Prediction of Coal Calorific Value Based on Coal Quality-Derived Indicators and Support Vector Regression Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Nonlinear Relationship Between Proximate Analysis, Ultimate Analysis Items, and Calorific Value
2.2. Derived Indicators Based on Proximate Analysis and Ultimate Analysis Items
2.3. Construction of a Calorific Value Prediction Model
2.3.1. Linear Regression Model
2.3.2. Nonlinear ε-SVR Model
2.4. Ranking the Importance of Characteristic Variables in the Prediction Model
2.4.1. MIV Characteristic Variable Importance Ranking Method
2.4.2. Optimization of Model Training Parameters
2.4.3. Characteristic Variable Sorting Results
2.5. Model Development, Validation, and Software
2.5.1. Model Development
2.5.2. Model Adequacy Checking
2.5.3. Software Information
3. Results and Discussion
3.1. Evaluation Criteria for Prediction Results
3.2. Predictive Model Characteristic Variable Selection
3.3. Comparison of Prediction Results from Different Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| Abbreviation/Symbol | Full Name/Explanation |
| ANN | Artificial Neural Network |
| GCV | Gross Calorific Value (synonymous with HHV) |
| GPR | Gaussian Process Regression |
| MAPE | Mean Absolute Percentage Error |
| MIV | Mean Impact Value |
| MLR | Multiple Linear Regression |
| MVRA | Multiple Variable Regression Analysis |
| NCV | Net Calorific Value |
| PSO | Particle Swarm Optimization |
| R2 | Coefficient of Determination |
| RBF | Radial Basis Function (Kernel) |
| RMSE | Root Mean Square Error |
| SVM | Support Vector Machine |
| SVR | Support Vector Regression |
| Nomenclature | Full Name/Explanation |
| Aad | Ash content (proximate analysis) |
| Cad | Carbon content (ultimate analysis) |
| CC | Combustible Content (derived indicator) |
| CHI | Carbon-Hydrogen Index(derived indicator) |
| CIC | Carbon in Combustibles (derived indicator) |
| FCad | Fixed Carbon (proximate analysis) |
| Had | Hydrogen content (ultimate analysis) |
| Mad | Moisture content (proximate analysis) |
| Nad | Nitrogen content (ultimate analysis) |
| Oad | Oxygen content (ultimate analysis) |
| Sad | Sulfur content (ultimate analysis) |
| VMad | Volatile Matter (proximate analysis) |
| a(*) | Lagrange multiplier vector |
| C | Penalty coefficient (SVR model) |
| p | Number of characteristic independent variables in the model |
| r | Pearson correlation coefficients |
| w | Linear coefficient |
| x | Characteristic variable. |
| I-th value in characteristic variable | |
| Minimum value of | |
| Maximum value of | |
| Scaled value of characteristic variable | |
| Received basis moisture content of the coal sample | |
| ε-insensitive loss function | |
| Measured calorific value | |
| Predicted calorific value | |
| Average of the measured calorific values | |
| Upper slack factor | |
| Lower slack factor | |
| Greek symbols | Full Name/Explanation |
| σ | Width parameter of the RBF kernel function (sigma) |
| ε | Tolerance parameter in ε-SVR (epsilon) |
| Width parameter of the kernel function | |
| Subscripts | Full Name/Explanation |
| ad | Air-dried basis |
| ar | As-received basis |
| daf | Dry ash-free basis |
References
- Erdoğan, S. LHV and HHV prediction model using regression analysis with the help of bond energies for biodiesel. Fuel 2021, 301, 121065. [Google Scholar] [CrossRef]
- Yerel, S.; Ersen, T. Prediction of the Calorific Value of Coal Deposit Using Linear Regression Analysis. Energy Sources Part A-Recovery Util. Environ. Eff. 2013, 35, 976–980. [Google Scholar] [CrossRef]
- Heriawan, M.N.; Koike, K. Identifying spatial heterogeneity of coal resource quality in a multilayer coal deposit by multivariate geostatistics. Int. J. Coal Geol. 2008, 73, 307–330. [Google Scholar] [CrossRef]
- Bech, N.; Jensen, P.A.; Dam-Johansen, K. Determining the elemental composition of fuels by bomb calorimetry and the inverse correlation of HHV with elemental composition. Biomass Bioenergy 2009, 33, 534–537. [Google Scholar] [CrossRef]
- Mason, D.M.; Gandhi, K.N. Formulas for calculating the calorific value of coal and coal chars: Development, tests, and uses. Fuel Process. Technol. 1983, 7, 11–22. [Google Scholar] [CrossRef]
- Given, P.H.; Weldon, D.; Zoeller, J.H. Calculation of calorific values of coals from ultimate analyses: Theoretical basis and geochemical implications. Fuel 1986, 65, 849–854. [Google Scholar] [CrossRef]
- Küçükbayrak, S.; Dürüs, B.; Meríçboyu, A.E.; Kadioglu, E. Estimation of calorific values of Turkish lignites. Fuel 1991, 70, 979–981. [Google Scholar] [CrossRef]
- Majumder, A.K.; Jain, R.; Banerjee, P.; Barnwal, J.P. Development of a new proximate analysis based correlation to predict calorific value of coal. Fuel 2008, 87, 3077–3081. [Google Scholar] [CrossRef]
- Chelgani, S.C.; Makaremi, S. Explaining the relationship between common coal analyses and Afghan coal parameters using statistical modeling methods. Fuel Process. Technol. 2013, 110, 79–85. [Google Scholar] [CrossRef]
- Akhtar, J.; Naseer, S.; Munir, S. Linear regression-based correlations for estimation of high heating values of Pakistani lignite coals. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 1063–1070. [Google Scholar] [CrossRef]
- Mesroghli, S.; Jorjani, E.; Chelgani, S.C. Estimation of gross calorific value based on coal analysis using regression and artificial neural networks. Int. J. Coal Geol. 2009, 79, 49–54. [Google Scholar] [CrossRef]
- Patel, S.U.; Kumar, B.J.; Badhe, Y.P.; Sharma, B.K.; Saha, S.; Biswas, S.; Chaudhury, A.; Tambe, S.S.; Kulkarni, B.D. Estimation of gross calorific value of coals using artificial neural networks. Fuel 2007, 86, 334–344. [Google Scholar] [CrossRef]
- Khandelwal, M.; Singh, T.N. Prediction of macerals contents of Indian coals from proximate and ultimate analyses using artificial neural networks. Fuel 2010, 89, 1101–1109. [Google Scholar] [CrossRef]
- Mondal, C.; Pandey, A.; Pal, S.K.; Samanta, B.; Dutta, D. Prediction of gross calorific value as a function of proximate parameters for Jharia and Raniganj coal using machine learning based regression methods. Int. J. Coal Prep. Util. 2022, 42, 3763–3776. [Google Scholar] [CrossRef]
- Akkaya, A.V.; Cetin, B. Formulating a novel combined equation for coal calorific value estimation by group method data handling type neural network. Energy Sources Part A-Recovery Util. Environ. Eff. 2024, 46, 15492–15505. [Google Scholar] [CrossRef]
- Kavsek, D.; Bednarova, A.; Biro, M.; Kranvogl, R.; Voncina, D.B.; Beinrohr, E. Characterization of Slovenian coal and estimation of coal heating value based on proximate analysis using regression and artificial neural networks. Cent. Eur. J. Chem. 2013, 11, 1481–1491. [Google Scholar]
- Tan, P.; Zhang, C.; Xia, J.; Fang, Q.Y.; Chen, G. Estimation of higher heating value of coal based on proximate analysis using support vector regression. Fuel Process. Technol. 2015, 138, 298–304. [Google Scholar] [CrossRef]
- Akkaya, A.V. Coal higher heating value prediction using constituents of proximate analysis: Gaussian process regression model. Int. J. Coal Prep. Util. 2022, 42, 1952–1967. [Google Scholar] [CrossRef]
- Li, L.J.; Su, H.Y.; Chu, J. Modeling of Isomerization of C8 Aromatics by Online Least Squares Support Vector Machine. Chin. J. Chem. Eng. 2009, 17, 437–444. [Google Scholar] [CrossRef]
- Chen, J.; He, Y.; Liang, Y.; Wang, W.; Duan, X. Estimation of gross calorific value of coal based on the cubist regression model. Sci. Rep. 2024, 14, 23176. [Google Scholar] [CrossRef] [PubMed]
- Sciazko, M. Rank-dependent formation enthalpy of coal. Fuel 2013, 114, 2–9. [Google Scholar] [CrossRef]
- Channiwala, S.A.; Parikh, P.P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002, 81, 1051–1063. [Google Scholar] [CrossRef]
- Selvig, W.A.; Gibson, I.H. Calorifc value of coal. In Chemistry of Coal Utilization; Lowry, H.H., Ed.; Wiley: New York, NY, USA, 1945; Volume 1, p. 139. [Google Scholar]
- Strache, H.; Lant, R. Kohlenchemie; Akademische Verlags-Gesellschaft: Leipzig, Germany, 1924; p. 476. [Google Scholar]
- Wilson, D.L. Prediction of heat of combustion of solid wastes from ultimate analysis. Environ. Sci. Technol. 1972, 6, 1119–1121. [Google Scholar] [CrossRef]
- Speight, J.G. Handbook of Coal Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 144–169. [Google Scholar]
- Parikh, J.; Channiwala, S.A.; Ghosal, G.K. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 2005, 84, 487–494. [Google Scholar] [CrossRef]
- Chelgani, S.C.; Mesroghli, S.; Hower, J.C. Simultaneous prediction of coal rank parameters based on ultimate analysis using regression and artificial neural network. Int. J. Coal Geol. 2010, 83, 31–34. [Google Scholar] [CrossRef]
- Kowalik-Klimczak, A.; Lozynska, M.; Zycki, M.; Wozniak, B. The Effect of the Pyrolysis Temperature of a Leather-Textile Mixture from Post-Consumer Footwear on the Composition and Structure of Carbonised Materials. Materials 2024, 17, 5649. [Google Scholar] [CrossRef] [PubMed]
- Ai, Z.P.; Xiao, Z.F.; Liu, M.H.; Zhou, L.Q.; Yang, L.J.; Huang, Y.J.; Xiong, Q.Q.; Li, T.; Liu, Y.H.; Xiao, H.W.; et al. Evaluation of innovative drying technologies in Gardenia jasminoides Ellis drying considering product quality and drying efficiency. Food Chem.-X 2024, 24, 102052. [Google Scholar] [CrossRef]
- Wang, Y.C.; Liu, Z.L.; Chen, F.; Xiong, X.C. MSA-Net: A Precise and Robust Model for Predicting the Carbon Content on an As-Received Basis of Coal. Sensors 2024, 24, 4607. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Kim, H.; Park, J.; Lee, Y.; Park, Y.K.; Ryu, C. Relationship between torrefaction severity, product properties, and pyrolysis characteristics of various biomass. Int. J. Energy Res. 2022, 46, 8145–8157. [Google Scholar] [CrossRef]
- Forman, J.L.; Sorensen, M. The pearson diffusions: A class of statistically tractable diffusion processes. Scand. J. Stat. 2008, 35, 438–465. [Google Scholar] [CrossRef]
- Bishara, A.J.; Hittner, J.B. Testing the significance of a correlation with nonnormal data: Comparison of Pearson, Spearman, transformation, and resampling approaches. Psychol. Methods 2012, 17, 399–417. [Google Scholar] [CrossRef] [PubMed]
- Alekhnovich, A.N. Estimating the Heating Value of Coals Based on the Composition. Power Technol. Eng. 2020, 53, 724–730. [Google Scholar] [CrossRef]
- Vapnik, V.N.; Chervonenkis, A.Y. On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities. Theory Probab. Appl. 1971, 16, 264–280. [Google Scholar] [CrossRef]
- Kozan, E. A New Estimation Approach in Machine Learning Regression Model. Int. J. Ind. Eng. Theory Appl. Pract. 2024, 31, 830–837. [Google Scholar]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- Luo, H.C.; Zhou, P.J.; Cui, J.Y.; Wang, Y.; Zheng, H.S.; Wang, Y.T. Energy performance prediction of centrifugal pumps based on adaptive support vector regression. Eng. Appl. Artif. Intell. 2025, 145, 110247. [Google Scholar] [CrossRef]
- Vapnik, V.; Golowich, S.E.; Smola, A. Support vector method for function approximation, regression estimation and signal processing. In Proceedings of the 10th International Conference on Neural Information Processing Systems, Denver, CO, USA, 3–5 December 1996; MIT Press: Denver, CO, USA, 1996; pp. 281–287. [Google Scholar]
- Chelgani, S.C.; Shahbazi, B.; Hadavandi, E. Support vector regression modeling of coal flotation based on variable importance measurements by mutual information method. Measurement 2018, 114, 102–108. [Google Scholar] [CrossRef]
- Xu, S.; Lu, B.; Baldea, M.; Edgar, T.F.; Nixon, M. An improved variable selection method for support vector regression in NIR spectral modeling. J. Process Control 2018, 67, 83–93. [Google Scholar] [CrossRef]
- Dombi, G.W.; Nandi, P.; Saxe, J.M.; Ledgerwood, A.M.; Lucas, C.E. Prediction of rib fracture injury outcome by an artificial neural network. J. Trauma 1995, 39, 915–921. [Google Scholar] [CrossRef]
- Chen, Z.; Jia, K.; Xiao, C.; Wei, D.; Zhao, X.; Lan, J.; Wei, X.; Yao, Y.; Wang, B.; Sun, Y.; et al. Leaf Area Index Estimation Algorithm for GF-5 Hyperspectral Data Based on Different Feature Selection and Machine Learning Methods. Remote Sens. 2020, 12, 2110. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, B.; Ma, C.; Wang, S.; Yang, Y. Thermal error modeling of gear hobbing machine based on IGWO-GRNN. Int. J. Adv. Manuf. Technol. 2020, 106, 5001–5016. [Google Scholar] [CrossRef]
- Zheng, J.; Lan, Q.; Zhang, X.; Kainz, W.; Chen, J. Prediction of MRI RF Exposure for Implantable Plate Devices Using Artificial Neural Network. IEEE Trans. Electromagn. Compat. 2020, 62, 673–681. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, T.; Ding, X.; Gu, N. Campus Building Energy Usage Analysis and Prediction: A SVR Approach Based on Multi-scale RBF Kernels. In Proceedings of the Human Centered Computing: First International Conference, HCC 2014, Phnom Penh, Cambodia, 27–29 November 2014; Revised Selected Papers. Springer: Phnom Penh, Cambodia, 2014; pp. 441–452. [Google Scholar]
- Mahapatra, A.K.; Panda, N.; Mahapatra, M.; Jena, T.; Mohanty, A.K. A fast-flying particle swarm optimization for resolving constrained optimization and feature selection problems. Clust. Comput.-J. Netw. Softw. Tools Appl. 2025, 28, 91. [Google Scholar] [CrossRef]
- De Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean Absolute Percentage Error for regression models. Neurocomputing 2016, 192, 38–48. [Google Scholar] [CrossRef]
- Taraji, M.; Haddad, P.R.; Amos, R.I.J.; Talebi, M.; Szucs, R.; Dolan, J.W.; Pohl, C.A. Error measures in quantitative structure-retention relationships studies. J. Chromatogr. A 2017, 1524, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.B.; Du, H.; Lian, Z.W. Discussion on regression analysis with small determination coefficient in human-environment researches. Indoor Air 2022, 32, 13117. [Google Scholar] [CrossRef]
- Pyshyev, S.; Prysiazhnyi, Y.; Bilushchak, H.; Korchak, B.; Pochapska, I.; Yavorskyi, O. Creation of experimental-statistical and kinetic models of the coumarone-indene-carbazole resin production process. Results Eng. 2025, 25, 103689. [Google Scholar] [CrossRef]








| Model Type | Model Name | Model Form |
|---|---|---|
| Predictive models based on proximate analysis | Majumder model [8] | |
| Mesroghli model [11] | ||
| Kavšek model [16] | ||
| Predictive models based on ultimate analysis | Given model [6] | |
| Chelgani model [29] | ||
| Mixed forecasting models | Mason model [5] |
| Serial Number | Proximate Analysis (wt.%) | Ultimate Analysis (wt.%) | NCV/(MJ·kg−1) | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Mad | Aad | VMad | FCad | Cad | Had | Nad | Sad | Oad | ||
| 1 | 4.35 | 39.96 | 13.99 | 41.70 | 46.11 | 3.35 | 0.88 | 0.81 | 4.54 | 17.168 |
| 2 | 4.54 | 39.84 | 15.14 | 40.48 | 46.28 | 3.38 | 0.88 | 0.73 | 4.35 | 17.379 |
| 3 | 4.31 | 39.88 | 15.84 | 39.97 | 46.40 | 3.31 | 0.88 | 0.73 | 4.49 | 17.384 |
| 4 | 4.30 | 39.75 | 15.18 | 40.77 | 46.34 | 3.37 | 0.86 | 0.84 | 4.54 | 17.447 |
| 5 | 12.09 | 29.62 | 23.94 | 34.35 | 45.46 | 2.48 | 0.83 | 0.80 | 8.72 | 17.466 |
| 6 | 11.98 | 29.13 | 24.84 | 34.05 | 46.62 | 2.42 | 0.84 | 0.81 | 8.20 | 17.556 |
| 7 | 4.46 | 39.97 | 15.46 | 40.11 | 46.01 | 3.39 | 0.86 | 0.68 | 4.63 | 17.561 |
| 8 | 4.78 | 39.62 | 15.27 | 40.33 | 46.54 | 3.28 | 0.88 | 0.88 | 4.02 | 17.718 |
| 9 | 4.51 | 39.65 | 14.02 | 41.82 | 46.73 | 3.30 | 0.89 | 0.79 | 4.13 | 17.796 |
| 10 | 12.59 | 28.12 | 24.62 | 34.67 | 47.26 | 2.39 | 0.84 | 0.82 | 7.98 | 17.963 |
| 11 | 12.69 | 28.53 | 24.87 | 33.91 | 46.50 | 2.53 | 0.83 | 0.69 | 8.23 | 17.982 |
| 12 | 12.28 | 29.49 | 24.56 | 33.67 | 46.04 | 2.38 | 0.83 | 0.92 | 8.06 | 18.018 |
| 13 | 12.42 | 27.28 | 25.01 | 35.29 | 47.84 | 2.40 | 0.84 | 0.87 | 8.35 | 18.054 |
| 14 | 12.58 | 28.72 | 24.25 | 34.45 | 45.86 | 2.40 | 0.84 | 0.86 | 8.74 | 18.108 |
| 15 | 12.49 | 28.90 | 23.64 | 34.97 | 46.44 | 2.47 | 0.86 | 0.88 | 7.96 | 18.125 |
| 16 | 12.48 | 28.62 | 26.35 | 32.55 | 46.46 | 2.44 | 0.83 | 0.73 | 8.44 | 18.167 |
| 17 | 12.81 | 26.78 | 24.21 | 36.20 | 48.75 | 2.37 | 0.85 | 0.91 | 7.53 | 18.186 |
| 18 | 4.52 | 38.33 | 14.55 | 42.60 | 47.73 | 3.45 | 0.87 | 0.86 | 4.24 | 18.265 |
| 19 | 12.69 | 28.80 | 24.90 | 33.61 | 45.85 | 2.44 | 0.84 | 0.84 | 8.54 | 18.274 |
| 20 | 4.54 | 39.42 | 15.15 | 40.89 | 46.57 | 3.34 | 0.90 | 0.76 | 4.47 | 18.304 |
| 21 | 12.76 | 27.66 | 23.18 | 36.40 | 47.03 | 2.39 | 0.82 | 0.79 | 8.55 | 18.332 |
| 22 | 12.47 | 27.46 | 24.94 | 35.13 | 47.07 | 2.45 | 0.82 | 0.78 | 8.95 | 18.473 |
| ⋮ ⋮ | ⋮ ⋮ | ⋮ ⋮ | ||||||||
| 466 | 6.22 | 10.10 | 31.46 | 52.22 | 66.79 | 3.53 | 0.97 | 0.31 | 12.08 | 27.554 |
| 457 | 6.38 | 9.71 | 33.40 | 50.51 | 69.30 | 3.78 | 1.03 | 0.26 | 9.54 | 27.568 |
| 458 | 9.36 | 9.59 | 28.95 | 52.10 | 63.93 | 3.59 | 0.94 | 0.36 | 12.23 | 27.598 |
| 459 | 6.48 | 9.66 | 30.36 | 53.50 | 66.54 | 3.62 | 0.96 | 0.31 | 12.43 | 27.657 |
| 160 | 2.56 | 14.09 | 28.57 | 54.78 | 71.17 | 3.58 | 0.92 | 0.97 | 6.71 | 27.711 |
| 461 | 6.28 | 9.56 | 30.26 | 53.90 | 67.02 | 3.62 | 0.93 | 0.52 | 12.07 | 27.722 |
| 462 | 2.56 | 15.77 | 27.08 | 54.59 | 69.63 | 3.53 | 0.91 | 0.95 | 6.65 | 27.728 |
| 463 | 2.78 | 13.91 | 26.80 | 56.51 | 71.32 | 3.47 | 0.93 | 0.71 | 6.88 | 27.813 |
| 464 | 6.22 | 10.10 | 31.46 | 52.22 | 66.79 | 3.53 | 0.97 | 0.31 | 12.08 | 27.554 |
| 465 | 6.38 | 9.71 | 33.40 | 50.51 | 69.30 | 3.78 | 1.03 | 0.26 | 9.54 | 27.568 |
| Characteristic Variables Combination | Feature 1 | Feature 2 | Feature 3 | Feature 4 | Feature 5 | Feature 6 |
|---|---|---|---|---|---|---|
| Includes indicators | Mad-Aad-VMad-FCad | Cad-Had-Nad-Sad-Oad | CC-CHI-CIC | Mad-Aad-VMad-FCad-Cad-Had-Nad-Sad-Oad-CC-CHI-CIC | CC-CHI-CIC-FCad | CC-CHI-CIC-FCad-Cad |
| MAPE/% | 2.007 | 1.959 | 2.276 | 1.806 | 1.838 | 2.004 |
| RMSE/(MJ·kg−1) | 0.652 | 0.623 | 0.710 | 0.525 | 0.544 | 0.621 |
| R2 | 0.945 | 0.950 | 0.935 | 0.964 | 0.962 | 0.950 |
| F-statistic | 285.23 | 312.51 | 672.41 | 1580.52 | 1485.96 | 1490.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Li, D.; Jiao, Y.; Yang, Y.; Cao, Z. Prediction of Coal Calorific Value Based on Coal Quality-Derived Indicators and Support Vector Regression Method. Energies 2025, 18, 5600. https://doi.org/10.3390/en18215600
Wang X, Li D, Jiao Y, Yang Y, Cao Z. Prediction of Coal Calorific Value Based on Coal Quality-Derived Indicators and Support Vector Regression Method. Energies. 2025; 18(21):5600. https://doi.org/10.3390/en18215600
Chicago/Turabian StyleWang, Xin, Dahu Li, Youxiang Jiao, Yibin Yang, and Zhao Cao. 2025. "Prediction of Coal Calorific Value Based on Coal Quality-Derived Indicators and Support Vector Regression Method" Energies 18, no. 21: 5600. https://doi.org/10.3390/en18215600
APA StyleWang, X., Li, D., Jiao, Y., Yang, Y., & Cao, Z. (2025). Prediction of Coal Calorific Value Based on Coal Quality-Derived Indicators and Support Vector Regression Method. Energies, 18(21), 5600. https://doi.org/10.3390/en18215600

