Effect of Pressure on Pyrolytic and Oxidative Coking of JP-10 in Near-Isothermal Flowing Reactor
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Apparatus
2.2. Materials
2.3. Analysis of Coke Deposit
3. Results
3.1. Effect of Fuel Pressure on Oxidative Degradation
3.1.1. Amount of Oxidative Coke Deposits of JP-10
3.1.2. TPO and FESEM Analysis of Oxidative Deposits
3.2. Effect of Fuel Pressure on Pyrolysis Degradation
3.2.1. Amount of the Pyrolytic Coking of JP-10
3.2.2. TPO and FESEM Analysis of Pyrolytic Deposits
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FESM | Field emission scanning electron microscopy |
TPO | Temperature programmed oxidation |
References
- Anderson, J.D. Hypersonic and High-Temperature Gas Dynamics, 3rd ed.; AIAA: Reston, VA, USA, 2019. [Google Scholar]
- Lu, Y.; Wang, X.; Li, L.; Cheng, D.; Yao, W.; Fan, X. Development and Preliminary Validation of a Thermal Analysis Method for Hydrocarbon Regenerative-Cooled Supersonic Combustor. In Proceedings of the 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow, UK, 6–9 July 2015; AIAA: Reston, VA, USA, 2015. [Google Scholar]
- Jiang, Y.; Wang, L.; Zhou, Q.; Gascoin, N.; Li, X.; Zhang, M. Flow and heat transfer of hydrocarbon fuel in the double-layer regenerative cooling channels. Numer. Heat Transf. A Appl. 2024, 85, 1433–1455. [Google Scholar] [CrossRef]
- Edwards, T. Liquid fuels and propellants for aerospace propulsion: 1903–2003. J. Propuls. Power 2003, 19, 1089–1107. [Google Scholar] [CrossRef]
- Edwards, T.; Zabarnick, S. Supercritical fuel deposition mechanisms. Ind. Eng. Chem. Res. 1993, 32, 3117–3122. [Google Scholar] [CrossRef]
- Lander, H.R.; Nixon, A.C. Endothermic fuels for high Mach vehicles. In Proceedings of the Symposium on Structure of Future Jet Fuels, Division of Petroleum Chemistry, American Chemical Society, Denver, CO, USA, 5–10 April 1987. CONF-8704350. [Google Scholar]
- Brewer, G.D. The prospects for liquid hydrogen fueled aircraft. Int. J. Hydrogen Energy 1982, 7, 21–41. [Google Scholar] [CrossRef]
- Cohen, C.A.; Muessig, C.W. Jet and Rocket Fuel. U.S. Patent 3,381,046, 30 April 1968. [Google Scholar]
- Du, Y.; Li, C.; Shi, Q. Catalytic isomerization synthesis of tetrahydrodicyclopentadiene. Ind. Catal. 2005, 13, 47–49. (In Chinese) [Google Scholar]
- Schneider, A.; Ware, R.E.; Janoski, E.J. Isomerization of Endo-tetrahydrodicyclopentadiene to a Missile Fuel Diluent. U.S. Patent 4,086,284, 25 April 1978. [Google Scholar]
- Jeong, B.H.; Han, S.W.; Kim, H.J.; Lee, J.S. Deactivation and reuse of cesium-containing heteropolyacid for the isomerization of THDCPD. J. Ind. Eng. Chem. 2007, 13, 310–313. [Google Scholar]
- Okuhara, T.; Nishimura, T.; Misono, M. Novel microporous solid “superacids”: CsxH3−xPW12O40 (2 ≤ x ≤ 3). Stud. Surf. Sci. Catal. 1996, 101, 581–590. [Google Scholar] [CrossRef]
- Wang, L.; Zou, J.J.; Zhang, X.; Han, B. Isomerization of tetrahydrodicyclopentadiene using ionic liquid: Green alternative for jet propellant-10 and adamantane. Fuel 2012, 91, 164–169. [Google Scholar] [CrossRef]
- Vranos, A.; Marteney, P.J. Experimental Study of the Stability of Aircraft Fuels at Elevated Temperatures; NASA Contractor Report NASA-CR-165; United Technologies Research Center: East Hartford, CT, USA, 1981. [Google Scholar]
- Chin, J.S.; Lefebvre, A.H. Influence of flow conditions on deposits from heated hydrocarbon fuels. J. Eng. Gas Turbines Power 1993, 115, 433–438. [Google Scholar] [CrossRef]
- Ervin, J.S.; Ward, T.A.; Williams, T.F.; Santavicca, D.A. Surface deposition within treated and untreated stainless steel tubes resulting from thermal-oxidative and pyrolytic degradation of jet fuel. Energy Fuels 2003, 17, 577–586. [Google Scholar] [CrossRef]
- Taylor, W.F. Deposit formation from deoxygenated hydrocarbons. I. General features. Ind. Eng. Chem. Prod. Res. Dev. 1974, 13, 133–138. [Google Scholar] [CrossRef]
- Spadaccini, L.J.; Sobel, D.R.; Huang, H. Deposit formation and mitigation in aircraft fuels. J. Eng. Gas Turbines Power 2001, 123, 741–746. [Google Scholar] [CrossRef]
- Tevelde, J.A.; Glickstein, M.R. Heat Transfer and Thermal Stability of Alternative Aircraft Fuels. Volume 1; Report No. NAPC-PE-87C; U.S. Naval Air Propulsion Center: Trenton, NJ, USA, 1983. [Google Scholar]
- Jones, E.G.; Balster, L.M.; Bolster, W.J.; Rooney, D.; McEnally, C.S. Effect of pressure on supercritical pyrolysis of n-paraffins. Prepr. Am. Chem. Soc. Div. Petrol. Chem. 1999, 44, 394–397. [Google Scholar]
- Marteney, P.J.; Spadaccini, L.J. Thermal decomposition of aircraft fuel. J. Eng. Gas Turbines Power 1986, 108, 648–653. [Google Scholar] [CrossRef]
- Shikman, Y.; Vinogradov, V.; Yanovski, L.; Yakovlev, V. The demonstrator of technologies—Dual mode scramjet on hydrocarbon endothermic fuel. In Proceedings of the 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference, Kyoto, Japan, 24–27 April 2001; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2001. AIAA Paper 2001-1787. [Google Scholar] [CrossRef]
- Evans, R.J.; Hibbard, R.R.; Watt, J.J. Fouling Characteristics of ASTM Jet A Fuel When Heated to 700 °F in a Simulated Heat Exchanger Tube; NASA Technical Note D-4958; NASA: Washington, DC, USA, 1968. [Google Scholar]
- Zhao, G.; Song, W.; Zhang, R. Effect of pressure on thermal cracking of China RP-3 aviation kerosene under supercritical conditions. Int. J. Heat Mass Transf. 2015, 84, 625–632. [Google Scholar] [CrossRef]
- Ju, Y.; Xu, G.; Guo, J.; Wang, Y. Effect of pressure on coking of RP-3 aviation kerosene. J. Beijing Univ. Aeronaut. Astronaut. 2010, 36, 257–260. (In Chinese) [Google Scholar]
- Xing, Y.; Fang, W.; Zhang, X.; Li, Y.; Chen, L. Thermal cracking of JP-10 under pressure. Ind. Eng. Chem. Res. 2008, 47, 10034–10040. [Google Scholar] [CrossRef]
- Wang, Y. Mechanism and Kinetics of Supercritical Thermal Cracking of JP-10. Master’s Thesis, Tianjin University, Tianjin, China, 2015. (In Chinese). [Google Scholar]
- Vandewiele, N.M.; Pyl, S.P.; Reyniers, M.F.; Marin, G.B. Experimental and modeling study on the thermal decomposition of jet propellant-10. Energy Fuels 2014, 28, 4976–4985. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, X.Y.; Yun, J.T.; Li, H.; Wang, L. The effect of pressure on thermal oxidative deposit of JP-10 in near-isothermal flowing reactor. In Proceedings of the 2015 AIChE Annual Meeting, Salt Lake City, UT, USA, 8–13 November 2015; AIChE: New York, NY, USA, 2015. [Google Scholar]
- Huang, X.; Liu, C.; Yang, F. Experimental study on flow heat transfer and thermal cracking coking of high-density hydrocarbon fuel JP-10. CIESC J. 2024, 75, 2917–2928. [Google Scholar] [CrossRef]
- Cooper, M.; Shepherd, J.E. Thermal and Catalytic Cracking of JP-10 for Pulse Detonation Engine Applications; Galcit Report FM 2002.002; California Institute of Technology: Pasadena, CA, USA, 2002. [Google Scholar]
- Guo, J.; Gan, Z.; Li, J.; Li, H.; Feng, B.; Xing, X. Experimental study of oxygen depletion effects on soot morphology and nanostructure in coflow diffusion aviation fuel (RP-3) flames. Energies 2023, 16, 3166. [Google Scholar] [CrossRef]
- Ju, H.; Zhou, R.; Zhang, D.; Deng, P.; Wang, Z. Effects of Oxygen Concentration on Soot Formation in Ethylene and Ethane Fuel Laminar Diffusion Flames. Energies 2024, 17, 3866. [Google Scholar] [CrossRef]
- Zheng, Z.; Pei, X.; Wang, Y.; Hou, L. Pressure effect on the surface deposition of aviation fuel in a heat exchange tube. Energies 2022, 15, 6770. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Wang, L.; Chen, X.; Liu, J. Pyrolysis and coke deposition of JP-10 with decalin in regenerative cooling channels. Energy Fuels 2022, 36, 6096–6108. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, H.; Wang, L.; Li, X.; Chen, Y. Supercritical pyrolysis and coking of JP-10 in regenerative cooling channels. Energy Fuels 2020, 34, 1627–1638. [Google Scholar] [CrossRef]
- He, M.; Zhang, Q.; Liu, X. Fouling formed on SS316L tube surface from thermal oxidative degradation of exo-tetrahydrodicyclopentadiene. Appl. Therm. Eng. 2017, 118, 464–470. [Google Scholar] [CrossRef]
- Sun, H.P.; Kwon, C.H.; Kim, J.; Kim, T.; Lee, J.S. Thermal stability and isomerization mechanism of exo-tetrahydrodicyclopentadiene: Experimental study and molecular modeling. Ind. Eng. Chem. Res. 2010, 49, 8319–8324. [Google Scholar] [CrossRef]
- Venkataraman, R.; Eser, S. Characterization of solid deposits formed from short durations of jet fuel degradation: Carbonaceous solids. Ind. Eng. Chem. Res. 2008, 47, 9337–9350. [Google Scholar] [CrossRef]
- Xu, C.; Zeng, Y.; Rui, X.H.; Zhu, J.; Zhang, W. Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high Li-storage performance. ACS Nano 2012, 6, 4713–4721. [Google Scholar] [CrossRef]
- Xie, W.J.; Fang, W.J.; Dan, L.; Li, S.; Zhao, J. Coking of model hydrocarbon fuels under supercritical condition. Energy Fuels 2009, 23, 2997–3001. [Google Scholar] [CrossRef]
- Bruno, T.J.; Huber, M.L.; Laesecke, A.; Lemmon, E.W.; A Perkins, R. Thermochemical and Thermophysical Properties of JP-10; Technical Report NISTIR, 2006, 6640: 325; National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA, 2006. [Google Scholar]
- Edwards, T. Cracking and deposition behavior of supercritical hydrocarbon aviation fuels. Combust. Sci. Technol. 2006, 178, 307–334. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, M.; Huang, J.; Xu, H.; Wei, F. Mass production of aligned carbon nanotube arrays by fluidized bed catalytic chemical vapor deposition. Carbon 2010, 48, 1196–1209. [Google Scholar] [CrossRef]
- Deck, C.P.; Vecchio, K. Growth mechanism of vapor phase CVD-grown multi-walled carbon nanotubes. Carbon 2005, 43, 2608–2617. [Google Scholar] [CrossRef]
p/Mpa | V/m∙s−1 | Re | t/s |
---|---|---|---|
2.706 | 0.058 | 449.2 | 8.85 |
4.023 | 0.033 | 403.8 | 15.53 |
4.716 | 0.025 | 381.0 | 20.11 |
5.913 | 0.017 | 339.2 | 29.88 |
7.165 | 0.013 | 290.5 | 40.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; He, M.; Jin, Y.; Huang, Z.; Xu, T.; Li, L. Effect of Pressure on Pyrolytic and Oxidative Coking of JP-10 in Near-Isothermal Flowing Reactor. Energies 2025, 18, 5276. https://doi.org/10.3390/en18195276
Zhang Q, He M, Jin Y, Huang Z, Xu T, Li L. Effect of Pressure on Pyrolytic and Oxidative Coking of JP-10 in Near-Isothermal Flowing Reactor. Energies. 2025; 18(19):5276. https://doi.org/10.3390/en18195276
Chicago/Turabian StyleZhang, Qian, Maogang He, Yabin Jin, Zizhen Huang, Tiantian Xu, and Long Li. 2025. "Effect of Pressure on Pyrolytic and Oxidative Coking of JP-10 in Near-Isothermal Flowing Reactor" Energies 18, no. 19: 5276. https://doi.org/10.3390/en18195276
APA StyleZhang, Q., He, M., Jin, Y., Huang, Z., Xu, T., & Li, L. (2025). Effect of Pressure on Pyrolytic and Oxidative Coking of JP-10 in Near-Isothermal Flowing Reactor. Energies, 18(19), 5276. https://doi.org/10.3390/en18195276