Bridging Bioenergy and Artificial Intelligence for Sustainable Technological Synergies
1. Introduction
2. Discussion
2.1. Biofuel Yield and Quality Prediction
2.2. Process Optimization
2.3. Real-Time Process Monitoring and Automated Control
2.4. Creating a Positive Feedback Loop: AI for Bioenergy and Bioenergy for AI
3. Conclusions
Funding
Conflicts of Interest
References
- Welfle, A.J.; Almena, A.; Arshad, M.N.; Banks, S.W.; Butnar, I.; Chong, K.J.; Cooper, S.; Daly, H.; Freites, S.G.; Güleç, F.; et al. Sustainability of bioenergy—Mapping the risks & benefits to inform future bioenergy systems. Biomass Bioenergy 2023, 177, 106919. [Google Scholar] [CrossRef]
- International Energy Agency. Bioenergy. Available online: https://www.iea.org/energy-system/renewables/bioenergy (accessed on 3 September 2025).
- Buffi, M.; Scarlat, N. Biofuels production and development in the European Union. In IEA Bioenergy T39 Biofuel News; IEA Bioenergy: Varese, Italy, 2023; Available online: https://www.ieabioenergy.com/blog/publications/biofuels-production-and-development-in-the-european-union/ (accessed on 3 September 2025).
- Raj, T.; Chandrasekhar, K.; Kumar, A.N.; Banu, J.R.; Yoon, J.-J.; Bhatia, S.K.; Yang, Y.-H.; Varjani, S.; Kim, S.-H. Recent advances in commercial biorefineries for lignocellulosic ethanol production: Current status, challenges and future perspectives. Bioresour. Technol. 2022, 344, 126292. [Google Scholar] [CrossRef] [PubMed]
- Watson, M.J.; da Silva, A.V.; Machado, P.G.; Ribeiro, C.O.; Nascimento, C.A.; Dowling, A.W. The Case for Biojet Fuel from Bioethanol in Brazil: An Optimization-Based Analysis Using Historical Market Data. Ind. Eng. Chem. Res. 2025, 64, 4410–4424. [Google Scholar] [CrossRef] [PubMed]
- Martins, W.A.; Neto, F.S.; Sousa, P.d.S.; Cavalcante, I.O.; da Silva, J.L.; Melo, R.L.F.; de Lima, R.K.C.; Vieira, R.d.S.; Aires, F.I.d.S.; dos Santos, J.C.S. Biohydrogen production in bioreactors: Global trends, key factors, and emerging directions. Int. J. Hydrogen Energy 2024, 94, 943–958. [Google Scholar] [CrossRef]
- Islam, S.; Fuad, M.M.N.; Malitha, S.B.; Alam, Z. Advanced biofuels research: A Scopus database-driven bibliometric evaluation and future directions forecast via machine learning and deep learning. Clean. Chem. Eng. 2025, 11, 100188. [Google Scholar] [CrossRef]
- Beringer, T.; Lucht, W.; Schaphoff, S. Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy 2011, 3, 299–312. [Google Scholar] [CrossRef]
- Anbarasu, K.; Thanigaivel, S.; Sathishkumar, K.; Alam, M.M.; Al-Sehemi, A.G.; Devarajan, Y. Harnessing Artificial Intelligence for Sustainable Bioenergy: Revolutionizing Optimization, Waste Reduction, and Environmental Sustainability. Bioresour. Technol. 2025, 418, 131893. [Google Scholar] [CrossRef]
- Manatura, K.; Chalermsinsuwan, B.; Kaewtrakulchai, N.; Kwon, E.E.; Chen, W.-H. Machine learning and statistical analysis for biomass torrefaction: A review. Bioresour. Technol. 2023, 369, 128504. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Q.; Chen, J.; Xu, D.; Zhan, H.; Peng, H.; Pan, J.; Vlaskin, M.; Leng, L.; Li, H. Machine learning for hydrothermal treatment of biomass: A review. Bioresour. Technol. 2023, 370, 128547. [Google Scholar] [CrossRef]
- Khandelwal, K.; Nanda, S.; Dalai, A.K. Machine learning to predict the production of bio-oil, biogas, and biochar by pyrolysis of biomass: A review. Environ. Chem. Lett. 2024, 22, 2669–2698. [Google Scholar] [CrossRef]
- Mafat, I.H.; Surya, D.V.; Rao, C.S.; Kandya, A.; Basak, T. A review on the role of various machine learning algorithms in microwave-assisted pyrolysis of lignocellulosic biomass waste. J. Environ. Manag. 2024, 371, 123277. [Google Scholar] [CrossRef]
- Bhushan, D.; Hooda, S.; Mondal, P. Co-pyrolysis of biomass and plastic wastes and application of machine learning for modelling of the process: A comprehensive review. J. Energy Inst. 2025, 119, 101973. [Google Scholar] [CrossRef]
- Wang, M.; Chen, L.; Chen, D.; Ding, K.; Li, B.; Lv, P.; Song, X.; Jiao, Y.; Guo, Q.; Yu, G.; et al. Modeling study on biomass gasification for H2-rich syngas production based on machine learning: A comprehensive review. Renew. Sustain. Energy Rev. 2026, 226, 116223. [Google Scholar] [CrossRef]
- Nakimuli, C.N.; Kaggwa, F.; De Greef, J.; Okot, D.K.; Blondeau, J.; Kawuma, S. Review of machine learning applications for predicting the quality of biomass briquettes for sustainable and low-carbon energy solutions. Green Energy Resour. 2025, 3, 100130. [Google Scholar] [CrossRef]
- Torres, A.I.; Ferreira, J.; Pedemonte, M. Machine learning and process systems engineering for sustainable chemical processes—A short review. Curr. Opin. Green Sustain. Chem. 2025, 51, 100982. [Google Scholar] [CrossRef]
- Wang, R.; He, Z.; Chen, H.; Guo, S.; Zhang, S.; Wang, K.; Wang, M.; Ho, S.-H. Enhancing biomass conversion to bioenergy with machine learning: Gains and problems. Sci. Total. Environ. 2024, 927, 172310. [Google Scholar] [CrossRef]
- Akhator, P.; Oboirien, B. Digitilising the energy sector: A comprehensive digital twin framework for biomass gasification power plant with CO2 capture. Clean. Energy Syst. 2025, 10, 100175. [Google Scholar] [CrossRef]
- Sheik, A.G.; Kumar, A.; Ansari, F.A.; Raj, V.; Peleato, N.M.; Patan, A.K.; Kumari, S.; Bux, F. Reinvigorating algal cultivation for biomass production with digital twin technology—A smart sustainable infrastructure. Algal Res. 2024, 84, 103779. [Google Scholar] [CrossRef]
- Selwal, N.; Sultana, H.; Rahayu, F.; Hariyono, B.; Riajaya, P.D.; Kadarwati, F.T.; Herwati, A.; Latifah, E.; Indriani, F.C.; Saeri, M.; et al. Emerging technologies in biomass conversion: Bioengineering and nanocatalysts to AI-driven process optimization. Biomass Bioenergy 2025, 200, 108054. [Google Scholar] [CrossRef]
- Ananda, A.; Sujeeth, R.K.; Archana, S. Integrating Automation in Biomass Transformation: Opportunities, Challenges, and Future Directions. BioEnergy Res. 2025, 18, 1–25. [Google Scholar] [CrossRef]
- Naidu, S.; Pandey, H.; Passalacqua, A.; Hameed, S.; Joshi, J.; Sharma, A. Advancements in modeling and simulation of biomass pyrolysis: A comprehensive review. J. Anal. Appl. Pyrolysis 2025, 188, 107030. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, J.; Anderson, N. Machine learning applications in forest and biomass supply chain management: A review. Int. J. For. Eng. 2024, 35, 371–380. [Google Scholar] [CrossRef]
- Mahdavi, N.; Dutta, A.; Tasnim, S.H.; Mahmud, S. Review of machine learning techniques for energy sharing and biomass waste gasification pathways in integrating solar greenhouses into smart energy systems. Energy AI 2025, 20, 100498. [Google Scholar] [CrossRef]
- Paccou, R.; Wijnhoven, F. Exploring the AI electricity crisis scenario: A case study of Texas-ERCOT. Next Energy 2025, 8, 100341. [Google Scholar] [CrossRef]
- Jegham, N.; Abdelatti, M.; Elmoubarki, L.; Hendawi, A. How Hungry is AI? Benchmarking Energy, Water, and Carbon Footprint of LLM Inference. arXiv 2025. [Google Scholar] [CrossRef]
- Davenport, C.; Singer, B.; Mehta, N.; Lee, B.; Mackay, J.; Modak, A.; Corbett, B.; Miller, J.; Hari, T.; Ritchie, J.; et al. AI, Data Centers and the Coming US Power Demand Surge; Goldman Sachs: New York, NY, USA, 2024. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djandja, O.S.; He, Q. Bridging Bioenergy and Artificial Intelligence for Sustainable Technological Synergies. Energies 2025, 18, 5293. https://doi.org/10.3390/en18195293
Djandja OS, He Q. Bridging Bioenergy and Artificial Intelligence for Sustainable Technological Synergies. Energies. 2025; 18(19):5293. https://doi.org/10.3390/en18195293
Chicago/Turabian StyleDjandja, Oraléou Sangué, and Quan (Sophia) He. 2025. "Bridging Bioenergy and Artificial Intelligence for Sustainable Technological Synergies" Energies 18, no. 19: 5293. https://doi.org/10.3390/en18195293
APA StyleDjandja, O. S., & He, Q. (2025). Bridging Bioenergy and Artificial Intelligence for Sustainable Technological Synergies. Energies, 18(19), 5293. https://doi.org/10.3390/en18195293