Secure State Estimation with Asynchronous Measurements for Coordinated Cyber Attack Detection in Active Distribution Systems
Abstract
1. Introduction
- The problem of asynchronous measurements in active distribution systems is not sufficiently addressed by current state estimation techniques.
- Conventional secure observer design does not integrate prediction correction functionality and is not capable of dealing with both cyber attacks and asynchronous measurements.
- Current approaches to FDI attack detection often focus on random FDI attacks and do not consider coordinated attacks across multiple devices.
- As a first attempt, a secure state estimation is developed for an active distribution system, where measurement output data are asynchronous and vulnerable to coordinated FDI attacks. In this approach, a sensor time function is proposed to illustrate the asynchronous samplings of measurement devices. Next, in order to adjust the length of the sampling interval of each sensor, we advance the prediction correction algorithm by utilizing the Levenberg–Marquardt strategy and Newton’s method.
- In contrast to traditional secure observer designs, this work introduces a multi-rate observer that leverages a sensor time function and prediction correction outputs to estimate asynchronous and compromised measurements.
- This scheme introduces an attack detection method by using a dual nonlinear optimization approach to automatically filter out possible coordinated FDI attacks.
2. Problem Formulation
2.1. Asynchronous Measurements
2.2. Coordinated FDI Attacks
3. Methodology
3.1. Prediction Correction Algorithm
3.2. Multi-Rate Observer
3.3. Stability Condition
4. Attack Detection Method
5. Simulation Results and Discussion
5.1. Estimation Error of Multi-Rate Observer
5.2. Attack Detection Result
5.3. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pegoraro, P.A.; Sitzia, C.; Solinas, A.V.; Sulis, S.; Carta, D.; Benigni, A. Improved Fault Detection and Location Method in Three-Phase Distribution Networks Leveraging Traceable PMU Measurements. IEEE Trans. Instrum. Meas. 2025, 74, 9004312. [Google Scholar] [CrossRef]
- Qu, B.; Wang, Z.; Shen, B. Fusion estimation for a class of multi-rate power systems with randomly occurring SCADA measurement delays. Automatica 2021, 125, 109408. [Google Scholar] [CrossRef]
- Dehbozorgi, M.R.; Rastegar, M.; Arani, M.F.M. False Data Injection Attack Detection and Localization Framework in Power Distribution Systems Using a Novel Ensemble of CNNs and Explainable Artificial Intelligence. IEEE Trans. Ind. Appl. 2025, 61, 4801–4811. [Google Scholar] [CrossRef]
- Asghari, M.; Ameli, A.; Ghafouri, M.; Uddin, M.N. Optimal Data Aggregation Reconfiguration Scheme to Mitigate Stealthy False Data Injection Attacks in Energy Management Systems. IEEE Trans. Smart Grid 2025, 16, 3269–3281. [Google Scholar] [CrossRef]
- Presekal, A.; Rajkumar, V.S.; Ştefanov, A.; Pan, K.; Palensky, P. Cyberattacks on Power Systems. In Artificial Intelligence Applications in Modern Power Systems; Parizad, A., Baghaee, H.R., Rahman, S., Eds.; Wiley: Hoboken, NJ, USA, 2025; Chapter 15. [Google Scholar] [CrossRef]
- Mondal, S.; Prudhvi, B.; Khare, P.; Reddy, M.J.B. Real-time Analysis of Cyber Attacks in SCADA Based Power System. Aust. J. Electr. Electron. Eng. 2025, 1–25. [Google Scholar] [CrossRef]
- Hu, Z.; Ni, C. An Optimization-Based Fusion Estimation Method for Multi-Sensor Measurement Considering Node Detection Risk. Measurement 2026, 257 Pt C, 118728. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, Y. Multi-Estimator Framework for Robust FDI Attack Detection in Smart Grids. IEEE Trans. Circuits Syst. I Regul. Pap. 2025, 72, 5092–5105. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Gu, S.; Tian, Y.; Gao, Y. Multi-Level Asynchronous Robust State Estimation for Distribution Networks Considering Communication Delays. Energies 2025, 18, 3640. [Google Scholar] [CrossRef]
- Hu, Y.; Lin, X.; Peng, K. Distributed Consensus Filtering over Sensor Networks with Asynchronous Measurements. Int. J. Adapt. Control Signal Process. 2025, 39, 101–115. [Google Scholar] [CrossRef]
- Ni, Z.; Cui, P.; Li, F.; Su, L.; Guo, Y.; Chen, W. Nonfragile H∞ Asynchronous Control for 2-D Roesser Systems with Markov Model-Based Energy-Limited DoS Attacks. Int. J. Dyn. Control 2025, 1–11. [Google Scholar] [CrossRef]
- Landicheff, G.; Ménard, T.; Gehan, O.; Pigeon, E. Continuous–Discrete Time Observer Design for Multi-Output Linear Continuous Systems with Aperiodic Asynchronous Measurements. IEEE Control Syst. Lett. 2022, 6, 3002–3007. [Google Scholar] [CrossRef]
- Sun, S.; Peng, F.; Lin, H. Distributed Asynchronous Fusion Estimator for Stochastic Uncertain Systems with Multiple Sensors of Different Fading Measurement Rates. IEEE Trans. Signal Process. 2018, 66, 641–653. [Google Scholar] [CrossRef]
- Sferlazza, A.; Tarbouriech, S.; Zaccarian, L. Time-Varying Sampled-Data Observer with Asynchronous Measurements. IEEE Trans. Autom. Control 2019, 64, 869–876. [Google Scholar] [CrossRef]
- Wu, Y.; Ru, Y.; Lin, Z.; Liu, C.; Xue, T.; Zhao, X.; Chen, J. Research on Cyber-Attacks and Defensive Measures of Power Communication Network. IEEE Internet Things J. 2023, 10, 7613–7635. [Google Scholar] [CrossRef]
- Li, B.; Lu, R.; Xiao, G.; Li, T.; Choo, K.-K.R. Detection of False Data Injection Attacks on Smart Grids: A Resilience-Enhanced Scheme. IEEE Trans. Power Syst. 2022, 37, 2679–2692. [Google Scholar] [CrossRef]
- Lu, A.-Y.; Yang, G.-H. False Data Injection Attacks against State Estimation without Knowledge of Estimators. IEEE Trans. Autom. Control 2022, 67, 4529–4540. [Google Scholar] [CrossRef]
- Cavraro, G.; Comden, J.; Dall’Anese, E.; Bernstein, A. Real-Time Distribution System State Estimation with Asynchronous Measurements. IEEE Trans. Smart Grid 2022, 13, 3813–3822. [Google Scholar] [CrossRef]
- De Melo, V.H.P.; Hebling, G.M.; Massignan, J.A.D.; London, J.B.A., Jr. Enhancing Performance of State Estimation Algorithms with FACTS. Electr. Power Syst. Res. 2025, 246, 111641. [Google Scholar] [CrossRef]
- Pandey, S.; Prasun, P.; Kamal, S.; Singh, D.; Ghosh, D.; Olaru, S. Optimal Trajectory Tracking Using Newton and Levenberg–Marquardt-Like Algorithms for Constrained Time-Varying Optimization. Optim. Control Appl. Methods 2025, 46, 1800–1813. [Google Scholar] [CrossRef]
- Davydov, A.; Centorrino, V.; Gokhale, A.; Russo, G.; Bullo, F. Time-Varying Convex Optimization: A Contraction and Equilibrium Tracking Approach. IEEE Trans. Autom. Control 2025, 1–15. [Google Scholar] [CrossRef]
- Li, Y.; Xu, H.; Zhang, W. A Balanced Augmented Lagrangian Method with Correction for Linearly Constrained Optimization. J. Sci. Comput. 2025, 104, 20. [Google Scholar] [CrossRef]
- Simonetto, A.; Dall’Anese, E. Prediction-Correction Algorithms for Time-Varying Constrained Optimization. IEEE Trans. Signal Process. 2017, 65, 5481–5494. [Google Scholar] [CrossRef]
- Xu, S.; Ye, D.; Li, G.; Yang, D. Globally Stealthy Attacks against Distributed State Estimation in Smart Grid. IEEE Trans. Autom. Sci. Eng. 2025, 22, 1353–1363. [Google Scholar] [CrossRef]
- Moarref, M.; Rodrigues, L. Observer Design for Linear Models of Multi-Rate Asynchronous Aerospace Systems. Aerosp. Syst. 2020, 3, 127–137. [Google Scholar] [CrossRef]
- Wang, H.; Wen, X.; Xu, Y.; Zhou, B.; Peng, J.-C.; Liu, W. Operating State Reconstruction in Cyber Physical Smart Grid for Automatic Attack Filtering. IEEE Trans. Ind. Inform. 2022, 18, 2909–2922. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, P.; Hou, K.; Zhu, L.; Zhao, J.; Jia, H.; Pei, W. A Lagrange-Multiplier-Based Reliability Assessment for Power Systems Considering Topology and Injection Uncertainties. IEEE Trans. Power Syst. 2024, 39, 1178–1189. [Google Scholar] [CrossRef]
- Sharma, N.K.; Chakrabarti, S.; Sharma, A. Angle Reference Based Three-Phase State Estimation of Power Distribution Systems. IEEE Trans. Ind. Inform. 2025, 1–11. [Google Scholar] [CrossRef]
- Hossain, M.M. State-Estimation with Asynchronous Measurements for Cyber-Attack Detection in Distribution Systems—Simulation Code. GitHub Repository. 2025. Available online: https://github.com/musabbirh/State-Estimation-with-Asynchronous-Measurements-for-Cyber-Attack-Detection-in-Distribution-Systems.git (accessed on 9 October 2025).
- Liu, Y.; Xu, D.; Lee, S.; Zhang, X. Observer-Based Resilient Adaptive Event-Triggered Control for Islanded Microgrids Under DoSAs and Unknown FDI Attacks. IEEE Trans. Autom. Sci. Eng. 2025, 22, 19307–19316. [Google Scholar] [CrossRef]
- Lv, S.; Chen, S.; Wu, Q.; Wei, Z.; Zhang, T.; Xu, J. Cyberattack on Coupled Power-Transportation Networks via User-Side Data Falsifications. IEEE Trans. Power Syst. 2025; early access. [Google Scholar] [CrossRef]
- Ayar, M.; Obuz, S.; Trevizan, R.D.; Bretas, A.S.; Latchman, H.A. A Distributed Control Approach for Enhancing Smart Grid Transient Stability and Resilience. IEEE Trans. Smart Grid 2017, 8, 3035–3044. [Google Scholar] [CrossRef]






| Device | SE | ||||||
|---|---|---|---|---|---|---|---|
| PMU | X | X | X | X | X | X | SE #1 |
| SCADA | X | 0 | X | 0 | X | 0 | SE #2 |
| AMI | X | 0 | 0 | 0 | X | 0 | SE #3 |
| Economic billing | 0 | 0 | X | 0 | 0 | 0 | SE #4 |
| DER | 0 | X | 0 | X | 0 | 0 | SE #5 |
| State Variable | State (Normal) | State (Attack) |
|---|---|---|
| 2.3537/0.9875 | 2.1785/0.7897 | |
| 2.3647/0.9859 | 2.0746/0.8604 | |
| 3.1964/1.1353 | 3.7656/1.5096 | |
| 3.5427/1.1968 | 3.2463/1.0964 | |
| 3.4367/1.1652 | 3.1232/1.0198 | |
| 4.6547/1.4879 | 4.8965/1.6546 | |
| 4.3685/1.4052 | 4.1785/1.2675 | |
| 4.8951/1.4676 | 4.0879/1.1454 | |
| 2.9763/1.0696 | 2.6786/1.0276 | |
| 1.125 deg | 1.564 deg | |
| 1.057 deg | 0.921 deg | |
| 3.005 deg | 3.215 deg | |
| 3.261 deg | 3.043 deg | |
| 2.244 deg | 2.297 deg | |
| 2.736 deg | 2.976 deg | |
| 1.485 deg | 1.536 deg |
| Measurement | Power Flow (Normal) | Power Flow (Attack) | Our Method (Attack) | Difference (%) |
|---|---|---|---|---|
| (kW) | −323.97 | −325.36 | −416.75 | ∼29.24 |
| (kW) | −123.81 | −126.93 | −157.44 | ∼28.01 |
| (kVAR) | −216.43 | −217.43 | −272.43 | ∼26.76 |
| (kVAR) | 82.84 | 84.87 | 105.21 | ∼27.75 |
| (kW) | −167.83 | −167.85 | −220.88 | ∼32.18 |
| (kW) | 167.83 | 167.88 | 223.84 | ∼26.54 |
| (kVAR) | −174.65 | −176.43 | −234.54 | ∼34.54 |
| (kVAR) | −232.56 | −236.43 | −320.32 | ∼36.65 |
| (kW) | −102.98 | −105.43 | −135.54 | ∼34.28 |
| (kW) | 362.54 | 365.32 | 482.43 | ∼34.16 |
| (kVAR) | −143.54 | −144.78 | −188.33 | ∼31.36 |
| (kVAR) | −158.76 | −161.35 | 208.56 | ∼32.65 |
| (kW) | 168.34 | 169.56 | 212.98 | ∼29.65 |
| (kW) | 121.25 | 122.25 | 161.32 | ∼28.54 |
| (kVAR) | 84.56 | 87.54 | 105.64 | ∼26.44 |
| (kVAR) | −76.32 | −79.84 | −96.65 | ∼27.72 |
| (kW) | 453.45 | 455.67 | 580.43 | ∼31.42 |
| (kVAR) | 456.76 | 458.98 | 574.54 | ∼26.43 |
| (kW) | 165.34 | 167.65 | 221.32 | ∼32.43 |
| (kVAR) | 259.24 | 261.33 | 339.43 | ∼31.54 |
| (kW) | 1058.43 | 1061.23 | 1365.55 | ∼28.97 |
| (kVAR) | 481.84 | 483.43 | 610.87 | ∼27.54 |
| (kW) | 1047.07 | 1049.93 | 1399.01 | ∼33.62 |
| (kVAR) | 323.42 | 224.98 | 436.617 | ∼35.21 |
| Node | … | |||||||
|---|---|---|---|---|---|---|---|---|
| 650H (PMU) | 182.82 kW | 182.83 kW | 236.71 kW | 234.64 kW | … | 239.65 kW | 182.81 kW | 182.82 |
| 650L | … | |||||||
| 632 (SM) | 382.00 kW | 488.60 kW | … | 382.00 | ||||
| 645 (PMU) | −161.48 kW | −161.48 kW | −202.38 kW | … | −161.48 kW | −161.48 kW | −161.48 | |
| 646 | … | |||||||
| 633 | … | |||||||
| 634 | … | |||||||
| 671 (PMU) | −167.83 kW | −167.82 kW | −216.89 kW | −215.71 kW | … | −167.83 kW | −167.84 kW | −167.82 |
| 692 | … | |||||||
| 675 (DER) | 161.75 kW | 161.75 kW | … | |||||
| 684 (SM) | 123.81 kW | 154.70 kW | … | 123.81 | ||||
| 652 (DER) | 82.59 kVAR | 104.48 kVAR | … | 82.59 | ||||
| 611 (PMU) | 165.91 kW | 165.91 kW | 210.80 kW | 204.82 kW | … | 165.91 kW | 165.91 kW | 165.91 |
| 680 | … |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.M.; Sun, W. Secure State Estimation with Asynchronous Measurements for Coordinated Cyber Attack Detection in Active Distribution Systems. Energies 2025, 18, 5604. https://doi.org/10.3390/en18215604
Hossain MM, Sun W. Secure State Estimation with Asynchronous Measurements for Coordinated Cyber Attack Detection in Active Distribution Systems. Energies. 2025; 18(21):5604. https://doi.org/10.3390/en18215604
Chicago/Turabian StyleHossain, Md Musabbir, and Wei Sun. 2025. "Secure State Estimation with Asynchronous Measurements for Coordinated Cyber Attack Detection in Active Distribution Systems" Energies 18, no. 21: 5604. https://doi.org/10.3390/en18215604
APA StyleHossain, M. M., & Sun, W. (2025). Secure State Estimation with Asynchronous Measurements for Coordinated Cyber Attack Detection in Active Distribution Systems. Energies, 18(21), 5604. https://doi.org/10.3390/en18215604

