × 10−4 (3) | 1.12 × 10−5 | 2.69 × 10−4 | |
| Gasoline | L | 0 | 0 | 0 | ||
| Lubricant oil | L | 0 | 3.25 × 10−6 | 3.25 × 10−6 | ||
| Natural resources | Water | Process water | m3 | 8.45 × 10−4 | 3.67 × 10−4 (3) | 1.21 × 10−3 |
| Construction water | m3 | 5.12 × 10−3 | 0 | 5.12 × 10−3 | ||
| Land use | Flooded area | m2 | 1.00 × 10+6 (4) | 0 | 1.00 × 10+6 | |
| Suppressed vegetation area | m2 | 7.07 × 10−4 | 3.24 × 10−8 | 7.07 × 10−4 | ||
| Energetic resources | Electricity | Auxiliary energy | kWh | 1.80 × 10−2 (5) | 4.96 × 10−7 | 1.80 × 10−2 |
| OUTPUT | ||||||
| Atmospheric emissions | Greenhouse gases | CO2 | kg | 1.07 × 10−2 | 6.96 × 10−7 | 1.07 × 10−2 |
| CH4 | kg | 1.18 × 10−9 | 0 | 1.18 × 10−9 | ||
| N2O | kg | 2.37 × 10−7 | 0 | 2.37 × 10−7 | ||
| Other pollutants | NOx | kg | 0 | 0 | 0 | |
| SOx | kg | 0 | 0 | 0 | ||
| Particulate matter | kg | 0 | 0 | 0 | ||
| VOC | kg | 0 | 0 | 0 | ||
| Water emissions | Heavy metals | Copper | kg | 1.08 × 10−6 | 2.40 × 10−10 | 1.08 × 10−6 |
| Zinc | kg | 0 | 0 | 0 | ||
| Nickel | kg | 0 | 0 | 0 | ||
| Other pollutants | Oils and greases | kg | 1.36 × 10−4 | 3.66 × 10−9 | 1.36 × 10−4 | |
| Suspended solids | kg | 0 | 0 | 0 | ||
| Turbidity | NTU | 0 | 0 | 0 | ||
| BOD/COD | kg O2 | 1.14 × 10−5 | 2.85 × 10−9 | 1.14 × 10−5 | ||
| Impact Category (Midpoints) | Construction and Assembly | Operation and Maintenance | Total |
|---|---|---|---|
| Climate change (kg CO2-Eq) | 8.19 × 10−3 | 8.559 × 10−7 | 8.19 × 10−3 |
| Terrestrial acidification (kg SO2-Eq) | 1.19 × 10−5 | 1.743 × 10−9 | 1.19 × 10−5 |
| Freshwater ecotoxicity (kg 1,4-DCB-Eq) | 3.23 × 10−4 | 8.159 × 10−8 | 3.23 × 10−4 |
| Marine ecotoxicity (kg 1,4-DCB-Eq) | 6.93 × 10−4 | 1.076 × 10−7 | 6.93 × 10−4 |
| Terrestrial ecotoxicity (kg 1,4-DCB-Eq) | 2.97 × 10−1 | 2.289 × 10−6 | 2.97 × 10−1 |
| Energy resources: non-renewable, fossil (kg oil-Eq) | 6.45 × 10−4 | 5.047 × 10−7 | 6.46 × 10−4 |
| Freshwater eutrophication (kg P-Eq) | 9.01 × 10−7 | 2.74 × 10−10 | 9.01 × 10−7 |
| Marine eutrophication (kg N-Eq) | 9.09 × 10−8 | 0 | 9.09 × 10−8 |
| Human toxicity: carcinogenic (kg 1,4-DCB-Eq) | 1.08 × 10−3 | 3.423 × 10−7 | 1.08 × 10−3 |
| Human toxicity: non-carcinogenic (kg 1,4-DCB-Eq) | 5.97 × 10−3 | 1.63 × 10−6 | 5.97 × 10−3 |
| Ionizing radiation (kBq Co-60-Eq) | 2.86 × 10−5 | 4.09 × 10−10 | 2.86 × 10−5 |
| Land use (m2·a crop-Eq) | 5.50 × 10−3 | 1.72 × 10−8 | 5.50 × 10−3 |
| Material resources: metals/minerals (kg Cu-Eq) | 6.74 × 10−5 | 1.68 × 10−8 | 6.74 × 10−5 |
| Ozone layer depletion (kg CFC-11-Eq) | 3.57 × 10−9 | 0 | 3.57 × 10−9 |
| Particulate matter formation (kg PM2.5-Eq) | 1.39 × 10−5 | 1.01 × 10−9 | 1.39 × 10−5 |
| Photochemical oxidant formation: human health (kg NOx-Eq) | 1.40 × 10−5 | 3.06 × 10−9 | 1.40 × 10−5 |
| Photochemical oxidant formation: terrestrial ecosystems (kg NOx-Eq) | 1.55 × 10−5 | 4.05 × 10−9 | 1.55 × 10−5 |
| Water use (m3) | 3.71 × 10−5 | 7.46 × 10−9 | 3.71 × 10−5 |
| Impact Category (Endpoints) | Unit | Construction and Assembly | Operation and Maintenance | Total |
|---|---|---|---|---|
| Human health | DALYs (Disability-Adjusted Life Years) | 8.10 × 10−11 | 3.82 × 10−15 | 8.10 × 10−11 |
| Ecosystem quality | Species·yr | 2.14 × 10−8 | 2.96 × 10−12 | 2.14 × 10−8 |
| Resource scarcity | USD 2013 | 1.85 × 10−4 | 1.95 × 10−7 | 1.85 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albuquerque, V.C.d.; Calili, R.F.; Almeida, M.F.L.d.; Albuquerque, R.; Castro, T.; Kelman, R. Integrated Spatiotemporal Life Cycle Assessment Framework for Hydroelectric Power Generation in Brazil. Energies 2025, 18, 5606. https://doi.org/10.3390/en18215606
Albuquerque VCd, Calili RF, Almeida MFLd, Albuquerque R, Castro T, Kelman R. Integrated Spatiotemporal Life Cycle Assessment Framework for Hydroelectric Power Generation in Brazil. Energies. 2025; 18(21):5606. https://doi.org/10.3390/en18215606
Chicago/Turabian StyleAlbuquerque, Vanessa Cardoso de, Rodrigo Flora Calili, Maria Fatima Ludovico de Almeida, Rodolpho Albuquerque, Tarcisio Castro, and Rafael Kelman. 2025. "Integrated Spatiotemporal Life Cycle Assessment Framework for Hydroelectric Power Generation in Brazil" Energies 18, no. 21: 5606. https://doi.org/10.3390/en18215606
APA StyleAlbuquerque, V. C. d., Calili, R. F., Almeida, M. F. L. d., Albuquerque, R., Castro, T., & Kelman, R. (2025). Integrated Spatiotemporal Life Cycle Assessment Framework for Hydroelectric Power Generation in Brazil. Energies, 18(21), 5606. https://doi.org/10.3390/en18215606

