Drivers of Carbon Emission in Xinjiang Energy Base: Perspective from the Five-Year Plan Periods
Abstract
1. Introduction
2. Study Area
3. Methods and Data Sources
3.1. Estimation of Carbon Emissions
3.2. Kaya Identity
3.3. LMDI Method
3.4. Data Illustration
4. Result
4.1. Comparison of Carbon Emission Accounting
4.2. Carbon Emission Trends in Xinjiang During 1952–2015
4.3. Decompositional Analysis of Factors Affecting Carbon Emissions Across Different Stages
4.4. Analysis of Sectors Effect on Carbon Emissions
5. Discussion
6. Conclusions and Policy Recommendations
6.1. Conclusions
6.2. Policy Recommendations
- (1)
- The low-carbon transformation pathway of industrial structures.
- (2)
- Profound Restructuring of Energy Consumption.
- (3)
- Technological pathways for improving energy efficiency
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, MA, USA; New York, NY, USA, 2021. [Google Scholar]
- Gao, C.; Ge, H. Spatiotemporal characteristics of China’s carbon emissions and driving forces: A Five-Year Plan perspective from 2001 to 2015. J. Clean. Prod. 2020, 248, 119280. [Google Scholar] [CrossRef]
- Xia, F.; Zhang, X.; Cai, T.; Wu, S.; Zhao, D. Identification of key industries of industrial sector with energy-related CO2 emissions and analysis of their potential for energy conservation and emission reduction in Xinjiang, China. Sci. Total Environ. 2020, 708, 134587. [Google Scholar] [CrossRef]
- Feng, J.; Zeng, X.; Yu, Z.; Bian, Y.; Li, W.; Wang, Y. Decoupling and driving forces of industrial carbon emission in a coastal city of Zhuhai, China. Energy Rep. 2019, 5, 1589–1602. [Google Scholar] [CrossRef]
- Li, J.; Zhou, H.; Meng, J.; Yang, Q.; Chen, B.; Zhang, Y. Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city. Appl. Energy 2018, 226, 1076–1086. [Google Scholar] [CrossRef]
- Wang, Q.; Chiu, Y.; Chiu, C. Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis. Energy Econ. 2015, 51, 252–260. [Google Scholar] [CrossRef]
- Ang, B.; Lee, S. Decomposition of industrial energy consumption: Some methodological and application issues. Energy Econ. 1994, 16, 83–92. [Google Scholar] [CrossRef]
- Ang, B. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 2005, 33, 867–871. [Google Scholar] [CrossRef]
- Shen, L.; Wu, Y.; Lou, Y.; Zeng, D.; Shuai, C.; Song, X. What drives the carbon emission in the Chinese cities?—A case of pilot low carbon city of Beijing. J. Clean. Prod. 2018, 174, 343–354. [Google Scholar] [CrossRef]
- Peng, X.; Tao, X. Decomposition of carbon intensity in electricity production: Technological innovation and structural adjustment in China’s power sector. J. Clean. Prod. 2018, 172, 805–818. [Google Scholar] [CrossRef]
- Ang, B.; Zhou, P.; Tay, L. Potential for reducing global carbon emissions from electricity production—A benchmarking analysis. Energy Policy 2011, 39, 2482–2489. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, P. Assessing Global CO2 Emission Inequality from Consumption Perspective: An Index Decomposition Analysis. Ecol. Econ. 2018, 154, 257–271. [Google Scholar] [CrossRef]
- Lin, B.; Tan, R. Sustainable development of China’s energy intensive industries: From the aspect of carbon dioxide emissions reduction. Renew. Sustain. Energy Rev. 2017, 77, 386–394. [Google Scholar] [CrossRef]
- Zhai, X.; Yang, X.; Vukovic, D.B.; Dinets, D.A.; Liu, Q. Carbon Emissions Trading Policy and Regional Energy Efficiency: A Quasi-Natural Experiment from China. Energies 2025, 18, 1161. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, D.; Zhou, P.; Wang, Q. Factors driving energy consumption in China: A joint decomposition approach. J. Clean. Prod. 2018, 172, 724–734. [Google Scholar] [CrossRef]
- Lin, Z.; Liao, X. Synergistic effect of energy and industrial structures on carbon emissions in China. J. Environ. Manag. 2023, 345, 118831. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Q.; Ou, S.; Liu, J. Factor decomposition and the decoupling effect of carbon emissions in China’s manufacturing high-emission subsectors. Energy 2022, 248, 123568. [Google Scholar] [CrossRef]
- Wang, M.; Feng, C. Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China. Energy Econ. 2018, 76, 101–114. [Google Scholar] [CrossRef]
- Wang, J.; Hu, M.; Rodrigues, J. The evolution and driving forces of industrial aggregate energy intensity in China: An extended decomposition analysis. Appl. Energy 2018, 228, 2195–2206. [Google Scholar] [CrossRef]
- Sun, Z.; Deng, M.; Li, D.; Sun, Y. Characteristics and driving factors of carbon emissions in China. J. Environ. Plan. Manag. 2024, 67, 967–992. [Google Scholar] [CrossRef]
- Li, S.; Yao, L.; Zhang, Y.; Zhao, Y.; Sun, L. China’s provincial carbon emission driving factors analysis and scenario forecasting. Environ. Sustain. Indic. 2024, 22, 100390. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, X.; Yang, G.; Zha, D. Decomposition of CO2 emission intensity in Chinese MIs through a development mode extended LMDI method combined with a production-theoretical approach. Sci. Total Environ. 2019, 702, 134787. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yu, S.; Sun, Y. Restructuring effects of industrial and energy structures on sectoral CO2 emission peak trajectories in China. iScience 2024, 27, 110541. [Google Scholar] [CrossRef]
- Xu, J.; Wang, E. The path to energy savings and CO2 emission reductions in China’s industrial sector from the perspective of factor price distortions correction—Based on an extended capital vintage model. Energy 2024, 313, 134004. [Google Scholar] [CrossRef]
- Chen, H.; Qi, S.; Tan, X. Decomposition and prediction of China’s carbon emission intensity towards carbon neutrality: From perspectives of national, regional and sectoral level. Sci. Total Environ. 2022, 825, 153839. [Google Scholar] [CrossRef]
- Lu, L.; Zhou, L.; Zhang, H.; Weng, Y. The effects of industrial energy consumption on energy-related carbon emissions at national and provincial levels in China. Energy Sci. Eng. 2018, 6, 371–384. [Google Scholar] [CrossRef]
- Liu, X.; Chen, W. Dynamic evolution of spatial disparity of energy carbon emissions in Xinjiang based on ESDA-GIS. Arid. Land. Geogr. 2016, 39, 678–685. [Google Scholar]
- Huo, J.; Yang, D.; Tang, H. Empirical Study and Decomposition Model Analysis of Carbon Emissions in Xinjiang. Prog. Geogr. 2012, 31, 435–441. [Google Scholar]
- Huo, J.; Yang, D.; Zhang, W.; Wang, F.; Wang, G.; Fu, Q. Analysis of influencing factors of CO2 emissions in Xinjiang under the context of different policies. Environ. Sci. Policy 2015, 45, 20–29. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Zhang, X.; Yang, Y.; Su, Y.; Ye, Y.; Zhang, H. Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang. Renew. Sustain. Energy Rev. 2017, 67, 51–61. [Google Scholar] [CrossRef]
- Wang, M.; Feng, L.; Zhang, P.; Cao, G.; Liu, H.; Chen, J.; Li, X.; Wei, W. Carbon emissions in the Xinjiang production and construction corps and driving factors. Front. Energy Res. 2021, 9, 627149. [Google Scholar] [CrossRef]
- Hu, A. The Five-Year Plan: A new tool for energy saving and emissions reduction in China. Adv. Clim. Chang. Res. 2016, 7, 222–228. [Google Scholar] [CrossRef]
- Bai, C.; Chen, Y.; Yi, X.; Feng, C. Decoupling and decomposition analysis of transportation carbon emissions at the provincial level in China: Perspective from the 11th and 12th Five-Year Plan periods. Environ. Sci. Pollut. Res. 2019, 26, 15039–15056. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Tao, H.; Zhan, M.; Mu, G. On influential factors of carbon emissions in Xinjiang sectors and countermeasures for emission reduction. J. Saf. Environ. 2019, 19, 1375–1382. [Google Scholar]
- Qin, J.; Tao, H.; Zhan, M.; Munir, Q.; Brindha, K.; Mu, G. Scenario analysis of Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China. Sustainability 2019, 11, 4220. [Google Scholar] [CrossRef]
- Qin, J.; Tao, H.; Cheng, C.; Brindha, K.; Zhan, M.; Ding, J.; Mu, G. Analysis of Factors Influencing Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China. Sustainability 2020, 12, 1089. [Google Scholar] [CrossRef]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies Press: Kanagawa, Japan, 2006. [Google Scholar]
- Kaya, Y. Impact of carbon dioxide emission control on GNP growth: Interpretation of proposed scenarios. In Proceedings of the Panel on Climate Change Energy and Industry Sub-Group Conference, Nairobi, Kenya, 28–30 June 1989; Oxford University Press: London, UK, 1990. [Google Scholar]
- Qin, J.; Gao, L.; Tu, W.; He, J.; Tang, J.; Ma, S.; Zhao, X.; Zhu, X.; Brindha, K.; Tao, H. Decomposition and Decoupling Analysis of Carbon Emissions in Xinjiang Energy Base, China. Energies 2022, 15, 5526. [Google Scholar] [CrossRef]
- Ang, B. Decomposition analysis for policymaking in energy: Which is the preferred method? Energy Policy 2004, 32, 1131–1139. [Google Scholar]
- GB/T 2589-2008; General Principles for Calculating Comprehensive Energy Consumption. China Standards Press: Beijing, China, 2008.
- Shan, Y.; Guan, D.; Liu, J.; Mi, Z.; Liu, Z.; Liu, J.; Schroeder, H.; Cai, B.; Chen, Y.; Shao, S. Methodology and applications of city level CO2 emission accounts in China. J. Clean. Prod. 2017, 161, 1215–1225. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Wang, F.; Lei, J.; Zhang, L. Decomposition of energy-related carbon emissions in Xinjiang and relative mitigation policy recommendations. Front. Earth Sci. 2015, 9, 65–76. [Google Scholar] [CrossRef]
- Pan, X.; Guo, S. Decomposition analysis of regional differences in China’s carbon emissions based on socio-economic factors. Energy 2024, 303, 131932. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.; Wang, C.; Wang, F.; Qiu, F. Decoupling effect and sectoral attribution analysis of industrial energy-related carbon emissions in Xinjiang, China. Ecol. Indic. 2018, 97, 1–9. [Google Scholar] [CrossRef]
- Wang, N.; Qu, Z.; Li, J.; Zhang, Y.; Wang, H.; Xi, H.; Gu, Z. Spatial-temporal patterns and influencing factors of carbon emissions in different regions of China. Environ. Res. 2025, 276, 121447. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Lu, Y.; Yuan, J.; Chen, D. Drivers of change in China’s energy-related CO2 emissions. Proc. Natl. Acad. Sci. USA 2020, 117, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Chen, H.; Chen, Z.; Wang, Y.; Wei, W. Has environmental information disclosure eased the economic inhibition of air pollution? J. Clean. Prod. 2021, 284, 125412. [Google Scholar] [CrossRef]
- He, L.; Wu, M.; Wang, D.; Zhong, Z. A study of the influence of regional environmental expenditure on air quality in China: The effectiveness of environmental policy. Environ. Sci. Pollut. Res. Int. 2018, 25, 7454–7468. [Google Scholar] [CrossRef]
- Aboumahboub, T.; Brecha, R.J.; Shrestha, H.B.; Fuentes, U.; Geiges, A.; Hare, W.; Schaeffer, M.; Welder, L.; Gidden, M.J. Decarbonization of Australia’s Energy System: Integrated Modeling of the Transformation of Electricity, Transportation, and Industrial Sectors. Energies 2020, 13, 3805. [Google Scholar] [CrossRef]
- Issatayeva, F.M.; Aubakirova, G.M.; Maussymbayeva, A.D.; Togaibayeva, L.I.; Biryukov, V.V.; Vechkinzova, E. Fuel and Energy Complex of Kazakhstan: Geological and Economic Assessment of Enterprises in the Context of Digital Transformation. Energies 2023, 16, 6002. [Google Scholar] [CrossRef]
Type | Lower Heating Values | Emission Coefficients/ (Mt·PJ−1 CO2) | Oxidation Rates/% |
---|---|---|---|
Coal | 0.209 08 PJ/104 t | 0.087 464 | 88 |
Coking coal | 0.284 35 PJ/104 t | 0.104 292 | 97 |
Crude oil | 0.418 16 PJ/104 t | 0.073 284 | 98 |
Gasoline | 0.431 24 PJ/104 t | 0.069 253 | 98 |
Kerosene | 0.431 24 PJ/104 t | 0.071 818 | 98 |
Diesel oil | 0.426 52 PJ/104 t | 0.074 017 | 98 |
Fuel oil | 0.418 16 PJ/104 t | 0.077 314 | 98 |
Natural gas | 3.8931 PJ/108 m3 | 0.056 062 | 99 |
Sectors | Code |
---|---|
Agriculture | A1 |
Mining and washing of coal | A2 |
Extraction of petroleum and natural gas | A3 |
Mining of metal ores | A4 |
Mining of nonmetal ores | A5 |
Foods and tobacco | B1 |
Textile | B2 |
Pulp and paper | B3 |
Fuel processing | B4 |
Chemicals | B5 |
Ceramics and cement | C1 |
Iron and steel | C2 |
Non-ferrous | C3 |
Metal and machinery | C4 |
Other manufacturing industries | C5 |
Power generation | D1 |
Construction | D2 |
Transportation | D3 |
Trade and catering | D4 |
Service | D5 |
Population Effect | GDP per Capita Effect | Energy Intensity Effect | Carbon Intensity Effect | Increment | |
---|---|---|---|---|---|
1st FYP | 0.26 | 0.40 | 0.62 | 0.01 | 1.29 |
2nd FYP | 2.68 | −0.90 | 3.79 | −0.09 | 5.48 |
3rd FYP | 1.87 | −2.09 | 3.87 | 0.88 | 4.53 |
4th FYP | 2.46 | 0.54 | 3.35 | 4.59 | 10.94 |
5th FYP | 2.57 | 9.88 | −4.87 | −1.92 | 5.66 |
6th FYP | 1.93 | 16.96 | −8.01 | 0.89 | 11.77 |
7th FYP | 5.39 | 12.47 | −3.94 | −0.58 | 13.34 |
8th FYP | 5.35 | 25.30 | −8.22 | −1.95 | 20.48 |
9th FYP | 9.04 | 25.98 | −18.66 | 2.65 | 19.01 |
10th FYP | 9.41 | 56.00 | −6.65 | −9.40 | 49.36 |
11th FYP | 15.05 | 100.27 | −37.16 | 32.24 | 110.40 |
12th FYP | 29.62 | 102.64 | 83.39 | −31.84 | 183.81 |
1952−2015 | 101.42 | 385.07 | 1.13 | −20.37 | 467.25 |
8th FYP | 9th FYP | 10th FYP | 11th FYP | 12th FYP | 1991–2015 | ||
---|---|---|---|---|---|---|---|
Economic activity effect | Labor-intensive industries | −0.09 | −12.90 | −9.91 | −2.66 | 3.21 | −1.15 |
Energy industries | 42.34 | 197.30 | 53.79 | 6.05 | −48.91 | −3.41 | |
Resource-intensive industries | 1.01 | 15.88 | 2.69 | 16.74 | −14.74 | 5.50 | |
Energy intensity effect | Labor-intensive industries | −5.77 | −12.39 | 1.10 | −3.01 | −1.17 | −2.04 |
Energy industries | −43.51 | −188.45 | −16.24 | −14.08 | 28.26 | −15.67 | |
Resource-intensive industries | −2.54 | −39.21 | 0.86 | −12.60 | 33.90 | 6.51 | |
Carbon coefficient effect | Labor-intensive industries | 1.76 | −19.74 | −1.73 | −1.60 | −1.38 | −2.44 |
Energy industries | −13.52 | −13.22 | −50.31 | −22.38 | 38.50 | 13.91 | |
Resource-intensive industries | 0.70 | −1.46 | 2.65 | 36.58 | −8.53 | 5.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, J.; Tang, J.; Gao, L.; Zhang, K.; Tao, H. Drivers of Carbon Emission in Xinjiang Energy Base: Perspective from the Five-Year Plan Periods. Energies 2025, 18, 5204. https://doi.org/10.3390/en18195204
Qin J, Tang J, Gao L, Zhang K, Tao H. Drivers of Carbon Emission in Xinjiang Energy Base: Perspective from the Five-Year Plan Periods. Energies. 2025; 18(19):5204. https://doi.org/10.3390/en18195204
Chicago/Turabian StyleQin, Jiancheng, Jingzhe Tang, Lei Gao, Kun Zhang, and Hui Tao. 2025. "Drivers of Carbon Emission in Xinjiang Energy Base: Perspective from the Five-Year Plan Periods" Energies 18, no. 19: 5204. https://doi.org/10.3390/en18195204
APA StyleQin, J., Tang, J., Gao, L., Zhang, K., & Tao, H. (2025). Drivers of Carbon Emission in Xinjiang Energy Base: Perspective from the Five-Year Plan Periods. Energies, 18(19), 5204. https://doi.org/10.3390/en18195204