Analysis of the Efficiency of Hydrogen Fuel Cell Vehicle (HFCV) Applications in Manufacturing Processes Using Computer Simulation
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Research Method
3.2. Results of Computer Simulations
3.2.1. Simulation of the First Variant (Using Electric Transporter and Diesel Transporter)
3.2.2. Simulation of the Second Variant (Using HFCV Transporter)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coto-Millán, P.; Paz Saavedra, D.; de la Fuente, M.; Fernandez, X.L. Integracja logistyki z globalną produkcją: Nowe podejście. Logistyka 2024, 8, 99. [Google Scholar] [CrossRef]
- Khadim, Z.; Batool, I.; Akbar, A.; Poulova, P.; Akbar, M. Mapping the moderating role of logistics performance of logistics infrastructure on economic growth in developing countries. Economies 2021, 9, 177. [Google Scholar] [CrossRef]
- Khadim, Z.; Batool, I.; Bilal Lodhi, M. China–Pakistan economic corridor, logistics developments and economic growth in Pakistan. Logistics 2021, 5, 35. [Google Scholar] [CrossRef]
- Zhou, B.; He, Z. A Novel Hybrid-Load AGV for JIT-Based Sustainable Material Handling Scheduling with Time Window in Mixed-Model Assembly Line. Int. J. Prod. Res. 2023, 61, 796–817. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, C.; Yan, Y.; Hu, Y. Distributed Real-Time Scheduling in Cloud Manufacturing by Deep Reinforcement Learning. IEEE Trans. Ind. Inform. 2022, 18, 8999–9007. [Google Scholar] [CrossRef]
- Dobra, P.; Jósvai, J. Assembly Line Overall Equipment Effectiveness (OEE) Prediction from Human Estimation to Supervised Machine Learning. J. Manuf. Mater. Process. 2022, 6, 59. [Google Scholar] [CrossRef]
- Sun, Y.; Gong, Q.; Hu, M.; Yang, N. Multi-Objective Optimization of Workshop Scheduling with Multiprocess Route Considering Logistics Intensity. Processes 2020, 8, 838. [Google Scholar] [CrossRef]
- Müller-Boyaci, P.; Wenzel, S. Simulation Toolkit for Autonomous Control in Serial Production Networks of Automotive Suppliers. J. Simul. 2016, 10, 123–136. [Google Scholar] [CrossRef]
- Pekarcikova, M.; Trebuna, P.; Kliment, M.; Dic, M. Solution of Bottlenecks in the Logistics Flow by Applying the Kanban Module in the Tecnomatix Plant Simulation Software. Sustainability 2021, 13, 7989. [Google Scholar] [CrossRef]
- Yi, H.; Qu, T.; Zhang, K.; Li, M.; Huang, G.Q.; Chen, Z. Production Logistics in Industry 3.X: Bibliometric Analysis, Frontier Case Study, and Future Directions. Systems 2023, 11, 371. [Google Scholar] [CrossRef]
- El Hamdi, S.; Abouabdellah, A. Logistics: Impact of Industry 4.0. Appl. Sci. 2022, 12, 4209. [Google Scholar] [CrossRef]
- Tubis, A.A.; Grzybowska, K. In Search of Industry 4.0 and Logistics 4.0 in Small-Medium Enterprises—A State of the Art Review. Energies 2022, 15, 8595. [Google Scholar] [CrossRef]
- Richnák, P. Current Trend of Industry 4.0 in Logistics and Transformation of Logistics Processes Using Digital Technologies: An Empirical Study in the Slovak Republic. Logistics 2022, 6, 79. [Google Scholar] [CrossRef]
- Rigó, L.; Fabianová, J.; Lokšík, M.; Mikušová, N. Utilising Digital Twins to Bolster the Sustainability of Logistics Processes in Industry 4.0. Sustainability 2024, 16, 2575. [Google Scholar] [CrossRef]
- Roman, E.-A.; Stere, A.-S.; Roșca, E.; Radu, A.-V.; Codroiu, D.; Anamaria, I. State of the Art of Digital Twins in Improving Supply Chain Resilience. Logistics 2025, 9, 22. [Google Scholar] [CrossRef]
- Bandara, L.V.; Buics, L. Digital Twins in Sustainable Supply Chains: A Comprehensive Review of Current Applications and Enablers for Successful Adoption. Eng. Proc. 2024, 79, 64. [Google Scholar] [CrossRef]
- Christ, L.; Milloch, E.; Boshoff, M.; Hypki, A.; Kuhlenkötter, B. Implementation of Digital Twin and Real Production System to Address Actual and Future Challenges in Assembly Technology. Automation 2023, 4, 345–358. [Google Scholar] [CrossRef]
- Florescu, A. Digital Twin for Flexible Manufacturing Systems and Optimization Through Simulation: A Case Study. Machines 2024, 12, 785. [Google Scholar] [CrossRef]
- Lemos, J.; Gaspar, P.D.; Lima, T.M. Environmental Risk Assessment and Management in Industry 4.0: A Review of Technologies and Trends. Machines 2022, 10, 702. [Google Scholar] [CrossRef]
- Martín-Gómez, A.M.; Agote-Garrido, A.; Lama-Ruiz, J.R. Ramy zrównoważonej produkcji: Integracja technologii Przemysłu 4.0 z wartościami Przemysłu 5.0. Zrównoważony Rozw. 2024, 16, 1364. [Google Scholar] [CrossRef]
- Satyro, W.C.; Contador, J.C.; Monken, S.F.d.P.; Lima, A.F.d.; Soares Junior, G.G.; Gomes, J.A.; Neves, J.V.S.; do Nascimento, J.R.; de Araújo, J.L.; Correa, E.d.S.; et al. Industry 4.0 Implementation Projects: The Cleaner Production Strategy—A Literature Review. Sustainability 2023, 15, 2161. [Google Scholar] [CrossRef]
- Yu, W.-H.; Chiou, C.-C. Effects of Sustainable Development of the Logistics Industry by Cloud Operational System. Sustainability 2022, 14, 10440. [Google Scholar] [CrossRef]
- Pawlak, S.; Małysa, T.; Fornalczyk, A.; Sobianowska-Turek, A.; Kuczyńska-Chałada, M. Analysis of Opportunities to Reduce CO2 and NOX Emissions Through the Improvement of Internal Inter-Operational Transport. Sustainability 2025, 17, 5974. [Google Scholar] [CrossRef]
- Zhang, H.; Li, S. Research on the Factors Influencing CO2 Emission Reduction in High-Energy-Consumption Industries under Carbon Peak. Sustainability 2023, 15, 13437. [Google Scholar] [CrossRef]
- Stavropoulos, P.; Panagiotopoulou, V.C.; Papacharalampopoulos, A.; Aivaliotis, P.; Georgopoulos, D.; Smyrniotakis, K. A Framework for CO2 Emission Reduction in Manufacturing Industries: A Steel Industry Case. Designs 2022, 6, 22. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Jeon, H.-w.; Jung, S.-y. Improving Energy Consumption and Order Tardiness in Picker-to-Part Warehouses with Electric Forklifts: A Comparison of Four Evolutionary Algorithms. Sustainability 2023, 15, 10551. [Google Scholar] [CrossRef]
- Zajac, P.; Dragasius, E.; Roik, T. Energy Consumption When Transporting Pallet Loads Using a Forklift with an Anti Slip Pad Preventing Damage. Energies 2021, 14, 8423. [Google Scholar] [CrossRef]
- Sperling, M.; Furmans, K. Energy Requirement Modeling for Automated Guided Vehicles Considering Material Flow and Layout Data. Designs 2024, 8, 48. [Google Scholar] [CrossRef]
- Markowska, K.; Wittek, K.; Kabiesz, P.; Stecuła, K.; Aydin, B.; Pawlak, S.; Markowska, A. Silniki napędzane wodorem: Studium wybranych zagadnień technologicznych i emisyjnych. Energie 2025, 18, 1675. [Google Scholar] [CrossRef]
- Hassouna, F.M.A.; Shin, K. The Environmental Impacts of Future Global Sales of Hydrogen Fuel Cell Vehicles. Energies 2024, 17, 4930. [Google Scholar] [CrossRef]
- Kurc, B.; Gross, X.; Szymlet, N.; Rymaniak, Ł.; Woźniak, K.; Pigłowska, M. Hydrogen-Powered Vehicles: A Paradigm Shift in Sustainable Transportation. Energies 2024, 17, 4768. [Google Scholar] [CrossRef]
- Manoharan, Y.; Hosseini, S.E.; Butler, B.; Alzhahrani, H.; Senior, B.T.F.; Ashuri, T.; Krohn, J. Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect. Appl. Sci. 2019, 9, 2296. [Google Scholar] [CrossRef]
- Beigi Kheradmand, A.; Heidari Soureshjani, M.; Jahangiri, M.; Hamawandi, B. Comparative Techno-Economic Analysis of Gray Hydrogen Production Costs: A Case Study. Sustainability 2025, 17, 547. [Google Scholar] [CrossRef]
- Ishaq, H.; Dincer, I.; Crawford, C. A review on hydrogen production and utilization: Challenges and opportunities. Int. J. Hydrog. Energy 2022, 47, 26238–26264. [Google Scholar] [CrossRef]
- Sajjadi, M.; Ibrahim, H. Case Study of a Greenfield Blue Hydrogen Plant: A Comparative Analysis of Production Methods. Energies 2025, 18, 3272. [Google Scholar] [CrossRef]
- Franco, A. Green Hydrogen and the Energy Transition: Hopes, Challenges, and Realistic Opportunities. Hydrogen 2025, 6, 28. [Google Scholar] [CrossRef]
- Arcos, J.M.M.; Santos, D.M.F. The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production. Gases 2023, 3, 25–46. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhou, H.; Wu, X.; Chan, S.H.; Xie, Z.; Dang, D. Work Efficiency and Economic Efficiency of Actual Driving Test of Proton Exchange Membrane Fuel Cell Forklift. Molecules 2022, 27, 4918. [Google Scholar] [CrossRef]
- You, Z.; Wang, L.; Han, Y.; Zare, F. System Design and Energy Management for a Fuel Cell/Battery Hybrid Forklift. Energies 2018, 11, 3440. [Google Scholar] [CrossRef]
- Yazdi, M.; Moradi, R.; Pirbalouti, R.G.; Zarei, E.; Li, H. Enabling Safe and Sustainable Hydrogen Mobility: Circular Economy-Driven Management of Hydrogen Vehicle Safety. Processes 2023, 11, 2730. [Google Scholar] [CrossRef]
- Radica, G.; Tolj, I.; Lototskyy, M.V.; Pasupathi, S. Air Mass Flow and Pressure Optimization of a PEM Fuel Cell Hybrid System for a Forklift Application. Energies 2024, 17, 120. [Google Scholar] [CrossRef]
- Hassan, Q.; Azzawi, I.D.J.; Sameen, A.Z.; Salman, H.M. Hydrogen Fuel Cell Vehicles: Opportunities and Challenges. Sustainability 2023, 15, 11501. [Google Scholar] [CrossRef]
- Haghi, E.; Shamsi, H.; Dimitrov, S.; Fowler, M.; Raahemifar, K. Assessing the Potential of Fuel Cell-Powered and Battery-Powered Forklifts for Reducing GHG Emissions Using Clean Surplus Power; a Game Theory Approach. Int. J. Hydrogen Energy 2020, 45, 34532–34544. [Google Scholar] [CrossRef]
- Dorel, S.; Lucian, M.; Gheorghe, L.; Cristian, L.G. Green Hydrogen, a Solution for Replacing Fossil Fuels to Reduce CO2 Emissions. Processes 2024, 12, 1651. [Google Scholar] [CrossRef]
- Ciupek, B.; Brodzik, Ł.; Frąckowiak, A. Research on Carbon Footprint Reduction During Hydrogen Co-Combustion in a Turbojet Engine. Energies 2024, 17, 5397. [Google Scholar] [CrossRef]
- Dulău, L.-I. CO2 Emissions of Battery Electric Vehicles and Hydrogen Fuel Cell Vehicles. Clean Technol. 2023, 5, 696–712. [Google Scholar] [CrossRef]
- Pukalskas, S.; Vipartas, T.; Rimkus, A.; Kriaučiūnas, D.; Žaglinskis, J.; Stravinskas, S.; Ušinskas, A.; Juknelevičius, R.; Mejeras, G.; Žuraulis, V.; et al. Numerical Modelling Assessment of the Impact of Hydrogen on the Energy and Environmental Performance of a Car Using Dual Fuel (Gasoline–Hydrogen). Appl. Sci. 2025, 15, 1939. [Google Scholar] [CrossRef]
- Weller, K.; Lipp, S.; Röck, M.; Matzer, C.; Bittermann, A.; Hausberger, S. Real World Fuel Consumption and Emissions from LDVs and HDVs. Front. Mech. Eng. 2019, 5, 45. [Google Scholar] [CrossRef]
- Andrade, T.S.; Zhou, S.; Yang, J.D.; Sharma, N.; Jervis, R.; Thiringer, T. Energy Efficiency of Hydrogen for Vehicle Propulsion: On- or Off-Board H2 to Electricity Conversion? Int. J. Hydrogen Energy 2024, 92, 1493–1499. [Google Scholar] [CrossRef]
- Shao, P.; Zheng, H. Comparison of Electric Vehicles and Hydrogen Fuel Cell Vehicles. Highlights Sci. Eng. Technol. 2023, 32, 259–270. [Google Scholar] [CrossRef]
- Pawlak, S.; Saternus, M.; Nowacki, K. Application of Discrete Event Simulation in the Analysis of Electricity Consumption in Logistics Processes. Energies 2025, 18, 4580. [Google Scholar] [CrossRef]
- Hoffa-Dabrowska, P.; Grzybowska, K. Simulation Modeling of the Sustainable Supply Chain. Sustainability 2020, 12, 6007. [Google Scholar] [CrossRef]
Hydrogen Type | Description |
---|---|
Gray hydrogen | Produced mainly from fossil fuels such as natural gas or coal, most commonly through steam methane reforming (SMR). This is currently the dominant hydrogen production technology; however, it is associated with high CO2 emissions, which makes it unfavorable from a climate protection perspective [33,34]. |
Blue hydrogen | Also based on fossil fuels and the reforming process, but supplemented with a stage of carbon capture and storage (CCS). As a result, part of the CO2 emissions does not enter the atmosphere, helping to reduce the carbon footprint of hydrogen production [35]. |
Green hydrogen | Generated by water electrolysis powered by renewable energy sources such as wind or solar. This process splits H2O molecules into hydrogen and oxygen without producing direct CO2 emissions. It is considered the most sustainable method of hydrogen production [36]. |
Brown hydrogen | Obtained from coal through gasification or other methods. It is regarded as the most emission-intensive form of hydrogen production because coal has a high elemental carbon content, and hydrogen generation in this process involves significant CO2 emissions [37]. |
Purple hydrogen | Produced using nuclear energy, typically through high-temperature electrolysis (HTE). The heat generated in nuclear reactors enables hydrogen production without direct CO2 emissions [37]. |
Author/Authors/Year | Title | Scope of Research |
---|---|---|
Xiong, Z.; Zhou, H.; Wu, X.; Chan, S.H.; Xie, Z.; Dang, D. (2022) [38] | Work Efficiency and Economic Efficiency of Actual Driving Test of Proton Exchange Membrane Fuel Cell Forklift | Methods: Conducted real-world driving tests comparing a PEM fuel cell forklift with battery-powered and diesel forklifts. Findings: PEM fuel cell forklifts showed higher operational performance and lower running costs, indicating promising potential for practical deployment. |
You, Z.; Wang, L.; Han, Y.; Zare, F. (2018) [39] | System Design and Energy Management for a Fuel Cell/Battery Hybrid Forklift | Methods: Developed and tested a hybrid forklift combining fuel cell and battery power, with a dedicated strategy for energy management. Findings: The hybrid system allowed stable operation under various load conditions, ensured efficient energy distribution, and extended the duration of uninterrupted forklift operation. |
Yazdi, M.; Moradi, R.; Pirbalouti, R.G.; Zarei, E.; Li, H. (2023) [40] | Enabling Safe and Sustainable Hydrogen Mobility: Circular Economy-Driven Management of Hydrogen Vehicle Safety | Methods: Applied quantitative risk assessment and DEMATEL methods to investigate safety factors in hydrogen vehicle deployment. Findings: Key risk factors and safety measures were identified, supporting safer use of hydrogen vehicles and contributing to sustainable mobility practices. |
Radica, G.; Tolj, I.; Lototskyy, M.V. (2024) [41] | Air Mass Flow and Pressure Optimization of a PEM Fuel Cell Hybrid System for a Forklift Application. | Methods: Evaluated the influence of air compressor settings (air flow and pressure) on PEM fuel cell performance in forklifts, using simulations and experiments across different load cycles. Findings: Adjusting air flow and pressure improved system efficiency and operational stability of the fuel cell unit. |
Hassan, Q.; Azzawi, I.D.J.; Sameen, A.Z. Salman, H.M. (2023) [42] | Hydrogen Fuel Cell Vehicles: Opportunities and Challenges | Methods: Comprehensive literature review of HFCV technology, infrastructure, and market prospects. Findings: Hydrogen fuel cell vehicles offer environmental and energy benefits, though adoption is limited by technical and infrastructure challenges; future innovations and policies are needed for wider implementation. |
Parameter | Electric-Powered Forklift | Combustion Engine (Diesel) Forklift |
---|---|---|
Maximum load capacity | 2 t | 2.5 t |
Driving speed | 10 km/h | 10 km/h |
Battery capacity | 80 V, 500–700 Ah, 42 kWh | - |
Battery charging time | 120 min | - |
Fuel tank capacity | - | 45 l |
Operation scope/time | 6.5 h | 18 h |
Parameter | HFCV Forklift |
---|---|
Maximum load capacity | 2 t |
Driving speed | 10 km/h |
Fuel tank capacity | 1.0 kg H2, 350 bar |
Operation scope/time | 8 h |
Transportation from | Transport to | Number of Transports with and Without Cargo | Means of Transport |
---|---|---|---|
Queue 1 | Queue 4 | 2800 | Electric Transporter 1 Diesel transporter 1 |
Queue 2 | Queue 4 | 1900 | Electric Transporter 2 Diesel transporter 2 |
Queue 3 | Queue 6 | 3100 | Electric transporter 3 Electric transporter 4 Diesel transporter 3 Diesel transporter 4 |
Queue 5 | Queue 6 | 2200 | Electric transporter 5 Diesel transporter 5 |
Queue 7 | Queue 8 and 9 | 3900 | Electric transporter 6 Electric transporter 7 Diesel transporter 6 |
Transportation from | Transport to | Number of Transports with and Without Cargo | Means of Transport |
---|---|---|---|
Queue 1 | Queue 4 | 2800 | HFCV Transporter 1 HFCV Transporter 2 |
Queue 2 | Queue 4 | 1900 | HFCV Transporter 3 HFCV Transporter 4 |
Queue 3 | Queue 6 | 3100 | HFCV Transporter 5 HFCV Transporter 6 HFCV Transporter 7 HFCV Transporter 8 |
Queue 5 | Queue 6 | 2200 | HFCV Transporter 9 HFCV Transporter 10 |
Queue 7 | Queue 8 and 9 | 3900 | HFCV Transporter 11 HFCV Transporter 12 HFCV Transporter 13 |
Parameter | Variant 1 | Variant 2 | |
---|---|---|---|
Electric-Powered Forklifts | Combustion Engine Forklifts | HFCV Forklifts | |
Electric-Powered and Combustion Engine Forklifts (Together) | |||
Process duration [h] | - | - | 28.40 |
31.35 | |||
CO2 emission [kg] | 325.10 | 328.45 | - |
653.55 | |||
Cost [PLN] | 617.5 | 1807.70 | 1894.0 |
2425.2 | |||
Utilization percentage [%] | 46.21 | 55.86 | 59.47 |
51.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlak, S.; Fornalczyk, A. Analysis of the Efficiency of Hydrogen Fuel Cell Vehicle (HFCV) Applications in Manufacturing Processes Using Computer Simulation. Energies 2025, 18, 5476. https://doi.org/10.3390/en18205476
Pawlak S, Fornalczyk A. Analysis of the Efficiency of Hydrogen Fuel Cell Vehicle (HFCV) Applications in Manufacturing Processes Using Computer Simulation. Energies. 2025; 18(20):5476. https://doi.org/10.3390/en18205476
Chicago/Turabian StylePawlak, Szymon, and Agnieszka Fornalczyk. 2025. "Analysis of the Efficiency of Hydrogen Fuel Cell Vehicle (HFCV) Applications in Manufacturing Processes Using Computer Simulation" Energies 18, no. 20: 5476. https://doi.org/10.3390/en18205476
APA StylePawlak, S., & Fornalczyk, A. (2025). Analysis of the Efficiency of Hydrogen Fuel Cell Vehicle (HFCV) Applications in Manufacturing Processes Using Computer Simulation. Energies, 18(20), 5476. https://doi.org/10.3390/en18205476