Territorial Variation of Energy Poverty and Good Health and Well-Being in European Union Countries—A Spatial Analysis
Abstract
1. Introduction
- Comparison of EU country classification results in terms of EP and H&W obtained using the classical method (QGIS) and a method based on artificial intelligence (SOM).
- Assessment of the complementarity of both approaches in studying the diversity of EU countries in terms of EP and H&W.
- Are there any differences between the results of the classification of EU countries in terms of EP and H&W obtained using the classical method (QGIS) and the AI-based method (SOM)?
- Can shifts between EU country groups be observed in terms of EP and H&W between 2019 and 2023?
- Is the improvement in EP reflected in higher H&W levels of EU residents?
- Does the use of the AI (SOM) method allow for the identification of new patterns in the classification of EU countries compared to the results obtained using the classical approach (QGIS) in terms of EP and H&W?
- Does the complementarity of the classical method (QGIS) and AI (SOM) allow for a more complete understanding of EP and H&W patterns in EU countries?
2. Energy Poverty as a Dimension of Poverty in the Context of Good Health and Well-Being—A Literature Review
3. Materials and Methods
3.1. Selection of Indicators
3.2. Spatial Analysis Tools
3.2.1. Spatial Classification in the QGIS Environment
3.2.2. Spatial Classification with Self-Organizing Maps
4. Results
- Indicators adopted to assess the analyzed phenomena, i.e., EP and H&W.
- Classification of EU countries using the classical method (QGIS) and a method based on artificial intelligence (SOM).
4.1. Statistical Analysis of EP and H&W Indicators
4.2. Classification of EU Countries According to EP and H&W Using QGIS
4.2.1. Classification of EU Countries According to EP in 2019 and 2023 Using QGIS
4.2.2. Classification of EU Countries According to H&W in 2019 and 2023 Using QGIS
4.2.3. Alignment Between EP and H&W in EU Countries Using QGIS
4.3. Classification of EU Countries According to EP and H&W Using SOM
4.3.1. Classification of EU Countries According to EP in 2019 and 2023 Using SOM
4.3.2. Classification of EU Countries in 2019 and 2023 According to H&W Using SOM
4.3.3. Alignment Between EP and H&W in EU Countries Using SOM
5. Discussion and Conclusions
- Consistency among certain Member States in terms of EP and H&W. In 2019, Austria and the Netherlands were in the most favorable class in terms of both H&W and EP. In contrast, in 2023, only the Netherlands maintained a high, consistent position in the most favorable class in terms of the phenomena studied. Ireland and Bulgaria ranked in classes indicating an unfavorable situation in terms of both EP and H&W.
- Discrepancies in some EU countries including EP and H&W. In 2019, Belgium, Finland, and Sweden achieved very good results in terms of H&W, but at the same time were classified in the group with a higher EP level. In Slovakia, Slovenia, Poland, and Croatia, with lower H&W scores, these countries were characterized by a favorable situation in terms of EP. Finland improved its EP situation but maintained an unsatisfactory H&W level.
- A comparison of EU country classifications according to EP and H&W revealed a high degree of consistency between these dimensions. Countries with similar positions in both classifications in 2019 and 2023 were: Austria, Denmark, Finland, the Netherlands, and Sweden in the most favorable classes, and Bulgaria, Lithuania, and Romania in the least favorable ones.
- Inconsistency between EP and H&W results in 2019 in a group of countries comprising Belgium, Luxembourg, and Malta, which had high H&W values while being classified in lower EP classes. A different pattern was observed in the Czech Republic, Estonia, and Slovakia, where low H&W values contrasted with higher EP grades. In 2023, the discrepancies persisted, with particularly strong disparities observed in Cyprus and Malta (high H&W values while being classified in the lowest EP class) and the Czech Republic, Poland, and Slovakia (low H&W values while receiving high EP ratings).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
| Year | Regulation | Legal Reference Document | Main Focus |
|---|---|---|---|
| 2018 | Renewable Energy Directive (RED II) [170] | (Directive (EU) 2018/2001) | Promoting renewable energy adoption and addressing energy poverty through access to clean energy. |
| Energy Efficiency Directive (EED) [171] | (Directive (EU) 2018/2002) | Improving energy efficiency and prioritizing vulnerable groups in energy-saving measures. | |
| 2019 | Clean Energy for All Europeans Package [164] | Establishing a fair energy market, with provisions to protect vulnerable consumers and define energy poverty. | |
| European Green Deal [172] | (COM/2019/640 final) | Achieving climate neutrality by 2050, with measures to tackle energy poverty through investments in clean energy. | |
| 2020 | Just Transition Mechanism Just Transition Fund [173] | (COM/2020/22 final) (Regulation (EU) 2021/1056) | Supporting regions and communities most affected by the transition to a low-carbon economy. |
| 2021 | Recovery and Resilience Facility (RRF) [174] | (Regulation (EU) 2021/241) | Facilitating post-COVID recovery, with a focus on green transitions and addressing energy poverty. |
| European Pillar of Social Rights Action Plan [175] | (COM/2021/102 final) | Promoting social fairness, equal access to essential services, and energy poverty reduction. | |
| 2022 | REPowerEU Plan [176] | (COM/2022/230 final) | Reducing dependency on Russian fossil fuels and addressing energy poverty through energy diversification and safety. |
| 2023 | Commission Recommendation (EU) 2023/2407 of 20 October 2023 on energy poverty [177] | (EU) 2023/2407 | Guidelines for EU member states to enhance the identification, monitoring, and mitigation of energy poverty, emphasizing the need for targeted measures to protect vulnerable consumers and promote energy efficiency. |
Appendix B
| No. | Diagnostic Variable | Year | EU Average | Class 1 | S | Class 2 | S | Class 3 | S | Class 4 | S |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Population unable to keep home adequately warm by poverty status | 2019 | 8.2 | 4.3 | ↓↓ | 5.1 | ↓ | 10.2 | ↑ | 24.0 | ↑↑ |
| 2023 | 9.5 | 5.4 | ↓ | 5.5 | ↓ | 11.6 | ↑ | 20.0 | ↑↑ | ||
| 2 | Expenditure on electricity, gas, and other fuels as a proportion of the total household expenditure | 2019 | 21.6 | 21.5 | ≈ | 22.5 | ↑ | 21.2 | ≈ | 20.3 | ↓ |
| 2023 | 22.3 | 19.4 | ↓ | 23.9 | ↑ | 22.2 | ≈ | 22.5 | ≈ | ||
| 3 | Average annual electricity prices for household consumers (with consumption from 2500 kWh to 4999 kWh) | 2019 | 0.1364 | 0.1345 | ≈ | 0.1247 | ↓ | 0.1443 | ↑ | 0.1548 | ↑↑ |
| 2023 | 0.1362 | 0.1438 | ↑ | 0.1219 | ↓ | 0.1414 | ≈ | 0.1444 | ↑ | ||
| 4 | At-risk-of-poverty rate | 2019 | 21.0 | 16.7 | ↓↓ | 20.5 | ↓ | 22.1 | ↑ | 31.1 | ↑↑ |
| 2023 | 16.2 | 14.8 | ↓ | 15.6 | ↓ | 16.5 | ≈ | 19.6 | ↑ | ||
| 5 | Heating degree days | 2019 | 2639 | 2720 | ↑ | 2412 | ↓ | 2961 | ↑↑ | 1801 | ↓↓ |
| 2023 | 2560 | 2435 | ↓ | 3030 | ↑ | 2484 | ≈ | 1429 | ↓↓ | ||
| 6 | Cooling degree days | 2019 | 140 | 76 | ↓↓ | 172 | ↑ | 125 | ↓ | 268 | ↑↑ |
| 2023 | 65 | 53 | ↓ | 45 | ↓ | 67 | ↑ | 154 | ↑↑ | ||
| 7 | Total population considering their dwelling as too dark | 2019 | 5.2 | 3.9 | ↓ | 5.2 | ≈ | 6.1 | ↑ | 5.2 | ≈ |
| 2023 | 5.6 | 3.7 | ↓ | 4.7 | ↓ | 6.4 | ↑ | 7.3 | ↑ | ||
| 8 | Total population living in a dwelling with a leaking roof, damp walls, floors, or foundation, or rot in window frames or floor | 2019 | 13.6 | 11.9 | ↓ | 12.4 | ↓ | 16.1 | ↑ | 12.1 | ↓ |
| 2023 | 13.8 | 11.3 | ↓ | 10.0 | ↓ | 16.3 | ↑ | 18.3 | ↑ | ||
| 9 | Housing cost overburden rate | 2019 | 8.3 | 6.2 | ↓ | 8.5 | ≈ | 5.8 | ↓ | 26.1 | ↑↑ |
| 2023 | 8.3 | 5.7 | ↓ | 9.1 | ↑ | 7.1 | ↓ | 18.4 | ↑↑ | ||
| 10 | Final energy consumption in households per capita | 2019 | 559 | 569 | ↑ | 577 | ↑ | 579 | ↑ | 355 | ↓↓ |
| 2023 | 522 | 510 | ↓ | 588 | ↑ | 516 | ≈ | 325 | ↓↓ |
| No. | Diagnostic Variable | Year | EU Average | Class 1 | S | Class 2 | S | Class 3 | S | Class 4 | S |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1. | Self-perceived health (from 16 to 64 years) | 2019 | 67.16 | 74.64 | ↑ | 65.33 | ↓ | 59.62 | ↓ | 65.68 | ↓ |
| 2023 | 66.95 | 72.39 | ↑ | 63.63 | ↓ | 65.60 | ↓ | 64.40 | ↓ | ||
| 2. | Self-reported unmet need for medical examination and care | 2019 | 2.47 | 0.91 | ↓↓ | 1.88 | ↓ | 2.62 | ↑ | 3.89 | ↑↑ |
| 2023 | 2.56 | 1.09 | ↓↓ | 2.47 | ↓ | 2.84 | ↑ | 4.58 | ↑↑ | ||
| 3. | Share of people with good or very good perceived health | 2019 | 66.84 | 72.78 | ↑ | 71.18 | ↑ | 73.18 | ↑ | 57.19 | ↓ |
| 2023 | 66.97 | 70.74 | ↑ | 71.83 | ↑ | 67.78 | ↑ | 35.80 | ↓↓ | ||
| 4. | Standardized preventable and treatable mortality | 2019 | 289.92 | 210.4 | ↓↓ | 197.69 | ↓↓ | 253.16 | ↓ | 408.83 | ↑↑ |
| 2023 | 296.17 | 205.24 | ↓↓ | 224.53 | ↓↓ | 382.09 | ↑↑ | 390.16 | ↑↑ | ||
| 5. | Happy Index | 2019 | 6.44 | 7.27 | ↑ | 6.50 | ↑ | 6.17 | ↓ | 5.90 | ↓ |
| 2023 | 6.63 | 7.21 | ↑ | 6.53 | ↓ | 6.23 | ↓ | 6.45 | ↓ |
Appendix C
| No. | Diagnostic Variable | Year | EU Average | Class 1 | S | Class 2 | S | Class 3 | S | Class 4 | S |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Population unable to keep home adequately warm by poverty status | 2019 | 8.2 | 3.0 | ↓↓ | 6.1 | ↓↓ | 5.2 | ↓↓ | 17.4 | ↑↑ |
| 2023 | 9.5 | 5.5 | ↓↓ | 8.7 | ↓ | 8.6 | ↓ | 16.4 | ↑↑ | ||
| 2 | Expenditure on electricity, gas, and other fuels as a proportion of the total household expenditure | 2019 | 21.6 | 25.2 | ↑ | 19.1 | ↓ | 23.2 | ↑ | 17.6 | ↓ |
| 2023 | 22.3 | 25.2 | ↑ | 25.0 | ↑ | 19.2 | ↓ | 19.3 | ↓ | ||
| 3 | Average annual electricity prices for household consumers (with consumption from 2500 kWh to 4999 kWh) | 2019 | 0.1364 | 0.1171 | ↓ | 0.1437 | ↑ | 0.1373 | ≈ | 0.1538 | ↑ |
| 2023 | 0.1362 | 0.1278 | ↓ | 0.1392 | ≈ | 0.1444 | ↓ | 0.1396 | ≈ | ||
| 4 | At-risk-of-poverty rate | 2019 | 21.0 | 17.2 | ↓ | 19.3 | ↓ | 21.0 | ≈ | 26.3 | ↑↑ |
| 2023 | 16.2 | 13.1 | ↓ | 13.7 | ↓ | 20.8 | ↑↑ | 18.0 | ↑ | ||
| 5 | Heating degree days | 2019 | 2639 | 3556 | ↑ | 2361 | ↓ | 2707 | ≈ | 1694 | ↓↓ |
| 2023 | 2560 | 3271 | ↑↑ | 2357 | ↓ | 3066 | ↑ | 1228 | ↓↓ | ||
| 6 | Cooling degree days | 2019 | 140 | 26 | ↓↓ | 155 | ↑ | 57 | ↓↓ | 325 | ↑↑ |
| 2023 | 65 | 18 | ↓↓ | 37 | ↓↓ | 38 | ↓↓ | 170 | ↑↑ | ||
| 7 | Total population considering their dwelling as too dark | 2019 | 5.2 | 4.0 | ↓↓ | 3.8 | ↓↓ | 7.1 | ↑↑ | 6.0 | ↑ |
| 2023 | 5.6 | 4.2 | ↓↓ | 8.4 | ↑↑ | 4.6 | ↓ | 6.6 | ↑ | ||
| 8 | Total population living in a dwelling with a leaking roof, damp walls, floors, or foundation, or rot in window frames or floor | 2019 | 13.6 | 9.9 | ↓↓ | 13.9 | ≈ | 16.3 | ↑ | 15.7 | ↑ |
| 2023 | 13.8 | 10.4 | ↓↓ | 17.7 | ↑↑ | 11.5 | ↓ | 18.5 | ↑↑ | ||
| 9 | Housing cost overburden rate | 2019 | 8.3 | 8.5 | ≈ | 5.9 | ↓↓ | 6.5 | ↓↓ | 10.6 | ↑↑ |
| 2023 | 8.3 | 7.9 | ≈ | 8.2 | ≈ | 7.4 | ↓ | 9.6 | ↑ | ||
| 10 | Final energy consumption in households per capita | 2019 | 559 | 703 | ↑ | 539 | ≈ | 633 | ↑ | 352 | ↓↓ |
| 2023 | 522 | 616 | ↓ | 551 | ≈ | 575 | ↑ | 325 | ↓↓ |
| No. | Diagnostic Variable | Year | EU Average | Class 1 | S | Class 2 | S | Class 3 | S | Class 4 | S |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1. | Self-perceived health (from 16 to 64 years) | 2019 | 67.16 | 74.64 | ↑ | 60.31 | ↓ | 58.25 | ↓ | 69.61 | ≈ |
| 2023 | 66.95 | 71.62 | ↑ | 64.83 | ↓ | 57.88 | ↓ | 68.71 | ≈ | ||
| 2. | Self-reported unmet need for medical examination and care | 2019 | 2.47 | 0.91 | ↓↓ | 2.16 | ↓ | 9.85 | ↑↑ | 2.55 | ≈ |
| 2023 | 2.56 | 1.08 | ↓↓ | 2.43 | ↓ | 5.97 | ↑↑ | 1.90 | ↓↓ | ||
| 3. | Share of people with good or very good perceived health | 2019 | 66.84 | 72.78 | ↑ | 70.36 | ↑ | 60.65 | ↓ | 58.50 | ↓ |
| 2023 | 66.97 | 72.12 | ↑ | 65.40 | ↓ | 66.23 | ≈ | 61.66 | ↓ | ||
| 4. | Standardized preventable and treatable mortality | 2019 | 289.92 | 210.40 | ↓↓ | 207.90 | ↓↓ | 337.16 | ↑ | 449.92 | ↑↑ |
| 2023 | 296.17 | 208.76 | ↓↓ | 232.91 | ↓↓ | 246.81 | ↓ | 466.18 | ↑↑ | ||
| 5. | Happy Index | 2019 | 6.44 | 7.27 | ↑ | 6.26 | ↓ | 6.52 | ≈ | 5.81 | ↓ |
| 2023 | 6.63 | 6.97 | ↑ | 6.73 | ↑ | 6.51 | ≈ | 6.24 | ↓ |
References
- Kalinowski, S.; Łuczak, A.; Szczygieł, O. Ubóstwo Ubogich. Obszary Deprywacji Potrzeb Beneficjentów Pomocy Społecznej; IRWiR PAN, Wydawnictwo Naukowe SCHOLAR: Warszawa, Poland, 2024. [Google Scholar]
- Sompolska-Rzechuła, A.; Kurdyś-Kujawska, A. Assessment of the Development of Poverty in EU Countries. Int. J. Environ. Res. Public Health 2022, 19, 3950. [Google Scholar] [CrossRef] [PubMed]
- Ciucu, A.; Vargas, V.; Păuna, C.; Jigani, A.-I. Poverty, Education, and Decent Work Rates in Central and Eastern EU Countries. Standards 2025, 5, 16. [Google Scholar] [CrossRef]
- European Anti-Poverty Network. Ubóstwo i Nierówności w UE. Przewodnik EAPN nr 6. 2014. Available online: https://www.eapn.org.pl/eapn/uploads/2014/12/2014-Poverty-Explainer_PL.pdf (accessed on 25 June 2025).
- World Bank. World Development Report 2000/2001: Attacking Poverty; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Agenda 2030 na Rzecz Zrównoważonego Rozwoju—Implementacja w Polsce. Available online: http://www.un.org.pl/files/170/Agenda2030PL_pl-5.pdf (accessed on 25 June 2025).
- United Nations. Poverty Eradication. 2024. Available online: https://sdgs.un.org/topics/poverty-eradication (accessed on 25 June 2025).
- Kroll, C.; Warchold, A.; Pradhan, P. Sustainable Development Goals (SDGs): Are we successful in turning trade-offs into synergies? Palgrave Commun. 2019, 5, 140. [Google Scholar] [CrossRef]
- Weitz, N.; Carlsen, H.; Nilsson, M.; Skånberg, K. Towards Systemic and Contextual Priority Setting for Implementing the 2030 Agenda. Sustain. Sci. 2018, 13, 531–548. [Google Scholar] [CrossRef]
- Pradhan, P.; Costa, L.; Rybski, D.; Lucht, W.; Kropp, J.P. A Systematic Study of Sustainable Development Goal (SDG) Interactions. Earth’s Future 2017, 5, 1169–1179. [Google Scholar] [CrossRef]
- Spicker, P. Definitions of Poverty: Twelve Clusters of Meaning. In Poverty: An International Glossary; Spicker, P., Leguizamón, S.A., Gordon, D., Eds.; International Social Sciences Council: London, UK; New York, NY, USA, 2007; pp. 229–243. [Google Scholar]
- Duffy, K. Czym Jest Ubóstwo i Jak z Nim Walczyć? Informator EAPN: Warszawa, Poland, 2020; Available online: https://www.eapn.org.pl/eapn/uploads/2020/05/eapn-informator-ubostwo-pl.pdf (accessed on 25 June 2025).
- Biernat-Jarka, A.; Trębska, P. Ubóstwo w Polsce i Unii Europejskiej a formy jego przezwyciężania w kontekście zrównoważonego rozwoju i doświadczeń UE. Zesz. Nauk. SGGW W Warszawie Probl. Rol. Swiat. 2018, 18, 38–47. [Google Scholar] [CrossRef]
- Abraham, R.A.; Kumar, K.S.K. Multidimensional poverty and vulnerability. Econ. Polit. Wkly. 2008, 43, 79–87. [Google Scholar]
- Alkire, S.; Foster, J. Counting and Multidimensional Poverty Measurement; OPHI Working Paper No. 7; Oxford Poverty & Human Development Initiative, University of Oxford: Oxford, UK, 2008; pp. 1–34. [Google Scholar]
- Grigorescu, A.; Pirciog, C.S.; Lincaru, C. Space–Time Forecasting of Heating & Cooling Energy Needs as an Energy Poverty Measure in Romania. Energies 2024, 17, 5227. [Google Scholar] [CrossRef]
- Wojewódzka-Wiewiórska, A.; Dudek, H.; Ostasiewicz, K. Household Energy Poverty in European Union Countries: A Comparative Analysis Based on Objective and Subjective Indicators. Energies 2024, 17, 4889. [Google Scholar] [CrossRef]
- Kashour, M.; Jaber, M.M. Revisiting energy poverty measurement for the European Union. Energy Res. Soc. Sci. 2024, 109, 103420. [Google Scholar] [CrossRef]
- Przywojska, J.; Podgórniak-Krzykacz, A.; Kalisiak-Mędelska, M.; Rącka, I. Energy Poverty in Poland: Drivers, Measurement and National Policy. Energies 2025, 18, 2987. [Google Scholar] [CrossRef]
- Kryk, B.; Guzowska, M.K. Assessing the level of energy poverty using a synthetic multidimensional energy poverty index in EU countries. Energies 2023, 16, 1333. [Google Scholar] [CrossRef]
- Kyprianou, I.; Serghides, D.K.; Varo, A.; Gouveia, J.P.; Kopeva, D.; Murauskaite, L. Energy poverty policies and measures in 5 EU countries: A comparative study. Energy Build. 2019, 196, 46–60. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Thomson, H.; Cornelis, M. Confronting Energy Poverty in Europe: A Research and Policy Agenda. Energies 2021, 14, 858. [Google Scholar] [CrossRef]
- Sardianou, E. Understanding Energy Poverty among the Elderly: Insights from a Household Survey in Greece. Energies 2024, 17, 94. [Google Scholar] [CrossRef]
- International Energy Agency. Russia’s War on Ukraine—Analysing the Impacts of Russia’s Invasion of Ukraine on Global Energy Markets and International Energy Security. Available online: https://www.iea.org/topics/russias-war-on-ukraine (accessed on 22 September 2025).
- Orhan, V. The effects of the Russia–Ukraine war on global trade. J. Int. Trade Logist. Law 2022, 8, 141–146. [Google Scholar]
- Eurostat. Inability to Keep Home Adequately Warm—EU-SILC Survey. 2022. Available online: https://ec.europa.eu/eurostat/databrowser/view/ILC_MDES01__custom_1429161/bookmark/table?bookmarkId=b75066ce-81a8-4ede-a77f-f4150e02c80f&page=time:2021 (accessed on 27 June 2025).
- Hellenic Statistical Authority (ELSTAT). General Directorate of Statistical Surveys. 2022. Available online: https://www.statistics.gr (accessed on 27 June 2025).
- Bouzarovski, S.; Petrova, S. A Global Perspective on Domestic Energy Deprivation: Overcoming the Energy Poverty–Fuel Poverty Binary. Energy Res. Soc. Sci. 2015, 10, 31–40. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Thomson, H.; Cornelis, M.; Varo, A.; Guyet, R. Towards an Inclusive Energy Transition in the European Union: Confronting Energy Poverty Amidst a Global Crisis; Publications Office of the European Union: Luxemburg, 2020; Available online: https://data.europa.eu/doi/10.2833/103649 (accessed on 27 June 2025).
- González-Eguino, M. Energy poverty: An overview. Renew. Sustain. Energy Rev. 2015, 47, 377–385. [Google Scholar] [CrossRef]
- Day, R.; Walker, G.; Simcock, N. Conceptualising energy use and energy poverty using a capabilities framework. Energy Policy 2016, 93, 255–264. [Google Scholar] [CrossRef]
- Papantonis, D.; Apostoliotis, A.; Tzani, D.; Peretto, M.; Livraghi, S.; Bouzarovski, S.; Habazin, V.V.; Robic, S.; Flamos, A. Updating the Energy Poverty and Energy Efficiency Framework in Rural Areas Across the EU. Deliverable 2.1, EC-LIFE RENOVERTY Project; RENOVERTY Project: Piraeus, Greece, 2024; Available online: https://ieecp.org/wp-content/uploads/2024/03/RENOVERTY-Deliverable-2.1_final_reviewed-layout-1.pdf (accessed on 26 June 2025).
- Koukoufikis, G.; Özdemir, E.; Uihlein, A. Energy Poverty in the EU—2024 Status Quo; European Commission: Brussels, Belgium, 2024. [Google Scholar]
- Parlament Europejski i Rada (UE). Dyrektywa Parlamentu Europejskiego i Rady (UE) 2023/1791 z Dnia 13 Września 2023 r. w Sprawie Efektywności Energetycznej Oraz Zmieniająca Rozporządzenie (UE) 2023/955 (Wersja Przekształcona); Dziennik Urzędowy Unii Europejskiej; European Union: Brussels, Belgium, 2023; Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:32023L1791 (accessed on 26 June 2025).
- Guan, Y.; Yan, J.; Shan, Y.; Zhou, Y.; Hang, Y.; Li, R.; Liu, Y.; Liu, B.; Nie, Q.; Bruckner, B.; et al. Burden of the global energy price crisis on households. Nat. Energy 2023, 8, 304–316. [Google Scholar] [CrossRef]
- May, N.; Neuhoff, K. Financing power: Impacts of energy policies in changing regulatory environments. Energy J. 2021, 42, 131–152. [Google Scholar] [CrossRef]
- Taseska, V.; Markovska, N.; Callaway, J.M. Evaluation of climate change impacts on energy demand. Energy 2012, 48, 88–95. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- Ciancio, V.; Salata, F.; Falasca, S.; Curci, G.; Golasi, I.; de Wilde, P. Energy demands of buildings in the framework of climate change: An investigation across Europe. Sustain. Cities Soc. 2020, 60, 102213. [Google Scholar] [CrossRef]
- Kalinowski, S.; Łuczak, A.; Szczygieł, O.; Wojciechowska, A.; Zwęglińska-Gałecka, D.; Paczek, B. To Heat or Not to Heat? On (In)perceptible Energy Poverty among the Poor. Ann. Pol. Assoc. Agric. Agribus. Econ. 2024, 26, 124–138. [Google Scholar] [CrossRef]
- European Commission. European Rural Areas Face Higher Levels of Energy Poverty. The Joint Research Centre: EU Science Hub. 2025. Available online: https://joint-research-centre.ec.europa.eu/jrc-news-and-updates/european-rural-areas-face-higher-levels-energy-poverty-2025-06-26_en?utm_source=chatgpt.com (accessed on 22 September 2025).
- Shabalov, M.Y.; Zhukovskiy, Y.L.; Buldysko, A.D.; Gil, B.; Starshaia, V.V. The influence of technological changes in energy efficiency on the infrastructure deterioration in the energy sector. Energy Rep. 2021, 7, 2664–2680. [Google Scholar] [CrossRef]
- Atkinson, C.F.; Curnin, S.; Murphy-Gregory, H. Resilient and sustainable energy infrastructure. Soc. Sci. Protoc. 2022, 5, 1–13. [Google Scholar] [CrossRef]
- Komisja Europejska. Zalecenie Komisji (UE) 2023/2407 z Dn. 20 Października 2023 r. Dotyczące Ubóstwa Energetycznego 2023; UE: Brussels, Belgium, 2023. [Google Scholar]
- Herudziński, T.; Boguszewski, R.; Owczarek, D.; Bondyra, K. Ubóstwo Energetyczne w Obliczu Regulacji Przeciwdziałających Zanieczyszczeniu Powietrza; Wydawnictwo SGGW: Warszawa, Poland, 2019. [Google Scholar]
- Kahouli, S. An economic approach to the study of the relationship between housing hazards and health: The case of residential fuel poverty in France. Energy Econ. 2020, 85, 104592. [Google Scholar] [CrossRef]
- Davillas, A.; Burlinson, A.; Liu, H.H. Getting warmer: Fuel poverty, objective and subjective health and well-being. Energy Econ. 2022, 106, 105794. [Google Scholar] [CrossRef]
- Llorca, M.; Rodriguez-Alvarez, A.; Jamasb, T. Objective vs. subjective fuel poverty and self-assessed health. Energy Econ. 2020, 87, 104736. [Google Scholar] [CrossRef]
- Yang, F.; Gan, Q. Effect of Energy Poverty Alleviation on High-Quality Economic Development: An Empirical Study Based on China. Energies 2024, 17, 5085. [Google Scholar] [CrossRef]
- Karpinska, L.; Śmiech, S. Invisible energy poverty? Analysing housing costs in Central and Eastern Europe. Energy Res. Soc. Sci. 2020, 70, 101670. [Google Scholar] [CrossRef]
- Halkos, G.E.; Gkampoura, E.C. Coping with Energy Poverty: Measurements, Drivers, Impacts, and Solutions. Energies 2021, 14, 2807. [Google Scholar] [CrossRef]
- Kosowski, P. Convergence or Divergence? A Cluster Analysis of Energy Poverty Patterns Across the European Union Amidst Policy Shifts and Crises. Energies 2025, 18, 3117. [Google Scholar] [CrossRef]
- Sun, M.; Cao, X.; Liu, X.; Cao, T.; Zhu, Q. The Russia-Ukraine conflict, soaring international energy prices, and implications for global economic policies. Heliyon 2024, 10, e34712. [Google Scholar] [CrossRef] [PubMed]
- Piłatowska, M.; Geise, A. Macroeconomic Effects of Oil Price Shocks in the Context of Geopolitical Events: Evidence from Selected European Countries. Energies 2025, 18, 4165. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, X.; Jiang, D.; Luo, H.; Guo, K.; Song, X.; Wang, C. The perceived effectiveness and hidden inequity of postpandemic fiscal stimuli. Proc. Natl. Acad. Sci. USA. 2022, 119, e2105006119. [Google Scholar] [CrossRef]
- Steckel, J.C.; Missbach, L.; Ohlendorf, N.; Feindt, S.; Kalkuhl, M. Effects of the Energy Price Crisis on European Households. Socio-political Challenges and Policy Options; Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH: Berlin, Germany, 2022; pp. 1–30. Available online: https://www.pik-potsdam.de/de/institut/abteilungen/klimaoekonomie-und-politik/mcc-dokumente-archiv/2022_mcc_effects_of_the_energy_price_crisis_on_european_households.pdf (accessed on 22 September 2025).
- Kalkuhl, M.; Flachsland, C.; Knopf, B.; Amberg, M.; Bergmann, T.; Kellner, M.; Stüber, S.; Haywood, L.; Roolfs, C.; Edenhofer, O. Effects of the Energy Price Crisis on Households in Germany. Socio-Political Challenges and Policy Options; Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH: Berlin, Germany, 2022; pp. 1–34. Available online: https://www.pik-potsdam.de/de/institut/abteilungen/klimaoekonomie-und-politik/mcc-dokumente-archiv/2022_mcc_effects_of_the_energy_price_crisis_on_households.pdf (accessed on 22 September 2025).
- Adolfsen, J.F.; Kuik, F.; Schuler, T.; Lis, E. The impact of the war in Ukraine on euro area energy markets. Econ. Bull. Boxes 2022, 4. Available online: https://ideas.repec.org/a/ecb/ecbbox/202200041.html (accessed on 22 September 2025).
- Brown, O.; Froggatt, A.; Gozak, N.; Katser-Buchkovska, N.; Lutsevych, O. The Consequences of Russia’s War on Ukraine for Climate Action, Food Supply and Energy Security; Chatham House: London, UK, 2023; Available online: https://www.chathamhouse.org/2023/09/consequences-russias-war-ukraine-climate-action-food-supply-and-energy-security (accessed on 22 September 2025).
- Zakeri, B.; Paulavets, K.; Barreto-Gomez, L.; Echeverri, L.G.; Pachauri, S.; Boza-Kiss, B.; Zimm, C.; Rogelj, J.; Creutzig, F.; Ürge-Vorsatz, D.; et al. Pandemic, War, and Global Energy Transitions. Energies 2022, 15, 6114. [Google Scholar] [CrossRef]
- Obrizan, M. Poverty, Unemployment and Displacement in Ukraine: Three months into the war. arXiv 2022, arXiv:2211.05628. [Google Scholar] [CrossRef]
- Zhang, Y.; Shan, Y.; Zheng, X.; Wang, C.; Guan, Y.; Yan, J.; Ruzzenenti, F.; Hubacek, K. Energy price shocks induced by the Russia-Ukraine conflict jeopardize wellbeing. Energy Policy 2023, 182, 113743. [Google Scholar] [CrossRef]
- Sarafidis, Y.; Mirasgedis, S.; Gakis, N.; Kalfountzou, E.; Kapetanakis, D.; Georgopoulou, E.; Tourkolias, C.; Damigos, D. Analyzing Energy Poverty and Its Determinants in Greece: Implications for Policy. Sustainability 2025, 17, 5645. [Google Scholar] [CrossRef]
- Petelewicz, M.; Drabowicz, T. Jakość Życia–Globalnie i Lokalnie. Pomiar i Wizualizacja; Katedra Socjologii Ogólnej, Wydział Ekonomiczno-Socjologiczny Uniwersytet Łódzki: Lodz, Poland, 2016. [Google Scholar]
- Champagne, S.N.; Phimister, E.; Macdiarmid, J.I.; Guntupalli, A.M. Assessing the impact of energy and fuel poverty on health: A European scoping review. Eur. J. Public Health 2023, 33, 764–770. [Google Scholar] [CrossRef]
- Katoch, O.R.; Sharma, R.; Parihar, S.; Nawaz, A. Energy poverty and its impacts on health and education: A systematic review. Int. J. Energy Sect. Manag. 2024, 18, 411–431. [Google Scholar] [CrossRef]
- Pan, L.; Biru, A.; Lettu, S. Energy poverty and public health: Global evidence. Energy Econ. 2021, 101, 105423. [Google Scholar] [CrossRef]
- Polimeni, J.M.; Simionescu, M.; Iorgulescu, R.I. Energy Poverty and Personal Health in the EU. Int. J. Environ. Res. Public Health 2022, 19, 11459. [Google Scholar] [CrossRef] [PubMed]
- Liddel, C.; Morris, C. Fuel poverty and human health: A review of recent evidence. Energy Policy 2010, 38, 2987–2997. [Google Scholar] [CrossRef]
- Lipiński, K.; Juszczak, A. Cztery Oblicza Ubóstwa Energetycznego. In Polskie Gospodarstwa Domowe w Czasie Kryzysu 2021–2023; Polski Instytut Ekonomiczny: Warszawa, Poland, 2023; Available online: https://pie.net.pl/wp-content/uploads/2024/02/PIE-Raport_Ubostwo_energetyczne_2023.pdf (accessed on 27 June 2025).
- Sokołowski, J.; Frankowski, J.; Lewandowski, P. Energy Poverty, Housing Conditions and Self Assessed Health: Evidence from Poland; IBS: Warszawa, Poland, 2020; Available online: https://ibs.org.pl/app/uploads/2020/12/Energy_poverty_housing_and_health_IBS_WP_10_2020.pdf (accessed on 27 June 2025).
- Bentley, R.; Daniel, L.; Li, Y.; Baker, E.; Li, A. The effect of energy poverty on mental health, cardiovascular disease and respiratory health: A longitudinal analysis. Lancet 2023, 35, 100734. Available online: https://www.thelancet.com/journals/lanwpc/article/PIIS2666-6065(23)00052-4/fulltext (accessed on 27 June 2025). [CrossRef]
- Ballesteros-Arjona, V.; Oliveras, L.; Bolívar Muñoz, J.; Olry de Labry Lima, A.; Carrere, J.; Martín Ruiz, E.; Peralta, A.; Cabrera León, A.; Rodríguez, I.M.; Daponte-Codina, A.; et al. What are the effects of energy poverty and interventions to ameliorate it on people’s health and well-being? A scoping review with an equity lens. Energy Res. Social Sci. 2022, 87, 102456. [Google Scholar] [CrossRef]
- Middlemiss, L.; Ambrosio-Albalá, P.; Emmel, N.; Gillard, R.; Gilbertson, J.; Hargreaves, T.; Mullen, C.; Ryan, T.; Snell, C.; Tod, A. Energy poverty and social relations: A capabilities approach. Energy Res. Social Sci. 2019, 55, 227–235. [Google Scholar] [CrossRef]
- European Commission. Who’s Energy Poor in the EU? It’s More Complex Than It Seems. The Joint Research Centre: EU Science Hub. 2024. Available online: https://joint-research-centre.ec.europa.eu/jrc-news-and-updates/whos-energy-poor-eu-its-more-complex-it-seems-2024-09-25_en?utm_source=chatgpt.com (accessed on 22 September 2025).
- Nurkse, R. Problems of Capital Formation in Underdeveloped Countries; Oxford University Press: New York, NY, USA, 1953. [Google Scholar]
- Tracking SDG 7: The Energy Progress Report 2025. IEA, IRENA, ONZ, Bank Światowy i WHO. 2025. Available online: https://www.who.int/publications/m/item/2025-tracking-sdg7-report (accessed on 22 September 2025).
- Bąk, I.; Wawrzyniak, K.; Oesterreich, M. Assessment of Impact of Use of Renewable Energy Sources on Level of Energy Poverty in EU Countries. Energies 2024, 17, 6241. [Google Scholar] [CrossRef]
- Kulisz, M.; Kujawska, J.; Cioch, M.; Cel, W. Modeling Energy Access Challenges in Europe: A Neural Network Approach to Predicting Household Heating Inadequacy Using Macro-Energy Indicators. Energies 2024, 17, 6104. [Google Scholar] [CrossRef]
- Moura, P.; Fonseca, P.; Cunha, I.; Morais, N. Diagnosing Energy Poverty in Portugal through the Lens of a Social Survey. Energies 2024, 17, 4087. [Google Scholar] [CrossRef]
- Yoon, K.; Hwang, C. Multiple Attributes Decision Making. Methods and Application: A State-of-the-Art Survey; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Chakraborty, S. TOPSIS and Modified TOPSIS: A comparative analysis. Decis. Anal. J. 2022, 2, 100021. [Google Scholar] [CrossRef]
- Liern, V.; Pérez-Gladish, B. Building Composite Indicators With Unweighted-TOPSIS. IEEE Trans. Eng. Manag. 2023, 70, 1871–1880. [Google Scholar] [CrossRef]
- Madanchian, M.; Taherdoost, H. A comprehensive guide to the TOPSIS method for multi-criteria decision making. Sustain. Social Dev. 2023, 1, 2220. [Google Scholar] [CrossRef]
- Roszkowska, E. Multi-Criteria Decision Making Models by Applying the Topsis Method to Crisp and Interval Data. Mult. Criteria Decis. Mak. Univ. Econ. Katow. 2011, 6, 200–230. [Google Scholar]
- Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Ignatius, J. A State-of the-Art Survey of TOPSIS Applications. Expert. Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Graser, A. Learning QGIS; Packt Publishing: Birmingham, UK, 2016; ISBN 9781785880323. [Google Scholar]
- QGIS Development Team. QGIS Geographic Information System: Open-Source Geospatial Foundation Project. Version 3.34. 2024. Available online: https://qgis.org (accessed on 30 June 2025).
- Sherman, G. The PyQGIS Programmer’s Guide: Extending QGIS 3 with Python 3; Locate Press: Victoria, TX, USA, 2018; ISBN 978-0998547725. [Google Scholar]
- Slocum, T.A.; McMaster, R.B.; Kessler, F.C.; Howard, H.H. Thematic Cartography and Geovisualization, 3rd ed.; Upper Saddle River; Pearson Education: Upper Saddle River, NJ, USA, 2009; ISBN 978-0-13-229834-6. [Google Scholar]
- Esri. Jenks Optimization. Esri GIS Dictionary. Available online: https://support.esri.com/en-us/gis-dictionary/jenks-optimization (accessed on 30 June 2025).
- Esri. What is the Jenks Optimization Method? Esri Support Knowledge Base. 2020. Available online: https://support.esri.com/en-us/knowledge-base/what-is-the-jenks-optimization-method-1462479759617-000006743 (accessed on 30 June 2025).
- Haining, R. Spatial Data Analysis: Theory and Practice; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef]
- Cubillas, J.E.; Torculas, R.; Mayol, J.; Bajao, P.J. Land Classification Plugin for QGIS Using Pix2Pix. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2024, X-5, 33–39. [Google Scholar] [CrossRef]
- Graser, A.; Sutton, T.; Bernasocchi, M. The QGIS project: Spatial without compromise. Patterns 2025, 6, 101265. [Google Scholar] [CrossRef]
- De Smith, M.J.; Goodchild, M.F.; Longley, P.A. Geospatial Analysis: A Comprehensive Guide to Principles, Techniques and Software Tools; The Winchelsea Press: Winchelsea, UK, 2024; Available online: https://www.spatialanalysisonline.com (accessed on 30 June 2025).
- Fischer, M.M.; Getis, A. Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Quantitative Geography: Perspectives on Spatial Data Analysis; Sage Publications: London, UK, 2000. [Google Scholar]
- Unwin, D.J. Geographical information systems and the problem of ‘error and uncertainty’. Prog. Human. Geogr. 1995, 19, 549–558. [Google Scholar] [CrossRef]
- Aguilar, A.J.; de la Hoz-Torres, M.L.; Aguilar-Camacho, J.; Guerrero-Rivera, M.F. Assessment of Energy Efficiency and Energy Poverty of the Residential Building Stock of the City of Seville Using GIS. Appl. Sci. 2025, 15, 6438. [Google Scholar] [CrossRef]
- Sánchez-Guevara Sánchez, C.; Sanz Fernández, A.; Núñez Peiró, M.; Gómez Muñoz, G. Energy poverty in Madrid: Data exploitation at the city and district level. Energy Policy 2020, 144, 111653. [Google Scholar] [CrossRef]
- Terés-Zubiaga, J.; González-Pino, I.; Álvarez-González, I.; Campos-Celador, Á. Multidimensional procedure for mapping and monitoring urban energy vulnerability at regional level using public data: Proposal and implementation into a case study in Spain. Sustain. Cities Soc. 2023, 89, 104301. [Google Scholar] [CrossRef]
- Modrego-Monforte, I.; Barrena-Herrán, M.; Grijalba, O. A Multi-Criteria Analysis GIS Tool for Measuring the Vulnerability of the Residential Stock Based on Multidimensional Indices. Land 2023, 12, 1551. [Google Scholar] [CrossRef]
- Pfoster, C. Energy Poverty in Switzerland? A Geospatial Analysis. Master’s Thesis, University of Zurich, Zurich, Switzerland, 2024. Available online: https://www.zora.uzh.ch/id/eprint/262475/1/Thesis_Pfoster.pdf (accessed on 27 June 2025).
- Husiev, O.; Ukar Arrien, O.; Enciso, M. Spatial Dynamics of Energy Justice: Mapping and Analysis of Collective Action Initiatives in the Spanish Energy Landscape. Available online: http://dx.doi.org/10.2139/ssrn.4792553 (accessed on 27 June 2025).
- Conticelli, E.; Falcioni, S.; Marzani, G.; Morini, G.L.; Tondelli, S. Assessing energy efficiency at urban scale through the use of energy performance certificates: An application in the Emilia-Romagna region, Italy. Cities 2024, 145, 104728. [Google Scholar] [CrossRef]
- Fabbri, K.; Gaspari, J. Mapping the energy poverty: A case study based on the energy performance certificates in the city of Bologna. Energy Build. 2021, 234, 110718. [Google Scholar] [CrossRef]
- Parreño-Rodríguez, A.; Molina-García, A.; Mugnini, A.; Arteconi, A.; Ramallo-González, A.P. Thermal energy characterization methodology based on GIS for energy communities and demand response strategies. Results Eng. 2025, 27, 105769. [Google Scholar] [CrossRef]
- D’Ambrosio, V.; Di Martino, F.; Miraglia, V. A GIS-based framework to assess heatwave vulnerability and impact scenarios in urban systems. Sci. Rep. 2023, 13, 13073. [Google Scholar] [CrossRef]
- Cafaro, R.; Cardone, B.; D’Ambrosio, V.; Di Martino, F.; Miraglia, V. A New GIS-Based Framework to Detect Urban Heat Islands and Its Application on the City of Naples (Italy). Land 2024, 13, 1253. [Google Scholar] [CrossRef]
- Vaňo, S.; Duchková, H.; Bašta, P.; Jančovič, M.; Geletič, J.; Krkoška Lorencová, E.; Suchá, L. From scenarios to strategies: Integrated methodology for addressing urban heat vulnerability in an uncertain future. Sustain. Cities Soc. 2025, 121, 106202. [Google Scholar] [CrossRef]
- Husiev, O.; Arrien, O.U.; Enciso-Santocildes, M. Spatial analysis of energy communities and energy vulnerabilities in Spain. Util. Policy 2025, 95, 101954. [Google Scholar] [CrossRef]
- Barone, G.; Buonomano, A.; Del Papa, G.; Forzano, C.; Giuzio, G.F.; Maka, R.; Palombo, A.; Russo, G. Planning Deep Integration of Energy Communities in Urban Context: A GIS Approach to Optimise Renewables, Storage Systems and Demand Aggregation. In Proceedings of the 2024 3rd International Conference on Energy Transition in the Mediterranean Area (SyNERGY MED), Limassol, Cyprus, 21–23 October 2024. [Google Scholar] [CrossRef]
- Esposito, L.; Azarmi, M.; Diaz, M.G. An Energy Transition with Different Paces: Exploring European Energy Trends Through a GIS Analysis. In Technological Evolution; Aldieri, L., Ed.; Springer Nature: Cham, Switzerland, 2025; pp. 85–105. [Google Scholar] [CrossRef]
- Khavari, B.; Korkovelos, A.; Sahlberg, A.; Howells, M.; Fuso Nerini, F. Population cluster data to assess the urban-rural split and electrification in Sub-Saharan Africa. Sci. Data 2021, 8, 117. [Google Scholar] [CrossRef]
- Karam, G.; Hendel, M.; Cécilia, B.; Alexandre, B.; Patricia, B.; Laurent, R. The Oasis Project: UHI mitigation strategies applied to Parisian schoolyards. arXiv 2024, arXiv:2408.08886. [Google Scholar] [CrossRef]
- Littman, D.M. Geographic Interviews: A Qualitative Geographic Information Systems (QGIS) Method for Understanding Person-in-Environment. Qual. Soc. Work 2024, 24, 413–432. [Google Scholar] [CrossRef]
- Sikarwar, A. Using QGIS for Spatial Data Analysis. Spatial Analysis and Health Research Hub. 2024. Available online: https://tech.popdata.org/dhs-research-hub/posts/2024-10-25-qgis/ (accessed on 27 June 2025).
- Kim, J.; Kim, D.H.; Lee, J.; Cheon, Y.; Yoo, S. A Scoping Review of Qualitative Geographic Information Systems in Studies Addressing Health Issues. Soc. Sci. Med. 2022, 314, 115472. [Google Scholar] [CrossRef] [PubMed]
- Chandran, A.; Roy, P. Applications of Geographical Information System and Spatial Analysis in Indian Health Research: A Systematic Review. BMC Health Serv. Res. 2024, 24, 1448. [Google Scholar] [CrossRef]
- Adza, W.K.; Hursthouse, A.S.; Miller, J.; Boakye, D. Exploring the Joint Association of Road Traffic Noise and Air Quality with Hypertension Using QGIS. Int. J. Environ. Res. Public Health 2023, 20, 2238. [Google Scholar] [CrossRef]
- Kimura, Y.; Yamagata, Y. Sustainable Urban Development: Balancing Decarbonisation and Well-Being Using GIS Scenario Analysis. Energy Proc. 2025, 54, 1–4. [Google Scholar] [CrossRef]
- Kohonen, T. Essentials of the Self-Organizing Map. Neural Netw. 2013, 37, 52–65. [Google Scholar] [CrossRef]
- Vesanto, J.; Himberg, J.; Alhoniemi, E.; Parhankangas, J. SOM Toolbox for Matlab 5; Report A57; Helsinki University of Technology: Helsinki, Finland, 2000; Available online: http://www.cis.hut.fi/somtoolbox/package/papers/techrep.pdf (accessed on 22 September 2025).
- Ultsch, A. Data Mining and Knowledge Discovery with Emergent Self-Organizing Feature Maps for Multivariate Time Series. In Kohonen Maps; Elsevier: Amsterdam, The Netherlands, 1999; pp. 33–45. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. The Use of Artificial Neural Networks to Analyze Greenhouse Gas and Air Pollutant Emissions from the Mining and Quarrying Sector in the European Union. Energies 2020, 13, 1925. [Google Scholar] [CrossRef]
- Mardani, A.; Liao, H.; Nilashi, M.; Alrasheedi, M.; Cavallaro, F. A Multi-Stage Method to Predict Carbon Dioxide Emissions Using Dimensionality Reduction, Clustering, and Machine Learning Techniques. J. Clean. Prod. 2020, 275, 122942. [Google Scholar] [CrossRef]
- Ivashko, O.; Simakhova, A.; Soliakov, V.; Choroszczak, J. Clustering EU Member States by Energy Security Level Using Kohonen Maps. Energies 2025, 18, 4750. [Google Scholar] [CrossRef]
- Sompolska-Rzechuła, A.; Bąk, I.; Becker, A.; Marjak, H.; Perzyńska, J. The Use of Renewable Energy Sources and Environmental Degradation in EU Countries. Sustainability 2024, 16, 10416. [Google Scholar] [CrossRef]
- Vlaović, Ž.D.; Stepanov, B.L.; Anđelković, A.S.; Rajs, V.M.; Čepić, Z.M.; Tomić, M.A. Mapping energy sustainability using the Kohonen self-organizing maps—Case study. J. Clean. Prod. 2023, 412, 137351. [Google Scholar] [CrossRef]
- Atzori, F.; Corazzini, L.; Guerzoni, M.; Mantovani, M. Identifying Electricity Consumption Patterns by Using High-Frequency Data: Volatility and Self-Organizing Maps; Fondazione GRINS: Bologna, Italy, 2025. [Google Scholar]
- Valčić, S.B.; Markuz, A. Exploring the interconnected dynamics of energy efficiency and socioeconomic factors in European economic development using SOM. J. Infrastruct. Policy Dev. 2024, 8, 6682. [Google Scholar] [CrossRef]
- Tutak, M.; Brodny, J.; Siwiec, D.; Ulewicz, R.; Bindzár, P. Studying the Level of Sustainable Energy Development of the European Union Countries and Their Similarity Based on the Economic and Demographic Potential. Energies 2020, 13, 6643. [Google Scholar] [CrossRef]
- Matviychuk, A.; Zhytkevych, O.; Osadcha, N. Modeling carbon dioxide emissions reduction. Energy Rep. 2024, 2, 1876–1887. [Google Scholar] [CrossRef]
- Vlaović, Ž.; Stepanov, B.; Anđelković, A.; Rajs, V.; Čepić, Z.; Tomić, M. Application of Kohonen Self-Organizing Maps for Mapping Energy Sustainability—Focus on Serbia. In Proceedings of the 7th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 5–8 July 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Bucur, C.; Tudorică, B.G.; Oprea, S.-V.; Nancu, D.; Duşmănescu, D.M. Insights Into Energy Indicators Analytics Towards European Green Energy Transition Using Statistics and Self-Organizing Maps. IEEE Access 2021, 9, 64427–64444. [Google Scholar] [CrossRef]
- Lee, Y.-J. Steering towards future sustainability: A data-driven roadmap for eco-friendly road transport research in the European context. Mitig. Adapt. Strateg. Glob. Change 2025, 30, 46. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. The analysis of similarities between the European Union countries in terms of the level and structure of the emissions of selected gases and air pollutants into the atmosphere. J. Clean. Prod. 2021, 279, 123641. [Google Scholar] [CrossRef]
- Tutak, M. Analysis of Similarities Between the European Union Countries in Terms of Sustainable Energy and Climate Development. MAPE 2021, 4, 86–96. Available online: https://www.researchgate.net/publication/354301907_Analysis_of_Similarities_Between_the_European_Union_Countries_in_Terms_of_Sustainable_Energy_and_Climate_Development (accessed on 17 September 2025). [CrossRef]
- Michael, A.A.; Kehinde, O.P.; Olawale, O.B.; Adebayo, O.E.; Samuel, A.O. Dynamic impact of hybrid wind-solar photovoltaic power injection on small signal stability of Nigerian 11kV power system using Self Organizing Map neural network. Sci. Afr. 2024, 24, e02214. [Google Scholar] [CrossRef]
- Talei, H.; Benhaddou, D.; Gamarra, C.; Benhaddou, M.; Essaaidi, M. Identifying Energy Inefficiencies Using Self-Organizing Maps: Case of A Highly Efficient Certified Office Building. Appl. Sci. 2023, 13, 1666. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, X.; Miao, H.; Liu, H.; Yu, Y.; Wang, Y.; Zhang, H.; You, S. A factor analysis and self-organizing map based evaluation approach for the renewable energy heating potentials at county level: A case study in China. Renew. Sustain. Energy Rev. 2022, 165, 112597. [Google Scholar] [CrossRef]
- Yıgıt, P. Self-Organizing Maps Approach for Clustering OECD Countries Using Sustainable Development Indicators. J. Hum. Soc. Sci. Res. 2023, 12, 2850–2869. [Google Scholar] [CrossRef]
- Petricli, G.; Inkaya, T.; Gokay Emel, G. Identifying green citizen typologies by mining household-level survey data. Renew. Sustain. Energy Rev. 2024, 189, 113957. [Google Scholar] [CrossRef]
- Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Boardman, B. Fuel Poverty: From Cold Homes to Affordable Warmth; Belhaven Press: St. Joseph, MI, USA, 1991. [Google Scholar]
- Bouzarovski, S. Energy poverty in the European Union: Landscapes of vulnerability. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 276–289. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Tirado Herrero, S. The energy divide: Integrating energy transitions, regional inequalities and poverty trends in the European Union. Eur. Urban Reg. Stud. 2017, 24, 69–86. [Google Scholar] [CrossRef]
- Thomson, H.; Snell, C. Quantifying the prevalence of fuel poverty across the European Union. Energy Policy 2013, 52, 563–572. [Google Scholar] [CrossRef]
- Roberts, D.; Vera-Toscano, E.; Phimister, E. Fuel poverty in the UK: Is there a difference between rural and urban areas? Energy Policy 2015, 87, 216–223. [Google Scholar] [CrossRef]
- Hoang Phan, D.; Churchill, S.A.; Smyth, R.; Trinh, T.A. Cycles of adversity: Parental joblessness in childhood and energy poverty in adulthood. Energy Res. Social Sci. 2025, 122, 104011. [Google Scholar] [CrossRef]
- Nepal, R.; Dong, J.; Zhao, J.; Jamasb, T. Addressing Energy Poverty Through Education: How Does Gender Matter? Energy Econ. 2025, 141, 108029. [Google Scholar] [CrossRef]
- Longhurst, N.; Hargreaves, T. Emotions and fuel poverty: The lived experience of social housing tenants in the UK. Energy Res. Social Sci. 2019, 57, 101207. [Google Scholar] [CrossRef]
- Tao, M.; Lin, B.; Poletti, S.; Pan, A. Can financial literacy Ease energy poverty? Some Lessons at the household level in China. Util. Policy 2024, 91, 101835. [Google Scholar] [CrossRef]
- Young, J.; Halleck Vega, S.M. What is the role of energy communities in tackling energy poverty? Measures, barriers and potential in the Netherlands. Energy Res. Soc. Sci. 2024, 116, 103693. [Google Scholar] [CrossRef]
- Adjei-Mantey, K.; Inglesi-Lotz, R.; Amoah, A. Environmental consciousness and household energy poverty in Ghana. Glob. Environ. Change 2024, 88, 102896. [Google Scholar] [CrossRef]
- Palma, P.; Barrella, R.; Gouveia, J.P.; Romero, J.C. Comparative analysis of energy poverty definition and measurement in Portugal and Spain. Util. Policy 2024, 90, 101770. [Google Scholar] [CrossRef]
- Aaserud, K.N.; Marí-Dell’Olmo, M.; Palència, L.; Carrere, J.; López, M.J.; Oliveras, L. Energy poverty and health inequalities in Barcelona: A cross-sectional trends study in the context of COVID-19, energy crisis and climate change, 2016–2021. Health Place 2025, 91, 103401. [Google Scholar] [CrossRef]
- Riva, M.; Grubbs, E.; Breau, S. The geography of energy poverty in Canada: Spatial clustering and inequalities at the municipal level. Energy Policy 2024, 195, 114298. [Google Scholar] [CrossRef]
- Howell, A. Cash transfers and the Han-Minority household energy poverty gap in rural China. Energy Econ. 2025, 141, 108010. [Google Scholar] [CrossRef]
- Panda, D.; Pradhan, R.P. Spatial vulnerability of energy poverty among the households in Odisha. Energy Sustain. Dev. 2024, 83, 101578. [Google Scholar] [CrossRef]
- Wang, Y.; Umair, M.; Aizhan, A.; Teymurova, V.; Chang, L. Does the disparity between rural and urban incomes affect rural energy poverty? Energy Strategy Rev. 2024, 56, 101584. [Google Scholar] [CrossRef]
- European Commission. Clean Energy for all EUROPEANS; Publications Office of the European Union: Luxemburg, 2019; Available online: https://data.europa.eu/doi/10.2833/9937 (accessed on 27 June 2025).
- European Commission. Energy Poverty—European Energy Poverty Observatory (EPOV). Available online: https://energy-poverty.ec.europa.eu/observatory (accessed on 27 June 2025).
- Eurostat. 3. Good Health and Well-Being—Sustainable Development Goals. Available online: https://ec.europa.eu/eurostat/web/sdi/database/good-health-and-well-being (accessed on 27 June 2025).
- Lucchini, M.; Assi, J. Mapping Patterns of Multiple Deprivation and Well-Being using Self-Organizing Maps: An Application to Swiss Household Panel Data. Soc. Indic. Res. 2013, 112, 129–149. [Google Scholar] [CrossRef]
- Becker, A.; Oleńczuk-Paszel, A.; Sompolska-Rzechuła, A. Quality of Life and Energy Efficiency in Europe—A Multi-Criteria Classification of Countries and Analysis of Regional Disproportions. Sustainability 2025, 17, 4768. [Google Scholar] [CrossRef]
- Thomson, H.; Snell, C.; Bouzarovski, S. Health, Well-Being and Energy Poverty in Europe: A Comparative Study of 32 European Countries. Int. J. Environ. Res. Public Health 2017, 14, 584. [Google Scholar] [CrossRef]
- Parlament Europejski i Rada (UE). Dyrektywa Parlamentu Europejskiego i Rady (UE) 2018/2001 z Dnia 11 Grudnia 2018 r. w Sprawie Promowania Stosowania Energii Ze Źródeł Odnawialnych; European Union: Brussels, Belgium, 2018; Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=celex%3A32018L2001 (accessed on 26 June 2025).
- Parlament Europejski i Rada (UE). Dyrektywa Parlamentu Europejskiego i Rady (UE) 2018/2002 z Dnia 11 Grudnia 2018 r. Zmieniająca Dyrektywę 2012/27/UE w Sprawie Efektywności Energetycznej; European Union: Brussels, Belgium, 2018; Available online: https://eur-lex.europa.eu/legal-content/PL/ALL/?uri=CELEX%3A32018L2002 (accessed on 26 June 2025).
- Komisja Europejska. Europejski Zielony Ład; European Union: Brussels, Belgium, 2019; Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0016.02/DOC_1&format=PDF (accessed on 26 June 2025).
- Parlament Europejski i Rada (UE). Rozporządzenie (UE) 2021/1056 Ustanawiające Fundusz na rzecz Sprawiedliwej Transformacji; European Union: Brussels, Belgium, 2020; Available online: https://www.europeansources.info/record/amended-proposal-for-regulation-establishing-the-just-transition-fund/ (accessed on 26 June 2025).
- Parlament Europejski i Rada (UE). Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2021/241 z dnia 12 lutego 2021 r. ustanawiające Instrument na rzecz Odbudowy i Zwiększania Odporności; European Union: Brussels, Belgium, 2021; Available online: https://eur-lex.europa.eu/legal-content/PL/ALL/?uri=CELEX%3A32021R0241 (accessed on 26 June 2025).
- Komisja Europejska. Plan Działania na Rzecz Europejskiego Filaru Praw Socjalnych; European Union: Brussels, Belgium, 2021; Available online: https://eur-lex.europa.eu/legal-content/PL/ALL/?uri=CELEX:52021DC0102 (accessed on 26 June 2025).
- Komisja Europejska. Plan REPowerEU; European Union: Brussels, Belgium, 2022; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52022DC0230 (accessed on 26 June 2025).
- Komisja Europejska. Zalecenie Komisji (UE) 2023/2407 z Dnia 20 Października 2023 r. Dotyczące Ubóstwa Energetycznego; European Union: Brussels, Belgium, 2022; Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=OJ:L_202302407 (accessed on 26 June 2025).
- Szczygieł, O.; Harbiankova, A.; Manso, M. Where Does Energy Poverty End and Where Does It Begin? A Review of Dimensions, Determinants and Impacts on Households. Energies 2024, 17, 6429. [Google Scholar] [CrossRef]









| Indicator | ||
|---|---|---|
| No. | Objective Approach | Unit |
| 1 | Arrears on utility bills | % |
| 2 | Severe housing deprivation rate | % |
| 3 | Expenditure on electricity, gas, and other fuels as a proportion of the total household expenditure | % |
| 4 | Arrears on mortgage or rent payments | % |
| 5 | Overcrowding rate by poverty status | % |
| 6 | Average annual electricity prices for household consumers (with consumption from 2500 kWh to 4999 kWh) | % |
| 7 | At-risk-of-poverty rate | % |
| 8 | Heating degree days | Number |
| 9 | Cooling degree days | Number |
| 10 | Housing cost overburden rate | % |
| 11 | Final energy consumption in households per capita | Kilogram of oil equivalent |
| Subjective Approach | ||
| 12 | Population unable to keep home adequately warm | % |
| 13 | Population living in dwellings with leaks, damp, or rot | % |
| 14 | Households making ends meet with great difficulty | % |
| 15 | Total population considering their dwelling as too dark | % |
| 16 | Total population living in a dwelling with a leaking roof, damp walls, floors or foundation, or rot in window frames or floor | % |
| No. | Indicator | Unit |
|---|---|---|
| 1 | Overall life satisfaction | % |
| 2 | Self-perceived health | % |
| 3 | Self-reported unmet need for medical examination and care | % |
| 4 | Share of people with good or very good perceived health | % |
| 5 | Healthy life years | Year |
| 6 | Standardized preventable and treatable mortality | Rate |
| 7 | Happy Index | 0–10 |
| EP | ||
|---|---|---|
| Indicator Descriptive Parameter | 2019 | 2023 |
| Population unable to keep home adequately warm by poverty status | ||
| Mean | 8.20 | 9.47 |
| Coefficient of Variation | 94.03 | 63.15 |
| Min–Max | 1.80–30.10 | 2.10–20.80 |
| Expenditure on electricity, gas, and other fuels as a proportion of the total household expenditure | ||
| Mean | 21.60 | 22.32 |
| Coefficient of Variation | 19.87 | 19.11 |
| Min–Max | 12.30–29.20 | 13.90–30.20 |
| Average annual electricity prices for household consumers (with consumption from 2500 kWh to 4999 kWh) | ||
| Mean | 0.14 | 0.14 |
| Coefficient of Variation | 20.39 | 19.59 |
| Min–Max | 0.07–0.20 | 0.07–0.20 |
| At-risk-of-poverty rate | ||
| Mean | 21.04 | 16.18 |
| Coefficient of Variation | 26.49 | 22.26 |
| Min–Max | 12.10–36.10 | 9.80–22.50 |
| Heating degree days | ||
| Mean | 2638.52 | 2560.40 |
| Coefficient of Variation | 41.71 | 45.03 |
| Min–Max | 515.23–5482.97 | 392.62–5437.01 |
| Cooling degree days | ||
| Mean | 140.48 | 143.36 |
| Coefficient of Variation | 141.23 | 145.79 |
| Min–Max | 0.00–756.22 | 0.00–780.47 |
| Total population considering their dwelling as too dark | ||
| Mean | 5.22 | 5.56 |
| Coefficient of Variation | 35.99 | 38.43 |
| Min–Max | 2.60–10.00 | 2.90–10.60 |
| Total population living in a dwelling with a leaking roof, damp walls, floors, or foundation, or rot in window frames or floor | ||
| Mean | 13.61 | 13.84 |
| Coefficient of Variation | 43.31 | 51.40 |
| Min–Max | 4.10–31.10 | 4.80–31.60 |
| Housing cost overburden rate | ||
| Mean | 8.29 | 8.29 |
| Coefficient of Variation | 78.39 | 59.44 |
| Min–Max | 2.30–36.20 | 2.60–28.50 |
| Final energy consumption in households per capita | ||
| Mean | 559.19 | 521.96 |
| Coefficient of Variation | 31.42 | 31.50 |
| Min–Max | 201.00–1020.00 | 206.00–982.00 |
| H&W | ||
|---|---|---|
| Indicator Descriptive Parameter | 2019 | 2023 |
| Self-perceived health (from 16 to 64 years) | ||
| Mean | 67.16 | 66.95 |
| Coefficient of Variation | 14.05 | 12.40 |
| Min–Max | 46.20–84.30 | 48.10–80.80 |
| Self-reported unmet need for medical examination and care | ||
| Mean | 2.47 | 2.56 |
| Coefficient of Variation | 126.87 | 95.80 |
| Min–Max | 0.00–15.50 | 0.10–9.10 |
| Share of people with good or very good perceived health | ||
| Mean | 66.84 | 66.97 |
| Coefficient of Variation | 14.59 | 12.61 |
| Min–Max | 44.00–84.10 | 47.60–79.50 |
| Standardized preventable and treatable mortality | ||
| Mean | 289.92 | 296.17 |
| Coefficient of Variation | 39.66 | 41.39 |
| Min–Max | 169.63–522.10 | 169.34–543.33 |
| Happy Index | ||
| Mean | 6.44 | 6.63 |
| Coefficient of Variation | 11.12 | 8.22 |
| Min–Max | 5.01–7.77 | 5.47–7.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sompolska-Rzechuła, A.; Becker, A.; Oleńczuk-Paszel, A. Territorial Variation of Energy Poverty and Good Health and Well-Being in European Union Countries—A Spatial Analysis. Energies 2025, 18, 5491. https://doi.org/10.3390/en18205491
Sompolska-Rzechuła A, Becker A, Oleńczuk-Paszel A. Territorial Variation of Energy Poverty and Good Health and Well-Being in European Union Countries—A Spatial Analysis. Energies. 2025; 18(20):5491. https://doi.org/10.3390/en18205491
Chicago/Turabian StyleSompolska-Rzechuła, Agnieszka, Aneta Becker, and Anna Oleńczuk-Paszel. 2025. "Territorial Variation of Energy Poverty and Good Health and Well-Being in European Union Countries—A Spatial Analysis" Energies 18, no. 20: 5491. https://doi.org/10.3390/en18205491
APA StyleSompolska-Rzechuła, A., Becker, A., & Oleńczuk-Paszel, A. (2025). Territorial Variation of Energy Poverty and Good Health and Well-Being in European Union Countries—A Spatial Analysis. Energies, 18(20), 5491. https://doi.org/10.3390/en18205491

