Role of Artificial Intelligence in Large Wind Turbine Designs
Acknowledgments
Conflicts of Interest
References
- Bangga, G. Progress and outlook in wind energy research. Energies 2022, 15, 6527. [Google Scholar] [CrossRef]
- Bangga, G. Climate change challenge-a wind energy perspective. Front. Energy Res. 2024, 12, 1448211. [Google Scholar] [CrossRef]
- De Anda, J.; Ruiz, S.E.; Bojórquez, E.; Inzunza-Aragon, I. Towards optimal reliability-based design of wind turbines towers using artificial intelligence. Eng. Struct. 2023, 294, 116778. [Google Scholar] [CrossRef]
- Yang, N.; Pan, Q. An application of machine learning techniques in prediction of manufacturing quality of a composite wind turbine blade. Eng. Comput. 2025, 1–26. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, T.; Chu, X.; Xue, D. Multi-objective deep reinforcement learning for optimal design of wind turbine blade. Renew. Energy 2023, 203, 854–869. [Google Scholar] [CrossRef]
- Muñoz-Palomeque, E.; Sierra-García, J.E.; Santos, M. Wind turbine maximum power point tracking control based on unsupervised neural networks. J. Comput. Des. Eng. 2023, 10, 108–121. [Google Scholar] [CrossRef]
- Song, D.; Shen, G.; Huang, C.; Huang, Q.; Yang, J.; Dong, M.; Joo, Y.H.; Duić, N. Review on the application of artificial intelligence methods in the control and design of offshore wind power systems. J. Mar. Sci. Eng. 2024, 12, 424. [Google Scholar] [CrossRef]
- Jiang, X.; Day, S.; Clelland, D.; Liang, X. Analysis and real-time prediction of the full-scale thrust for floating wind turbine based on artificial intelligence. Ocean Eng. 2019, 175, 207–216. [Google Scholar] [CrossRef]
- Geibel, M.; Bangga, G. Data reduction and reconstruction of wind turbine wake employing data driven approaches. Energies 2022, 15, 3773. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Dong, M.; Huang, L.; Guo, Y.; He, S. Deep learning-based prediction of wind power for multi-turbines in a wind farm. Front. Energy Res. 2021, 9, 723775. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, L.; Xu, J.; Wang, Z.; Yuan, J.; Tan, A.C. A reduced order modeling-based machine learning approach for wind turbine wake flow estimation from sparse sensor measurements. Energy 2024, 294, 130772. [Google Scholar] [CrossRef]
- Amini, A.; Kanfoud, J.; Gan, T.H. An artificial intelligence neural network predictive model for anomaly detection and monitoring of wind turbines using scada data. Appl. Artif. Intell. 2022, 36, 2034718. [Google Scholar] [CrossRef]
- Lee, N.; Woo, J.; Kim, S. A deep reinforcement learning ensemble for maintenance scheduling in offshore wind farms. Appl. Energy 2025, 377, 124431. [Google Scholar] [CrossRef]
- Abdalla, A.N.; Nazir, M.S.; Tao, H.; Cao, S.; Ji, R.; Jiang, M.; Yao, L. Integration of energy storage system and renewable energy sources based on artificial intelligence: An overview. J. Energy Storage 2021, 40, 102811. [Google Scholar] [CrossRef]
- Talaat, M.; Elkholy, M.; Alblawi, A.; Said, T. Artificial intelligence applications for microgrids integration and management of hybrid renewable energy sources. Artif. Intell. Rev. 2023, 56, 10557–10611. [Google Scholar] [CrossRef]
- Lastomo, D.; Setiadi, H.; Bangga, G.; Farid, I.W.; Faisal, M.; Hutomo, P.G.; Syawitri, T.P.; Putra, L.; Hendranata, Y.; Stefanus, K.; et al. Low-Frequency Oscillation Mitigation usin an Optimal Coordination of CES and PSS based on BA. In Proceedings of the 2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Malang, Indonesia, 16–18 October 2018; pp. 216–221. [Google Scholar]
- Li, J.; Dao, M.H.; Le, Q.T. Data-driven modal parameterization for robust aerodynamic shape optimization of wind turbine blades. Renew. Energy 2024, 224, 120115. [Google Scholar] [CrossRef]
- Herrmann, J.; Bangga, G. Multi-objective optimization of a thick blade root airfoil to improve the energy production of large wind turbines. J. Renew. Sustain. Energy 2019, 11, 043304. [Google Scholar] [CrossRef]
- Radi, J.; Sierra-García, J.E.; Santos, M.; Armenta-Déu, C.; Djebli, A. Metaheuristic Optimization of Wind Turbine Airfoils with Maximum-Thickness and Angle-of-Attack Constraints. Energies 2024, 17, 6440. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Lei, Z.; Zhu, Q.; Cheng, J.; Gao, S. Reinforcement learning-based particle swarm optimization for wind farm layout problems. Energy 2024, 313, 134050. [Google Scholar] [CrossRef]
- Bangga, G. Sensitivity of dynamic stall models to dynamic excitation on large flexible wind turbine blades in edgewise vibrations. Energies 2025, 18, 470. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, J.W.; Li, F.; Zhai, E. Stall-induced vibrations analysis and mitigation of a wind turbine rotor at idling state: Theory and experiment. Renew. Energy 2022, 187, 710–727. [Google Scholar] [CrossRef]
- Bangga, G.; Carrion, M.; Collier, W.; Parkinson, S. Technical modeling challenges for large idling wind turbines. J. Phys. Conf. Ser. 2023, 2626, 012026. [Google Scholar] [CrossRef]
- Bangga, G.; Parkinson, S.; Collier, W. Development and validation of the iag dynamic stall model in state-space representation for wind turbine airfoils. Energies 2023, 16, 3994. [Google Scholar] [CrossRef]
- Ali, N.; Calaf, M.; Cal, R.B. Clustering sparse sensor placement identification and deep learning based forecasting for wind turbine wakes. J. Renew. Sustain. Energy 2021, 13, 023307. [Google Scholar] [CrossRef]
- Yang, K.; Deng, X.; Ti, Z.; Yang, S.; Huang, S.; Wang, Y. A data-driven layout optimization framework of large-scale wind farms based on machine learning. Renew. Energy 2023, 218, 119240. [Google Scholar] [CrossRef]
- Dong, H.; Xie, J.; Zhao, X. Wind farm control technologies: From classical control to reinforcement learning. Prog. Energy 2022, 4, 032006. [Google Scholar] [CrossRef]
- IEC-61400-1:2019; Wind Energy Generation Systems-Part 1: Design Requirements. International Electrotechnical Commission: Geneva, Switzerland, 2019.
- DNV-ST-0437; Loads and Site Conditions for Wind Turbines. Det Norske Veritas: Bærum, Norway, 2021.
- Bangga, G.; Bossanyi, E. BladedFarmWake: A framework for evaluating the influence of upstream wakes on turbine loads using Bladed. J. Phys. Conf. Ser. 2024, 2767, 092025. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bangga, G. Role of Artificial Intelligence in Large Wind Turbine Designs. Energies 2025, 18, 5292. https://doi.org/10.3390/en18195292
Bangga G. Role of Artificial Intelligence in Large Wind Turbine Designs. Energies. 2025; 18(19):5292. https://doi.org/10.3390/en18195292
Chicago/Turabian StyleBangga, Galih. 2025. "Role of Artificial Intelligence in Large Wind Turbine Designs" Energies 18, no. 19: 5292. https://doi.org/10.3390/en18195292
APA StyleBangga, G. (2025). Role of Artificial Intelligence in Large Wind Turbine Designs. Energies, 18(19), 5292. https://doi.org/10.3390/en18195292