Is Digital Development the Answer to Energy Poverty? Evidence from China
Abstract
1. Introduction
2. Theoretical Analysis and Hypothesis
2.1. Mechanisms of Direct Effect
2.2. Mechanisms of Indirect Effect
2.3. The Mechanism of Nonlinear Effect
2.3.1. Theoretical Analysis of the Impact of Digital Development Disparities on the Effect of Digital Development in Alleviating Energy Poverty
2.3.2. Theoretical Analysis of the Impact of Energy Poverty Disparities on the Effect of Digital Development in Alleviating Energy Poverty
3. Methods and Data
3.1. Model Settings
3.1.1. Baseline Econometric Model
3.1.2. Mediation Effect Model
3.1.3. Panel Threshold Model
3.2. Variables and Data Sources
3.2.1. Explained Variable
3.2.2. Core Explanatory Variable
3.2.3. Other Variables
3.2.4. Data Sources
4. Results and Discussion
4.1. Baseline Regression
4.2. Endogeneity Treatment
4.2.1. Instrumental Variable Approach
4.2.2. Dynamic Panel Model
4.3. Robustness Tests
4.4. Heterogeneity Analysis
4.4.1. Alleviation Effects of Digital Development on Energy Poverty in Different Economic Regions
4.4.2. Alleviation Effect of Digital Development on Energy Poverty in Different Geographical Regions
4.4.3. Alleviation Effect of Digital Development on Energy Poverty in Regions with Different Energy Endowments
5. Impact Mechanism Test
5.1. Non-Agricultural Employment Mechanism Test
5.2. Human Capital Level Mechanism Test
5.3. Technological Innovation Mechanism Test
6. Empirical Test of Nonlinear Effects of Digital Development on Energy Poverty
6.1. Examining the Impact of Digital Development Disparities on the Alleviation Effect of Digital Development on Energy Poverty
6.1.1. Threshold Effect Test
6.1.2. Empirical Results Analysis
6.2. Impact Test of Energy Poverty Disparities on the Effect of Digital Development in Alleviating Energy Poverty
7. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Further Discussion on the Mechanism of Scientific and Technological Innovation
Appendix A.2. Detailed Discussion of How These Theories Underpin the Study’s Hypotheses and Findings
Appendix A.3. Entropy Value Calculation
Appendix A.4. Selection of Dimensions and Specific Indicators
- 1.
- Accessibility of Energy Services
- 2.
- Cleanliness of Energy Consumption
- 3.
- Completeness of Energy Management
- 4.
- Energy Affordability and Energy Efficiency
Appendix A.5. Energy Poverty Levels
Region/Year | 2003 | 2010 | 2017 | 2023 |
---|---|---|---|---|
Beijing | 0.537 | 0.512 | 0.461 | 0.385 |
Tianjin | 0.596 | 0.547 | 0.467 | 0.370 |
Hebei | 0.636 | 0.589 | 0.532 | 0.477 |
Shanxi | 0.834 | 0.721 | 0.603 | 0.505 |
Inner Mongolia | 0.783 | 0.656 | 0.512 | 0.392 |
Liaoning Ji Lin | 0.696 | 0.653 | 0.549 | 0.504 |
Heilongjiang | 0.715 | 0.657 | 0.596 | 0.546 |
Shanghai | 0.795 | 0.710 | 0.612 | 0.528 |
Jiangsu | 0.559 | 0.533 | 0.472 | 0.447 |
Zhejiang | 0.636 | 0.565 | 0.465 | 0.388 |
Anhui | 0.612 | 0.544 | 0.450 | 0.366 |
Fujian | 0.748 | 0.661 | 0.546 | 0.467 |
Jiangxi | 0.632 | 0.533 | 0.461 | 0.368 |
Shandong | 0.704 | 0.637 | 0.535 | 0.447 |
Henan | 0.727 | 0.627 | 0.517 | 0.441 |
Hubei | 0.805 | 0.736 | 0.587 | 0.476 |
Hunan | 0.792 | 0.659 | 0.527 | 0.400 |
Guangdong | 0.769 | 0.655 | 0.532 | 0.431 |
Guangxi | 0.741 | 0.655 | 0.542 | 0.412 |
Hainan | 0.801 | 0.671 | 0.553 | 0.449 |
Chongqing | 0.772 | 0.706 | 0.553 | 0.435 |
Sichuan | 0.743 | 0.608 | 0.527 | 0.420 |
Guizhou | 0.765 | 0.681 | 0.539 | 0.433 |
Yunnan | 0.893 | 0.796 | 0.635 | 0.535 |
Shaanxi | 0.896 | 0.766 | 0.634 | 0.541 |
Gansu | 0.812 | 0.712 | 0.589 | 0.477 |
Qinghai | 0.867 | 0.767 | 0.609 | 0.532 |
Ningxia | 0.732 | 0.600 | 0.455 | 0.359 |
Xinjiang | 0.788 | 0.634 | 0.510 | 0.413 |
Tianjin | 0.743 | 0.677 | 0.501 | 0.412 |
Appendix A.6. The Seven Dimensions of Digitalization
- 1.
- Digital Infrastructure
- 2.
- Digital Investment
- 3.
- Digital Application
- 4.
- Digital Innovation Capacity
- 5.
- Digital Industrialization
- 6.
- Industrial Digitization
- 7.
- Digital Governance
Appendix A.7. Detailed Description of Other Variables
Appendix A.8. The Specific Sources of Energy Poverty Data
Specific Indicator | Source of Indicators |
---|---|
Per capita electricity consumption | China Energy Statistical Yearbook, National Bureau of Statistics, Computation |
Per capita natural gas consumption | China Energy Statistical Yearbook, National Bureau of Statistics, Computation |
Per capita electricity generation | China Energy Statistical Yearbook, National Bureau of Statistics, Computation |
Gas penetration rate | National Bureau of Statistics |
Per capita LPG supply volume | China Energy Statistical Yearbook, Computation |
Per capita hot water supply capacity | China Energy Statistical Yearbook, Meteorological Science Data Sharing Service Network, National Bureau of Statistics, Computation |
Per capita installed hydropower capacity in rural areas | China Energy Statistical Yearbook, Computation |
Biogas production volume per rural household | China’s Agricultural Statistical Data |
Per capita clean energy consumption | China Energy Statistical Yearbook, Meteorological Science Data Sharing Service Network, Computation |
Per capita number of legal entities in relevant industries | China Energy Statistical Yearbook, National Bureau of Statistics, Computation |
Proportion of employees in relevant industries | Agricultural statistics and calculations in China |
Per capita investment in energy industry | China Energy Statistical Yearbook, National Bureau of Statistics, Computation |
Per capita energy funding investment in rural areas | China Agricultural Statistical Data, China Population and Employment Statistical Yearbook, Computation |
Family income | National Bureau of Statistics, Computation |
Air conditioner ownership per 100 households | National Bureau of Statistics |
Range hood ownership per 100 households | National Bureau of Statistics |
Refrigerator ownership per 100 households | National Bureau of Statistics |
Appendix A.9. Data Sources
Appendix A.10. Details of the Robustness Test Method
Appendix A.11. The Research Samples Are Categorized by Economic Regions:
Appendix A.12. The Research Samples Are Categorized by Geographical Regions:
Appendix A.13. The Research Samples Are Categorized by Energy Endowment
References
- Fan, A.; Li, Y.; Fang, S.; Li, Y.; Qiu, H. Energy Management Strategies and Comprehensive Evaluation of Parallel Hybrid Ship Based on Improved Fuzzy Logic Control. IEEE Trans. Transp. Electrif. 2024, 10, 7651–7666. [Google Scholar] [CrossRef]
- Khan, D.A. Energy Crisis and Its Socio-Economic Impacts: A Global Perspective. Multidiscip. J. Future Chall. 2024, 1, 1–14. [Google Scholar]
- Adom, P.K.; Amuakwa-Mensah, F.; Agradi, M.P.; Nsabimana, A. Energy poverty, development outcomes, and transition to green energy. Renew. Energy 2021, 178, 1337–1352. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). World Energy Outlook 2024; IEA: Paris, France, 2024. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sdgs.un.org/2030agenda (accessed on 25 August 2025).
- Dong, K.; Jiang, Q.; Shahbaz, M.; Zhao, J. Does low-carbon energy transition mitigate energy poverty? The case of natural gas for China. Energy Econ. 2021, 99, 105324. [Google Scholar] [CrossRef]
- World Health Organization. Population with Primary Reliance on Polluting Fuels and Technologies for Cooking. 2022. Available online: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/5652 (accessed on 25 August 2025).
- Lyu, Y.; Wu, Y.; Wu, G.; Wang, W.; Zhang, J. Digitalization and energy: How could digital economy eliminate energy poverty in China? Environ. Impact Assess. Rev. 2023, 103, 107243. [Google Scholar] [CrossRef]
- Hossain, M.R.; Rao, A.; Sharma, G.D.; Dev, D.; Kharbanda, A. Empowering energy transition: Green innovation, digital finance, and the path to sustainable prosperity through green finance initiatives. Energy Econ. 2024, 136, 107736. [Google Scholar] [CrossRef]
- Maroufkhani, P.; Desouza, K.C.; Perrons, R.K.; Iranmanesh, M. Digital transformation in the resource and energy sectors: A systematic review. Resour. Policy 2022, 76, 102622. [Google Scholar] [CrossRef]
- Varo, A.; Jiglau, G.; Grossmann, K.; Guyet, R. Addressing energy poverty through technological and governance innovation. Energy Sustain. Soc. 2022, 12, 49. [Google Scholar] [CrossRef]
- Dou, F.; Ye, J.; Yuan, G.; Lu, Q.; Niu, W.; Sun, H.; Guan, L.; Lu, G.; Mai, G.; Liu, N.; et al. Towards Artificial General Intelligence (AGI) in the Internet of Things (IoT): Opportunities and Challenges. arXiv 2023. [Google Scholar] [CrossRef]
- Lee, C.-C.; Yuan, Z.; Wang, Q. How does information and communication technology affect energy security? International evidence. Energy Econ. 2022, 109, 105969. [Google Scholar] [CrossRef]
- Ren, S.; Hao, Y.; Xu, L.; Wu, H.; Ba, N. Digitalization and energy: How does internet development affect China’s energy consumption? Energy Econ. 2021, 98, 105220. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, B. Can energy poverty be alleviated by targeting the low income? Constructing a multidimensional energy poverty index in China. Appl. Energy 2022, 321, 119374. [Google Scholar] [CrossRef]
- Hellemans, I.; Porter, A.J.; Diriker, D. Harnessing digitalization for sustainable development: Understanding how interactions on sustainability-oriented digital platforms manage tensions and paradoxes. Bus. Strategy Environ. 2022, 31, 668–683. [Google Scholar] [CrossRef]
- Powells, G.; Fell, M.J. Flexibility capital and flexibility justice in smart energy systems. Energy Res. Soc. Sci. 2019, 54, 56–59. [Google Scholar] [CrossRef]
- Ishida, H. The effect of ICT development on economic growth and energy consumption in Japan. Telemat. Inform. 2015, 32, 79–88. [Google Scholar] [CrossRef]
- Wei, C.; Li, Y. Design of energy consumption monitoring and energy-saving management system of intelligent building based on the Internet of things. In Proceedings of the 2011 International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; pp. 3650–3652. [Google Scholar] [CrossRef]
- Donner, J. Research Approaches to Mobile Use in the Developing World: A Review of the Literature. Inf. Soc. 2008, 24, 140–159. [Google Scholar] [CrossRef]
- Danquah, M.; Iddrisu, A.M. Access to mobile phones and the wellbeing of non-farm enterprise households: Evidence from Ghana. Technol. Soc. 2018, 54, 1–9. [Google Scholar] [CrossRef]
- Hao, Y.; Guo, Y.; Wu, H. The role of information and communication technology on green total factor energy efficiency: Does environmental regulation work? Bus. Strategy Environ. 2022, 31, 403–424. [Google Scholar] [CrossRef]
- Zhang, S.-H.; Yang, J.; Feng, C. Can internet development alleviate energy poverty? Evidence from China. Energy Policy 2023, 173, 113407. [Google Scholar] [CrossRef]
- Feng, Y.; Han, Y.; Hu, S.; Pan, Y. Alleviating energy poverty globally: Does digital government matter? Energy Econ. 2025, 143, 108272. [Google Scholar] [CrossRef]
- Awan, A.; Bilgili, F.; Rahut, D.B. Energy poverty trends and determinants in Pakistan: Empirical evidence from eight waves of HIES 1998–2019. Renew. Sustain. Energy Rev. 2022, 158, 112157. [Google Scholar] [CrossRef]
- Drescher, K.; Janzen, B. Determinants, persistence, and dynamics of energy poverty: An empirical assessment using German household survey data. Energy Econ. 2021, 102, 105433. [Google Scholar] [CrossRef]
- Opoku, E.E.O.; Dogah, K.E.; Kufuor, N.K.; Acheampong, A.O. The importance of human development in combating energy poverty. J. Int. Dev. 2024, 36, 1189–1209. [Google Scholar] [CrossRef]
- Ackermann, K.; Awaworyi Churchill, S.; Smyth, R. High-speed internet access and energy poverty. Energy Econ. 2023, 127, 107111. [Google Scholar] [CrossRef]
- Belaïd, F. Implications of poorly designed climate policy on energy poverty: Global reflections on the current surge in energy prices. Energy Res. Soc. Sci. 2022, 92, 102790. [Google Scholar] [CrossRef]
- Nguyen, C.P.; Su, T.D. The influences of government spending on energy poverty: Evidence from developing countries. Energy 2022, 238, 121785. [Google Scholar] [CrossRef]
- Dimnwobi, S.K.; Onuoha, F.C.; Uzoechina, B.I.; Ekesiobi, C.S.; Nwokoye, E.S. Does public capital expenditure reduce energy poverty? Evidence from Nigeria. Int. J. Energy Sect. Manag. 2022, 17, 717–738. [Google Scholar] [CrossRef]
- Barnes, D.F.; Khandker, S.R.; Samad, H.A. Energy poverty in rural Bangladesh. Energy Policy Spec. Sect. Offshore Wind Power Plan. Econ. Environ. 2011, 39, 894–904. [Google Scholar] [CrossRef]
- Ren, Y.-S.; Jiang, Y.; Narayan, S.; Ma, C.-Q.; Yang, X.-G. Marketisation and rural energy poverty: Evidence from provincial panel data in China. Energy Econ. 2022, 111, 106073. [Google Scholar] [CrossRef]
- Xia, W.; Murshed, M.; Khan, Z.; Chen, Z.; Ferraz, D. Exploring the nexus between fiscal decentralization and energy poverty for China: Does country risk matter for energy poverty reduction? Energy 2022, 255, 124541. [Google Scholar] [CrossRef]
- Munyanyi, M.E.; Churchill, S.A. Foreign aid and energy poverty: Sub-national evidence from Senegal. Energy Econ. 2022, 108, 105899. [Google Scholar] [CrossRef]
- Zhang, Q.; Appau, S.; Kodom, P.L. Energy poverty, children’s wellbeing and the mediating role of academic performance: Evidence from China. Energy Econ. 2021, 97, 105206. [Google Scholar] [CrossRef]
- Jia, W.; Wu, S. Spatial Differences and Influencing Factors of Energy Poverty: Evidence from Provinces in China. Front. Environ. Sci. 2022, 10, 921374. [Google Scholar] [CrossRef]
- Yan, H.; Yi, X.; Jiang, J.; Bai, C. Can information technology construction alleviate household energy poverty? Empirical evidence from the “broadband China” Pilot Policy. Energy Policy 2024, 185, 113966. [Google Scholar] [CrossRef]
- Zang, D.; Yang, Y.; Hu, Z.; He, J.; He, S. The impact of phone use on energy poverty: Evidence from Tibet, China. Energy Sustain. Dev. 2023, 72, 11–18. [Google Scholar] [CrossRef]
- Koomson, I.; Danquah, M. Financial inclusion and energy poverty: Empirical evidence from Ghana. Energy Econ. 2021, 94, 105085. [Google Scholar] [CrossRef]
- Mohsin, M.; Taghizadeh-Hesary, F.; Shahbaz, M. Nexus between financial development and energy poverty in Latin America. Energy Policy 2022, 165, 112925. [Google Scholar] [CrossRef]
- Yin, X.; Qi, L.; Zhou, J. The impact of heterogeneous environmental regulation on high-quality economic development in China: Based on the moderating effect of digital finance. Environ. Sci. Pollut. Res. 2023, 30, 24013–24026. [Google Scholar] [CrossRef] [PubMed]
- Norris, L. The spatial implications of rural business digitalization: Case studies from Wales. Reg. Stud. Reg. Sci. 2020, 7, 499–510. [Google Scholar] [CrossRef]
- Pelz, S.; Urpelainen, J. Measuring and explaining household access to electrical energy services: Evidence from rural northern India. Energy Policy 2020, 145, 111782. [Google Scholar] [CrossRef]
- Yang, X.; Gao, Y.; Paavo, P.; Qu, M. Digital “push and pull”: Mechanisms of rural energy poverty alleviation in China’s rural areas. Energy 2025, 316, 134526. [Google Scholar] [CrossRef]
- Simionescu, M.; Cifuentes-Faura, J. The digital economy and energy poverty in Central and Eastern Europe. Util. Policy 2024, 91, 101841. [Google Scholar] [CrossRef]
- Tao, M.; Yan, Z.J.; Wu, S.; Silva, E.; Qi, L. Can digitalization alleviate China’s energy poverty? Empirical investigation and mechanism analysis. Environ. Impact Assess. Rev. 2024, 109, 107634. [Google Scholar] [CrossRef]
- Xie, L.; Yang, H.-l.; Lin, X.-y.; Ti, S.-m.; Wu, Y.-y.; Zhang, S.; Zhang, S.-q.; Zhou, W.-l. Does the Internet Use Improve the Mental Health of Chinese Older Adults? Front. Public Health 2021, 9, 673368. [Google Scholar] [CrossRef]
- Luan, B.; Zou, H.; Huang, J. Digital divide and household energy poverty in China. Energy Econ. 2023, 119, 106543. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, D.; Wang, Q. How does information and communication technology affect China’s energy intensity? A three-tier structural decomposition analysis. Energy 2018, 151, 748–759. [Google Scholar] [CrossRef]
- Salahuddin, M.; Alam, K. Internet usage, electricity consumption and economic growth in Australia: A time series evidence. Telemat. Inform. 2015, 32, 862–878. [Google Scholar] [CrossRef]
- Postuła, M.; Chmielewski, W.; Puczyński, P.; Cieślik, R. The Impact of Information and Communication Technologies (ICT) on Energy Poverty and Unemployment in Selected European Union Countries. Energies 2021, 14, 6110. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Shuai, J.; Shuai, C. Can digitalization alleviate multidimensional energy poverty in rural China? Designing a policy framework for achieving the sustainable development goals. Sustain. Prod. Consum. 2023, 39, 466–479. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations; Free Press of Glencoe: New York, NY, USA,, 1962; Volume 32, pp. 891–937. [Google Scholar]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. Theor. Cogn. Self-Regul. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Williamson, O.E. Markets and Hierarchies: Analysis and Antitrust Implications: A Study in the Economics of Internal Organization; University of Illinois at Urbana-Champaign’s Academy for Entrepreneurial Leadership Historical Research Reference in Entrepreneurship: Champaign, IL, USA, 1975. [Google Scholar]
- Samuelson, P.A. The Pure Theory of Public Expenditure. In Public Goods and Market Failures; Routledge: Oxfordshire, UK, 1991. [Google Scholar]
- Ranis, G.; Fei, J.C.H. A Theory of Economic Development. Am. Econ. Rev. 1961, 51, 533–565. [Google Scholar]
- Mincer, J. Schooling, Experience, and Earnings; National Bureau of Economic Research, Inc.: Cambridge, MA, USA, 1974. [Google Scholar]
- Romer, P.M. Increasing Returns and Long-Run Growth. J. Political Econ. 1986, 94, 1002–1037. [Google Scholar] [CrossRef]
- Bass, F.M. A New Product Growth for Model Consumer Durables. Manag. Sci. 1969, 15, 215–227. [Google Scholar] [CrossRef]
- David, P.A. Clio and the Economics of QWERTY. Am. Econ. Rev. 1985, 75, 332–337. [Google Scholar]
- Dosi, G. Technological paradigms and technological trajectories: A suggested interpretation of the determinants and directions of technical change. Res. Policy 1983, 11, 147–162. [Google Scholar] [CrossRef]
- Sen, A. Poverty and Famines: An Essay on Entitlement and Deprivation; OUP Oxford: Oxford, UK, 1982. [Google Scholar]
- Azariadis, C. The Economics of Poverty Traps Part One: Complete Markets. J. Econ. Growth 1996, 1, 449–486. [Google Scholar] [CrossRef]
- Ravallion, M. Growth, Inequality and Poverty: Looking Beyond Averages. World Dev. 2001, 29, 1803–1815. [Google Scholar] [CrossRef]
- Romer, P.M. Endogenous Technological Change. J. Political Econ. 1990, 98, S71–S102. [Google Scholar] [CrossRef]
- Guo, Q.; You, W. How can the digital economy alleviate multidimensional energy poverty? Empirical evidence of 21 prefecture-level cities in Guangdong Province. Energy 2024, 301, 131692. [Google Scholar] [CrossRef]
- OECD. OECD Framework for Public Service Design and Delivery; OECD: Paris, France, 2020. [Google Scholar]
- China Academy of Information and Communications Technology. Global Digital Economy White Paper (2021); China Academy of Information and Communications Technology: Beijing, China, 2021. [Google Scholar]
- Zhao, M.; Liu, Z. Research on digital-driven corporate brand innovation development from the perspective of new quality productive forces. J. Xi’an Univ. Financ. Econ. 2024, 37, 72–83. [Google Scholar] [CrossRef]
- Ma, S.; He, Z.; Xu, Y. Digital construction, platform economy, and total factor carbon productivity. J. Stat. Inf. 2025, 1–13. [Google Scholar] [CrossRef]
- Li, Y.; Ruan, L. Measurement, dynamic evolution, and driving factors of digital village development in China. J. Stat. Inf. 2025, 40, 106–118. [Google Scholar] [CrossRef]
- Tian, W.; Liao, L. Research on the synergistic development of the digital economy and fiscal sustainability. J. Xi’an Univ. Financ. Econ. 2024, 37, 105–118. [Google Scholar] [CrossRef]
- He, K.; Zhu, X.; Li, F. Transforming “Carbon” into “Energy”: How carbon trading policies alleviate rural energy poverty. Manag. World 2023, 39, 122–144. [Google Scholar] [CrossRef]
- Tang, Z. Research on the Impact of Digital Economy on China’s Energy Poverty. Master’s Thesis, Guangxi University, Nanning, China, 2024. [Google Scholar] [CrossRef]
- Mahumane, G.; Mulder, P. Urbanization of energy poverty? The case of Mozambique. Renew. Sustain. Energy Rev. 2022, 159, 112089. [Google Scholar] [CrossRef]
- Wu, W.; Lu, Z. Research on the contribution of provincial education fiscal expenditure to human capital of local labor force under cross-provincial employment. Educ. Teach. Res. 2023, 37, 103–115. [Google Scholar] [CrossRef]
- Hu, L.; Xu, J.; Deng, D. A comparative study on the scale and intensity of China’s R&D expenditure. Mod. Sci. 2020, 27–38, 76. [Google Scholar]
- Nunn, N.; Qian, N. US Food Aid and Civil Conflict. Am. Econ. Rev. 2014, 104, 1630–1666. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef]
- Li, S. Research on the Impact of New-Type Urbanization on China’s Energy Poverty. Doctoral Dissertation, Xiangtan University, Xiangtan, China, 2024. [Google Scholar] [CrossRef]
Goal | Dimension | Element | Specific Indicator | Unit | Property |
---|---|---|---|---|---|
Energy poverty | Accessibility of energy services | Energy consumption | Per capita electricity consumption | kWh/cap | - |
Per capita natural gas consumption | m3/cap | - | |||
Energy supply | Per capita electricity generation | kWh/cap | - | ||
Gas penetration rate | % | - | |||
Per capita LPG supply volume | t/cap | - | |||
Per capita hot water supply capacity | W/cap | - | |||
Cleanliness of energy consumption | Low carbonization of energy consumption structure | Per capita installed hydropower capacity in rural areas | kW/cap | - | |
Clarification of energy consumption structure | Biogas production volume per rural household | m3/household | - | ||
Per capita clean energy consumption | kgce/cap | - | |||
Comprehensiveness of energy management | Energy management capability | Per capita number of legal entities in relevant industries | units/106 people | - | |
Proportion of employees in relevant industries | % | - | |||
Energy investment capability | Per capita investment in energy industry | yuan/cap | - | ||
Per capita energy funding investment in rural areas | yuan/cap | - | |||
Energy affordability and efficiency | Energy affordability | Family income | 10k yuan | - | |
Energy efficiency | Air conditioner ownership per 100 households | units/100 households | - | ||
Range hood ownership per 100 households | units/100 households | - | |||
Refrigerator ownership per 100 households | units/100 households | - |
Goal | Dimension | Specific Indicator | Unit | Property |
---|---|---|---|---|
Digital development | Digital infrastructure | Number of internet broadband access ports | 104 units/km2 | + |
Capacity of mobile telephone switching centers per square kilometer | 104 households/km2 | + | ||
Capacity of local telephone switching centers per square kilometer | 104 households/km2 | + | ||
Length of long-haul optical fiber cable lines | 104 km | + | ||
Digital investment | Fixed asset investment in digital-related industries | 108 yuan | + | |
Proportion of employees in digital-related industries | % | + | ||
Average wage of employees in digital-related industries | yuan | + | ||
Digital applications | Mobile phone penetration rate | % | + | |
Number of internet users | 104 people | + | ||
Digital TV subscribers | 104 people | + | ||
Computer usage per 100 people | units/100 people | + | ||
Digital innovation capability | Number of digital invention patent applications | 104 items | + | |
Number of digital utility model patent applications | 104 items | + | ||
Number of registered software copyrights | items | + | ||
Digital industrialization | Total volume of telecommunications services | 108 yuan | + | |
Output value of software and information services industry | 108 yuan | + | ||
Number of legal entities in digital-related industries | units/104 people | + | ||
Industrial digitalization | Number of websites per 100 enterprises | nits/100 enterprises | + | |
Sales revenue from e-commerce | 108 yuan | + | ||
Proportion of enterprises with e-commerce transaction activities | % | + | ||
Digital governance | Frequency count of digitalization-related terms in government work reports | items | + | |
Number of government open data platforms | units | + | ||
Establishment date of provincial big data management platform | years | + |
Variables | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
lnPoverty | 630 | −0.533 | 0.197 | −1.025 | −0.109 |
lnDigitization | 630 | −2.714 | 0.996 | −4.693 | −0.404 |
ln PerGDP | 630 | 10.460 | 0.772 | 8.218 | 12.207 |
ln Enepri | 630 | −4.407 | 1.236 | −9.690 | −2.112 |
lnUrbrur | 630 | 0.974 | 0.172 | 0.585 | 1.495 |
lnPopden | 630 | 5.440 | 1.273 | 2.000 | 8.281 |
lnNonagr | 630 | −0.466 | 0.262 | −1.510 | −0.013 |
lnHuman | 630 | 6.076 | 1.023 | 2.573 | 8.319 |
lnScitec | 630 | 13.814 | 1.635 | 9.079 | 17.364 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
lnDigitization | −0.026 *** | −0.026 *** | −0.027 *** | −0.027 *** | −0.025 *** |
(0.008) | (0.007) | (0.007) | (0.007) | (0.008) | |
lnPerGDP | −0.514 *** | −0.503 *** | −0.441 *** | −0.439 *** | |
(0.076) | (0.075) | (0.073) | (0.073) | ||
lnEnepri | 0.011 *** | 0.010 *** | 0.010 *** | ||
(0.003) | (0.003) | (0.003) | |||
lnUrbrur | 0.251 *** | 0.260 *** | |||
(0.041) | (0.043) | ||||
lnPopden | −0.024 | ||||
(0.033) | |||||
Constant term | −0.413 *** | 0.657 *** | 0.675 *** | 0.269 | 0.389 |
(0.031) | (0.160) | (0.158) | (0.167) | (0.237) | |
Control variables | No | Yes | Yes | Yes | Yes |
Regional fixed effects | Yes | Yes | Yes | Yes | Yes |
Time fixed effects | Yes | Yes | Yes | Yes | Yes |
Observations | 630 | 630 | 630 | 630 | 630 |
Adjusted R2 | 0.936 | 0.941 | 0.942 | 0.946 | 0.946 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
IV1 2SLS | IV2 2SLS | IV1 LIML | IV2 LIML | |||
lnDigitization | lnPoverty | lnDigitization | lnPoverty | lnPoverty | lnPoverty | |
IV1 | 0.244 *** (0.013) | |||||
IV2 | 0.241 *** (0.016) | |||||
lnDigitization | −0.047 *** (0.001) | −0.031 *** (0.012) | −0.047 *** (0.001) | −0.031 *** (0.012) | ||
Control variables | Yes | Yes | Yes | Yes | Yes | Yes |
Regional fixed effects | Yes | Yes | Yes | Yes | Yes | Yes |
Time fixed effects | Yes | Yes | Yes | Yes | Yes | Yes |
Anderson-LM | 217.268 [0.000] | 168.289 [0.000] | ||||
Cragg-Donald Wald F | 328.482 <16.38> | 227.441 <16.38> | ||||
Sargan | 0.074 [0.786] | |||||
Observations | 630 | 630 | 630 | 630 | 630 | 630 |
Variables | System GMM | Difference GMM | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
L.lnPoverty | 0.945 *** (0.006) | 0.877 *** (0.026) | 0.897 *** (0.005) | 0.852 *** (0.012) |
lnDigitization | −0.017 *** (0.001) | −0.027 *** (0.005) | −0.026 *** (0.001) | −0.029 *** (0.002) |
Constant term | −0.099 *** (0.006) | −0.261 *** (0.079) | −0.149 *** (0.005) | −0.152 (0.125) |
Control variables | No | Yes | No | Yes |
Observations | 600 | 600 | 600 | 600 |
AR (1) | −3.4097 *** [0.001] | −3.395 *** [0.001] | −3.419 *** [0.001] | −3.374 *** [0.001] |
AR (2) | 0.487 [0.626] | 0.688 [0.492] | 0.556 [0.578] | 0.667 [0.505] |
Sargan test-p value | 1.000 | 1.000 | 1.000 | 1.000 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
---|---|---|---|---|---|---|---|
lnDigitization | −0.018 *** | −0.029 *** | −0.020 ** | −0.106 *** | −0.018 ** | −0.023 *** | −0.026 *** |
(0.006) | (0.006) | (0.008) | (0.005) | (0.007) | (0.007) | (0.007) | |
lnPerGDP | −0.338 *** | −0.400 *** | −0.389 *** | −0.497 *** | −0.372 *** | −0.503 *** | −0.402 *** |
(0.062) | (0.073) | (0.079) | (0.056) | (0.069) | (0.076) | (0.073) | |
lnEnepri | 0.011 *** | 0.009 *** | 0.008 *** | 0.017 *** | 0.005 * | 0.010 *** | 0.009 *** |
(0.002) | (0.003) | (0.003) | (0.003) | (0.002) | (0.003) | (0.003) | |
lnUrbrur | 0.205 *** | 0.245 *** | 0.276 *** | 0.376 *** | 0.207 *** | 0.264 *** | 0.221 *** |
(0.037) | (0.043) | (0.047) | (0.039) | (0.043) | (0.044) | (0.043) | |
lnPopden | −0.001 | −0.106 *** | −0.065 * | 0.039 *** | −0.300 *** | −0.024 | −0.189 *** |
(0.028) | (0.033) | (0.036) | (0.012) | (0.036) | (0.033) | (0.058) | |
lnFamsca | 0.174 *** | ||||||
(0.052) | |||||||
lnEneinf | −0.013 *** | ||||||
(0.004) | |||||||
lnForest | 0.096 *** | ||||||
(0.030) | |||||||
Constant term | 0.220 | 0.741 *** | 0.502 * | −0.241 | 1.746 *** | 0.528 ** | −0.818 ** |
(0.201) | (0.220) | (0.265) | (0.158) | (0.229) | (0.240) | (0.388) | |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Regional fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Time fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 630 | 630 | 600 | 630 | 546 | 630 | 600 |
Adjusted R2 | 0.931 | 0.946 | 0.944 | 0.931 | 0.962 | 0.946 | 0.949 |
Variables | Eastern Regions | Central and Western Regions | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
lnDigitization | −0.016 | −0.022 | −0.030 *** | −0.029 *** |
(0.016) | (0.017) | (0.008) | (0.008) | |
Constant term | −0.491 *** | −0.997 ** | −0.362 *** | 0.360 ** |
(0.054) | (0.502) | (0.033) | (0.181) | |
Control variables | No | Yes | No | Yes |
Regional fixed effects | Yes | Yes | Yes | Yes |
Time fixed effects | Yes | Yes | Yes | Yes |
Observations | 231 | 231 | 399 | 399 |
Adjusted R2 | 0.907 | 0.911 | 0.959 | 0.962 |
Variables | Northern Regions | Southern Regions | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
lnDigitization | −0.046 *** | −0.031 *** | −0.014 | −0.003 |
(0.011) | (0.012) | (0.011) | (0.010) | |
Constant term | −0.496 *** | 1.122 *** | −0.259 *** | −1.150 *** |
(0.046) | (0.368) | (0.041) | (0.354) | |
Control variables | No | Yes | No | Yes |
Regional fixed effects | Yes | Yes | Yes | Yes |
Time fixed effects | Yes | Yes | Yes | Yes |
Observations | 315 | 315 | 315 | 315 |
Adjusted R2 | 0.915 | 0.932 | 0.957 | 0.962 |
Variables | Energy-Disadvantaged Regions | Energy-Advantaged Regions | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
lnDigitization | −0.054 *** | −0.067 *** | −0.013 * | −0.013 * |
(0.010) | (0.010) | (0.007) | (0.007) | |
Constant term | −0.562 *** | −0.090 | −0.217 *** | −0.903 *** |
(0.037) | (0.322) | (0.029) | (0.260) | |
Control variables | No | Yes | No | Yes |
Regional fixed effects | Yes | Yes | Yes | Yes |
Time fixed effects | Yes | Yes | Yes | Yes |
Observations | 315 | 315 | 315 | 315 |
Adjusted R2 | 0.931 | 0.944 | 0.979 | 0.979 |
Variables | (1) lnPoverty | (2) lnNonagr | (3) lnPoverty |
---|---|---|---|
lnDigitization | −0.025 *** | 0.121 *** | −0.012 |
(0.008) | (0.015) | (0.008) | |
lnNonagr | −0.114 *** | ||
(0.021) | |||
Constant term | 0.389 | −0.879 * | 0.289 |
(0.237) | (0.463) | (0.232) | |
Control variables | Yes | Yes | Yes |
Regional fixed effects | Yes | Yes | Yes |
Time fixed effects | Yes | Yes | Yes |
Observations | 630 | 630 | 630 |
Adjusted R2 | 0.946 | 0.736 | 0.948 |
Effect | Coefficient | Standard Error | Z-Value | p-Value | 95% Confidence Interval |
---|---|---|---|---|---|
Mediation effect | −0.014 | 0.003 | −4.540 | 0.000 | [−0.020, −0.008] |
Direct effect | −0.012 | 0.008 | −1.37 | 0.172 | [−0.028, 0.005] |
Variables | (1) lnPoverty | (2) lnHuman | (3) lnPoverty |
---|---|---|---|
lnDigitization | −0.025 *** | 0.089 *** | −0.016 ** |
(0.008) | (0.026) | (0.007) | |
lnHuman | −0.102 *** | ||
(0.011) | |||
Constant term | 0.389 | −0.102 | 0.379 * |
(0.237) | (0.822) | (0.222) | |
Control variables | Yes | Yes | Yes |
Regional fixed effects | Yes | Yes | Yes |
Time fixed effects | Yes | Yes | Yes |
Observations | 630 | 630 | 630 |
Adjusted R2 | 0.946 | 0.972 | 0.952 |
Effect | Coefficient | Standard Error | Z-Value | p-Value | 95% Confidence Interval |
---|---|---|---|---|---|
Mediation effect | −0.009 | 0.003 | −2.830 | 0.005 | [−0.015, −0.003] |
Direct effect | −0.016 | 0.008 | −2.080 | 0.038 | [−0.032, −0.001] |
Variables | (1) lnPoverty | (2) lnScitec | (3) lnPoverty |
---|---|---|---|
lnDigitization | −0.025 *** | 0.245 *** | −0.014 * |
(0.008) | (0.049) | (0.007) | |
lnScitec | −0.046 *** | ||
(0.006) | |||
Constant term | 0.389 | 5.829 *** | 0.655 *** |
(0.237) | (1.543) | (0.229) | |
Control variables | Yes | Yes | Yes |
Regional fixed effects | Yes | Yes | Yes |
Time fixed effects | Yes | Yes | Yes |
Observations | 630 | 630 | 630 |
Adjusted R2 | 0.946 | 0.935 | 0.950 |
Effect | Coefficient | Standard Error | Z-Value | p-Value | 95% Confidence Interval |
---|---|---|---|---|---|
Mediation effect | −0.011 | 0.003 | −3.350 | 0.001 | [−0.018, −0.005] |
Direct effect | −0.014 | 0.009 | −1.650 | 0.100 | [−0.031, 0.003] |
F | P | BS | Critical Value | Threshold Estimate | 95% Confidence Interval | |||
---|---|---|---|---|---|---|---|---|
1% | 5% | 10% | ||||||
Single | 63.640 | 0.036 | 1000 | 85.827 | 59.233 | 48.563 | −4.016 | [−4.037, −4.000] |
Double | 24.730 | 0.276 | 1000 | 77.273 | 50.498 | 38.658 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
lnDigitization | −0.026 *** | −0.025 *** | ||
(0.008) | (0.008) | |||
lnDigitization (1) | −0.033 *** | −0.029 *** | ||
(Digitization ≤ 0.018) | (0.007) | (0.007) | ||
lnDigitization (2) | −0.019 *** | −0.019 *** | ||
(Digitization > 0.018) | (0.007) | (0.007) | ||
lnPerGDP | −0.439 *** | −0.393 *** | ||
(0.073) | (0.072) | |||
lnEnepri | 0.010 *** | 0.007 *** | ||
(0.003) | (0.003) | |||
lnUrbrur | 0.260 *** | 0.229 *** | ||
(0.043) | (0.042) | |||
lnPopden | −0.024 | −0.033 | ||
(0.033) | (0.032) | |||
Constant term | −0.413 *** | 0.389 | −0.413 *** | 0.367 |
(0.031) | (0.237) | (0.029) | (0.231) | |
Control variables | No | Yes | No | Yes |
Regional fixed effects | Yes | Yes | Yes | Yes |
Time fixed effects | Yes | Yes | Yes | Yes |
Observations | 630 | 630 | 630 | 630 |
Adjusted R2 | 0.936 | 0.946 | 0.942 | 0.948 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
QR_10 | QR_25 | QR_50 | QR_75 | QR_90 | |
lnDigitization | −0.011 | −0.013 *** | −0.017 ** | −0.023 *** | −0.025 *** |
(0.011) | (0.004) | (0.007) | (0.008) | (0.007) | |
lnPerGDP | −0.269 ** | −0.154 *** | −0.275 *** | −0.195 ** | −0.212 *** |
(0.108) | (0.040) | (0.071) | (0.079) | (0.063) | |
lnEnepri | 0.004 | 0.003 * | 0.005 * | 0.004 | 0.007 *** |
(0.004) | (0.001) | (0.003) | (0.003) | (0.002) | |
lnUrbrur | 0.171 *** | 0.158 *** | 0.151 *** | 0.125 *** | 0.046 |
(0.064) | (0.023) | (0.042) | (0.047) | (0.037) | |
lnPopden | −0.066 | 0.022 | 0.072 ** | −0.131 *** | −0.153 *** |
(0.049) | (0.018) | (0.032) | (0.036) | (0.029) | |
Constant term | 0.391 | −0.597 *** | −0.620 ** | 0.727 ** | 1.048 *** |
(0.425) | (0.156) | (0.277) | (0.311) | (0.249) | |
Regional fixed effects | Yes | Yes | Yes | Yes | Yes |
Time fixed effects | Yes | Yes | Yes | Yes | Yes |
Observations | 630 | 630 | 630 | 630 | 630 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Li, X.; Li, L.; Fang, L.; Chen, Y.; Zama, N.I. Is Digital Development the Answer to Energy Poverty? Evidence from China. Energies 2025, 18, 5330. https://doi.org/10.3390/en18205330
Yang Y, Li X, Li L, Fang L, Chen Y, Zama NI. Is Digital Development the Answer to Energy Poverty? Evidence from China. Energies. 2025; 18(20):5330. https://doi.org/10.3390/en18205330
Chicago/Turabian StyleYang, Yaofeng, Xiuqing Li, Luping Li, Lan Fang, Yajuan Chen, and Nde Ivo Zama. 2025. "Is Digital Development the Answer to Energy Poverty? Evidence from China" Energies 18, no. 20: 5330. https://doi.org/10.3390/en18205330
APA StyleYang, Y., Li, X., Li, L., Fang, L., Chen, Y., & Zama, N. I. (2025). Is Digital Development the Answer to Energy Poverty? Evidence from China. Energies, 18(20), 5330. https://doi.org/10.3390/en18205330