Wind Integration and Power System Planning: Challenges, Policies, and Governance in Italy
1. Expanding Wind Power: The European Transition and the Italian Case
2. Power Flows and Metaheuristics: Advanced Approaches for Planning and Operation Under High Wind Penetration
3. Beyond Growth Toward Grid Congestion, Oscillations, and Power Quality Issues
4. Grid Bottlenecks and Policy Choices: Driving Wind Growth in Italy
Author Contributions
Funding
Conflicts of Interest
References
- Global Wind Energy Council (GWEC). Global Wind Report 2025; Technical Report; GWEC: Brussels, Belgium, 2025. [Google Scholar]
- WindEurope. Wind Energy in Europe: 2024 Statistics and Outlook 2025–2030; Technical Report; WindEurope: Brussels, Belgium, 2025. [Google Scholar]
- Tiismus, H.; Maask, V.; Astapov, V.; Korotko, T.; Rosin, A. State-of-the-art review of emerging trends in renewable energy generation technologies. IEEE Access 2025, 13, 10820–10843. [Google Scholar] [CrossRef]
- Tumse, S.; Bilgili, M.; Yildirim, A.; Sahin, B. Comparative analysis of global onshore and offshore wind energy characteristics and potentials. Sustainability 2024, 16, 6614. [Google Scholar] [CrossRef]
- Khan, F.; Rapposelli, A. Offshore Wind Farm Development in Italy. In Proceedings of the Scientific Meeting of the Italian Statistical Society, Bari, Italy, 17–20 June 2024; Springer: Cham, Switzerland, 2024; pp. 183–187. [Google Scholar]
- Guercio, A.; Rincione, R.; Curto, D.; Longo, S.; Martorana, P.; Guarino, F.; Cellura, M. Evaluation of the potential environmental impacts from an offshore wind energy farm in the Mediterranean Sea. In Proceedings of the OCEANS 2024—Singapore, Singapore, 15–18 April 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar]
- Khamees, A.K.; Abdelaziz, A.Y.; Eskaros, M.R.; Alhelou, H.H.; Attia, M.A. Stochastic modeling for wind energy and multi-objective optimal power flow by novel meta-heuristic method. IEEE Access 2021, 9, 158353–158366. [Google Scholar] [CrossRef]
- Nagarajan, K.; Rajagopalan, A.; Bajaj, M.; Raju, V.; Blazek, V. Enhanced wombat optimization algorithm for multi-objective optimal power flow in renewable energy and electric vehicle integrated systems. Results Eng. 2025, 25, 103671. [Google Scholar] [CrossRef]
- Khosravy, M.; Gupta, N.; Witkowski, O. Frontiers in Genetics Algorithm Theory and Applications; Springer: Singapore, 2024. [Google Scholar]
- Li, N.; Zhou, G.; Zhou, Y.; Deng, W.; Luo, Q. Multi-objective pathfinder algorithm for multi-objective optimal power flow problem with random renewable energy sources: Wind, photovoltaic and tidal. Sci. Rep. 2023, 13, 10647. [Google Scholar] [CrossRef] [PubMed]
- Evangeline, S.I.; Rathika, P. Wind farm incorporated optimal power flow solutions through multi-objective horse herd optimization with a novel constraint handling technique. Expert Syst. Appl. 2022, 194, 116544. [Google Scholar] [CrossRef]
- Pandya, S.B.; Kalita, K.; Čep, R.; Jangir, P.; Chohan, J.S.; Abualigah, L. Multi-objective snow ablation optimization algorithm: An elementary vision for security-constrained optimal power flow problem incorporating wind energy source with FACTS devices. Int. J. Comput. Intell. Syst. 2024, 17, 33. [Google Scholar] [CrossRef]
- Pandya, S.B.; Ravichandran, S.; Manoharan, P.; Jangir, P.; Alhelou, H.H. Multi-objective optimization framework for optimal power flow problem of hybrid power systems considering security constraints. IEEE Access 2022, 10, 103509–103528. [Google Scholar] [CrossRef]
- Avar, A.; Ghanbari, E. Optimal integration and planning of PV and wind renewable energy sources into distribution networks using the hybrid model of analytical techniques and metaheuristic algorithms: A deep learning-based approach. Comput. Electr. Eng. 2024, 117, 109280. [Google Scholar] [CrossRef]
- Shao, H.; Henriques, R.; Morais, H.; Tedeschi, E. Power quality monitoring in electric grid integrating offshore wind energy: A review. Renew. Sustain. Energy Rev. 2024, 191, 114094. [Google Scholar] [CrossRef]
- Wu, D.; Seo, G.S.; Xu, L.; Su, C.; Kocewiak, L.; Sun, Y.; Qin, Z. Grid integration of offshore wind power: Standards, control, power quality and transmission. IEEE Open J. Power Electron. 2024, 5, 583–604. [Google Scholar] [CrossRef]
- Loza, B.; Minchala, L.I.; Ochoa-Correa, D.; Martinez, S. Grid-friendly integration of wind energy: A review of power forecasting and frequency control techniques. Sustainability 2024, 16, 9535. [Google Scholar] [CrossRef]
- Musca, R.; Sanseverino, E.R.; Vasile, A.; Zizzo, G.; Iaria, A.; L’Abbate, A.; Vitulano, L. Power-Flow studies on the Future Electricity Grid of Sicily: Analysis of 2030 Scenario Cases. In Proceedings of the 2023 AEIT International Annual Conference (AEIT), Rome, Italy, 5–7 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Di Gloria, P.; Paradiso, S.; Pede, M.; Sorrentino, V.M.E.; Vergine, C.; Massaro, F.; Vasile, A.; Zizzo, G. On the Impact of Renewable Generation on the Sicilian Power System in Near-Future Scenarios: A Case Study. Energies 2024, 17, 3352. [Google Scholar] [CrossRef]
- Terna S.p.A. Econnextion: The Map of Storage and Renewable Connections. 2023. Available online: https://www.terna.it/en/electric-system/efficient-territorial-planning/econnextion (accessed on 19 September 2025).
- Roberge, I.; McKeen-Edwards, H.; Campbell-Verduyn, M. Ineffective policies: Causes and consequences of bad policy decisions. In Ineffective Policies; Policy Press: Bristol, UK, 2025; pp. 1–14. [Google Scholar]
- Gazzani, F. Acceptance of offshore wind farm in Southwest Sardinia in Italy. Do regional energy policies matter? Int. J. Energy Sect. Manag. 2024, 18, 2169–2190. [Google Scholar] [CrossRef]
- Shah, A.A.; Wang, S.C.; Liu, G.; Hassan, R.U.; Nawaz, A. Scenario Based Optimal Power Flow Evaluation for Wind Power Allocation Capacity in Modern Power Systems. IEEE Access 2025, 13, 38443–38453. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astolfi, D.; Pasetti, M. Wind Integration and Power System Planning: Challenges, Policies, and Governance in Italy. Energies 2025, 18, 5297. https://doi.org/10.3390/en18195297
Astolfi D, Pasetti M. Wind Integration and Power System Planning: Challenges, Policies, and Governance in Italy. Energies. 2025; 18(19):5297. https://doi.org/10.3390/en18195297
Chicago/Turabian StyleAstolfi, Davide, and Marco Pasetti. 2025. "Wind Integration and Power System Planning: Challenges, Policies, and Governance in Italy" Energies 18, no. 19: 5297. https://doi.org/10.3390/en18195297
APA StyleAstolfi, D., & Pasetti, M. (2025). Wind Integration and Power System Planning: Challenges, Policies, and Governance in Italy. Energies, 18(19), 5297. https://doi.org/10.3390/en18195297