High-Efficiency Multistage Charge Pump Rectifiers Design
Abstract
1. Introduction
2. Materials and Methods
2.1. Multi-Stage Charge Pump Rectifiers Theoretical Analysis
2.2. Multi-Stage Charge Pump Rectifiers Design Methods
2.2.1. Design of the Two-Stage Dickson Charge Pump Rectifiers
2.2.2. Two-Stage Cockcroft–Walton Charge Pump Rectifiers Design
3. Results
3.1. Results for Two-Stage Dickson Rectifiers
3.2. Results for Two-Stage Cockcroft–Walton Rectifiers
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RF | Radio Frequency |
DC | Direct Current |
IoT | Internet of Things |
MWPT | Microwave Wireless Power Transfer |
References
- Gupta, S.K.; Kumar, M.; Kumar, S.; Sharma, A. Adaptive Wireless Power Transfer Enabled IoT Sensor Nodes by a Polarization-Insensitive Scalable Planar Rectenna Module. IEEE Sens. J. 2024, 24, 33139–33147. [Google Scholar] [CrossRef]
- Mansour, M.; Mansour, I. Compact high-efficiency energy harvesting positive and negative DC supplies voltage for battery-less CMOS receiver. Sci. Rep. 2023, 13, 14180. [Google Scholar] [CrossRef]
- Tiemann, M.; Qaadan, S.; Schmuelling, B. Challenges and Opportunities in Wireless Power Transfer for the Future Electromobility. In Proceedings of the 2024 22nd International Conference on Research and Education in Mechatronics (REM), Amman, Jordan, 24–26 September 2024; pp. 244–249. [Google Scholar] [CrossRef]
- Zhao, F.; Inserra, D.; Gao, G.; Huang, Y.; Li, J.; Wen, G. High-Efficiency Microwave Rectifier With Coupled Transmission Line for Low-Power Energy Harvesting and Wireless Power Transmission. IEEE Trans. Microw. Theory Tech. 2021, 69, 916–925. [Google Scholar] [CrossRef]
- He, H.; Lin, H.; Wu, P.; Li, Q.; Liu, C. Compact High-Efficiency Broadband Rectifier Based on Coupled Transmission Line. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 4404–4408. [Google Scholar] [CrossRef]
- Ballo, A.; Grasso, A.D.; Palumbo, G.; Tanzawa, T. Charge Pumps for Ultra-Low-Power Applications: Analysis, Design, and New Solutions. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 2895–2901. [Google Scholar] [CrossRef]
- Yang, B.; Shinohara, N. Microwave power transmission technologies for space solar power station. Chin. Space Sci. Technol. 2025, 45, 1–14. [Google Scholar] [CrossRef]
- Liu, T.; Lin, W.; Deng, J.Y. Research progress on rectenna technology of wireless power transfer. Space Electron. Technol. 2024, 21, 18–26. [Google Scholar]
- Zhang, R.; Huang, Z.; Inoue, Y. A low breakdown-voltage charge pump based on Cockcroft-Walton structure. In Proceedings of the 2009 IEEE 8th International Conference on ASIC, Changsha, China, 20–23 October 2009; pp. 328–331. [Google Scholar] [CrossRef]
- Park, S.; Yang, J.; Rivas-Davila, J. A Hybrid Cockcroft–Walton/Dickson Multiplier for High Voltage Generation. IEEE Trans. Power Electron. 2020, 35, 2714–2723. [Google Scholar] [CrossRef]
- Rajaei, A.; Shahparasti, M.; Nabinejad, A.; Niazi, Y.; Guerrero, J.M. Switching Strategy Development, Dynamic Model, and Small Signal Analysis of Current-Fed Cockcroft-Walton Voltage Multiplier. IEEE Open J. Power Electron. 2021, 2, 591–602. [Google Scholar] [CrossRef]
- Moloudian, G.; Buckley, J.L.; O’Flynn, B. A Novel Rectenna With Class-F Harmonic Structure for Wireless Power Transfer. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 617–621. [Google Scholar] [CrossRef]
- Khodaei, M.; Boutayeb, H.; Talbi, L. A Wideband Rectenna Using An Inverse Class-F Rectifier Circuit for Energy Harvesting Applications. In Proceedings of the 2024 International Conference on Computing, Internet of Things and Microwave Systems (ICCIMS), Gatineau, QC, Canada, 29–31 July 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Xiao, S.; Liu, C.; He, H.; Feng, Y.; Che, W. A Novel Class-F 2.45/5.8 GHz Dual-Band Rectifier for Wireless Power Transmission. IEEE Microw. Wirel. Technol. Lett. 2024, 34, 107–110. [Google Scholar] [CrossRef]
- Shin, J.; Oh, J. High Efficiency Class-F Rectifier Based on Harmonic-Controlled Voltage Doubler With Extended Input Power and Frequency Range. IEEE J. Microw. 2025, 5, 130–136. [Google Scholar] [CrossRef]
- Huang, L.; Lu, Y.-L.; Li, H.-L.; Wang, C.; Wei, Y.; Huang, K.-M.; Qian, S.-H.; Wang, C. Development of AlGaN/GaN Schottky Diodes and Rectifiers Based on Innovative Loss Model for Wireless Power Transfer. IEEE Trans. Microw. Theory Tech. 2025, 73, 6129–6138. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, H.; Zhu, X. Theoretical Analysis of RF-DC Conversion Efficiency for Class-F Rectifiers. IEEE Trans. Microw. Theory Tech. 2014, 62, 977–985. [Google Scholar] [CrossRef]
- Wang, C.; Shinohara, N.; Mitani, T. Study on 5.8-GHz single-stage charge pump rectifier for internal wireless system of satellite. IEEE Trans. Microw. Theory Tech. 2017, 65, 1058–1065. [Google Scholar] [CrossRef]
- Wang, C.; Yang, B.; Kojima, S.; Shinohara, N. The application of GHz band charge pump rectifier and rectenna array for satellite internal wireless system. Wirel. Power Transfer. 2019, 6, 190–195. [Google Scholar] [CrossRef]
- Liu, W.; Huang, K.; Wang, T.; Hou, J.; Zhang, Z. A Compact Ultra-Broadband RF Rectifier Using Dickson Charge Pump. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 591–594. [Google Scholar] [CrossRef]
- Chen, I.-T.; Tentzeris, M.M. Charge Pump Stage Optimization for 2.4 GHz/5.8 GHz Dual-Band Rectifier. In Proceedings of the 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC-URSI Radio Science Meeting (AP-S/INC-USNC-URSI), Firenze, Italy, 14–19 July 2024; pp. 1607–1608. [Google Scholar] [CrossRef]
- Miwatashi, K.; Hirakawa, T.; Shinohara, N.; Mitani, T. Development of High-Power Charge Pump Rectifier for Microwave Wireless Power Transmission. IEEE J. Microw. 2022, 2, 711–719. [Google Scholar] [CrossRef]
- Yu, S.; Cheng, F.; Gu, C.; Wang, C.; Huang, K. Compact and Efficient Broadband Rectifier Using T-type Matching Network. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 587–590. [Google Scholar] [CrossRef]
- Li, S.; Ghannouchi, F.; Vyas, R. A 2-stage, 50Ω RF-DC Charge-pump with Load Lines for high RF-DC Voltage Conversion. In Proceedings of the 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), Dallas, TX, USA, 4–7 August 2019; pp. 267–270. [Google Scholar] [CrossRef]
- Cheng, L.W.; Gnanagurunathan, G. Two-Stage Dickson Charge Pump Rectifier with Harmonics Suppression for 2.45 GHz WPT. In Proceedings of the 2020 IEEE International RF and Microwave Conference (RFM), Kuala Lumpur, Malaysia, 14–16 December 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Lee, H. 5.8 GHz ISM band energy harvester utilizing Dickson charge pump. In Proceedings of the 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Montreal, QC, Canada, 10–13 July 2016; pp. 1–2. [Google Scholar] [CrossRef]
- Gu, X.; de Almeida, J.V.; Hemour, S.; Khazaka, R.; Wu, K. Temperature-Stable Low-Power RF-to-DC Dickson Charge Pump Rectifiers for Battery-Free Sensing and IoT Systems. IEEE J. Radio Freq. Identif. 2024, 8, 632–642. [Google Scholar] [CrossRef]
- Mansouri, A.; El Magri, A.; Lajouad, R.; El Myasse, I.; Younes, E.K.; Giri, F. Wind energy based conversion topologies and maximum power point tracking: A comprehensive review and analysis. e-Prime—Adv. Electr. Eng. Electron. Energy 2023, 6, 100351. [Google Scholar] [CrossRef]
- Fan, S.; Yuan, Z.; Gou, W.; Zhao, Y.; Song, C.; Huang, Y.; Zhou, J.; Geng, L. A 2.45-GHz Rectifier-Booster Regulator With Impedance Matching Converters for Wireless Energy Harvesting. IEEE Trans. Microw. Theory Tech. 2019, 67, 3833–3843. [Google Scholar] [CrossRef]
- Bae, J.; Koo, H.; Lee, H.; Lim, W.; Lee, W.; Kang, W.; Hwang, K.C.; Lee, K.-Y.; Yang, Y. High-efficiency rectifier (5.2 GHz) using a Class-F Dickson charge pump. Microw. Opt. Technol. Lett. 2017, 59, 3018–3023. [Google Scholar] [CrossRef]
- Au, N.-D.; Nguyen, D.-M.; Nhut, T.D.; Seo, C. A 5.8-GHz Rectifier Using Diode-Connected MESFET for Space Solar Power Satellite System. IEEE Trans. Microw. Theory Tech. 2022, 70, 4502–4510. [Google Scholar] [CrossRef]
- Pham, B.L.; Pham, A. Triple bands antenna and high efficiency rectifier design for rf energy harvesting at 900, 1900 and 2400 Mhz. In Proceedings of the 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013; pp. 1–3. [Google Scholar]
Ref | Frequency (GHz) | Input Power (mW) | Efficiency (%) | Output Volt (V) | Load Resistance (Ω) | Size (mm2) | Topology |
---|---|---|---|---|---|---|---|
[20] | 0.8 | 6.3 a | 66.6 | 9 b | 2500 | 22 × 24 | Dickson |
[23] | 1.9 | 63 a | 78.2 | 5.5 b | 600 | 38 × 15 | Charge pump |
[29] | 2.45 | 20 a | 37.5 | 1.7 | 20,000 | — | Cockcroft–Walton |
[30] | 5.2 | 251 | 64.1 | 5.1 | 1150 | 19 × 18 | Dickson |
[31] | 5.8 | 126 | 73.2 | 5.5 c | 330 | 26 × 12 | Single Shunt |
[32] | 5.8 | 12.5 | 43% | — | 1500 | — | Dickson |
Our work | 5.8 | 30 | 70.5 | 7.2 | 2100 | 50 × 70 | Cockcroft–Walton |
5.8 | 30 | 68 | 5.4 | 1500 | 50 × 90 | Dickson |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, C.; Dong, S. High-Efficiency Multistage Charge Pump Rectifiers Design. Energies 2025, 18, 5350. https://doi.org/10.3390/en18205350
Wang Y, Wang C, Dong S. High-Efficiency Multistage Charge Pump Rectifiers Design. Energies. 2025; 18(20):5350. https://doi.org/10.3390/en18205350
Chicago/Turabian StyleWang, Ying, Ce Wang, and Shiwei Dong. 2025. "High-Efficiency Multistage Charge Pump Rectifiers Design" Energies 18, no. 20: 5350. https://doi.org/10.3390/en18205350
APA StyleWang, Y., Wang, C., & Dong, S. (2025). High-Efficiency Multistage Charge Pump Rectifiers Design. Energies, 18(20), 5350. https://doi.org/10.3390/en18205350