Polymer-Based Electrolytes for Organic Batteries
Abstract
1. Introduction
2. Polymer-Based Electrolytes
2.1. Solid Polymer Electrolytes
2.2. Gel Polymer Electrolytes
2.3. Polymer-Inorganic Composite Electrolytes
2.4. Ionogel and Poly(ionic Liquid) Electrolytes
3. Challenges and Prospects
4. Conclusions and Future Directions
- Rational electrolyte design: Developing polymer and composite electrolytes with wide electrochemical windows, high ionic conductivity, and robust mechanical properties, while minimizing side reactions with organic electrodes.
- Interface engineering: Controlling SEI formation, optimizing electrode–electrolyte contact, and employing surface coatings or interlayers to stabilize interfaces and enhance long-term cycling.
- Integrated architectures: Designing fully infiltrated 3D electrode–electrolyte systems to maximize ion and electron transport and reduce interfacial impedance.
- Scalable and sustainable materials: Using cost-effective, environmentally friendly salts, polymers, and fillers suitable for large-scale applications.
- Advanced membranes and separators: Incorporating ion-selective or hybrid membranes to suppress shuttle effects and improve selectivity, enabling safer and higher-performing organic batteries.
Funding
Acknowledgments
Conflicts of Interest
References
- Khan, M.K.; Raza, M.; Shahbaz, M.; Farooq, U.; Akram, M.U. Recent advancement in energy storage technologies and their applications. J. Energy Storage 2024, 92, 112112. [Google Scholar] [CrossRef]
- Ponmani, P.; Bahadur, J.; Tewari, C.; Gupta, D.K.; Kalita, U.; Jegadeesan, P.; Ravindran, T.R.; Alex, A.; Das, A.; Sahoo, N.; et al. Polyaniline modified waste-derived graphene/sulfur nanocomposite cathode for lithium–sulfur batteries. J. Polym. Sci. 2023, 61, 2149–2162. [Google Scholar] [CrossRef]
- Parvizi, P.; Jalilian, M.; Amidi, A.M.; Zangeneh, M.R.; Riba, J.R. From Present Innovations to Future Potential: The Promising Journey of Lithium-Ion Batteries. Micromachines 2025, 16, 194. [Google Scholar] [CrossRef]
- Kim, Y.N.; Lee, Y.K.; Tewari, C.; Kim, Y.; Lee, S.; Jung, Y.C. Simultaneous recycling and nitrogen doping in carbon fiber reinforced plastic using eco-friendly supercritical water treatment for Li-ion batteries anode application. Carbon 2024, 221, 118944. [Google Scholar] [CrossRef]
- Xu, J.; Cai, X.; Cai, S.; Shao, Y.; Hu, C.; Lu, S.; Ding, S. High-energy lithium-ion batteries: Recent progress and a promising future in applications. Energy Environ. Mater. 2023, 6, e12450. [Google Scholar] [CrossRef]
- Zhou, G.; Chen, H.; Cui, Y. Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 2022, 7, 312–319. [Google Scholar] [CrossRef]
- Koech, A.K.; Mwandila, G.; Mulolani, F.; Mwaanga, P. Lithium-ion battery fundamentals and exploration of cathode materials: A review. S. Afr. J. Chem. Eng. 2024, 50, 321–339. [Google Scholar] [CrossRef]
- Janek, J.; Zeier, W.G. A solid future for battery development. Nat. Energy 2016, 1, 1–4. [Google Scholar] [CrossRef]
- Liu, J.; Bao, Z.; Cui, Y.; Dufek, E.J.; Goodenough, J.B.; Khalifah, P.; Li, Q.; Liaw, B.Y.; Liu, P.; Manthiram, A.; et al. Pathways forPractical High-Energy Long-Cycling Lithium Metal Batteries. Nat. Energy 2019, 4, 180–186. [Google Scholar] [CrossRef]
- Rawat, K.S.; Tewari, C.; Arya, T.; Kim, Y.N.; Pant, P.; Sati, S.; Dhali, S.; Negi, P.B.; Jung, Y.C.; Sahoo, N.G. Development of nitrogen and phosphorus dual-doped reduced graphene oxide from waste plastic for supercapacitor applications: Comparative electrochemical performance in different electrolytes. Next Energy 2025, 6, 100209. [Google Scholar] [CrossRef]
- Zhang, W.J. Structure and performance of LiFePO4 cathode materials: A review. J. Power Sources 2011, 196, 2962–2970. [Google Scholar] [CrossRef]
- Redway, E.S.S. LiFePO4 Cell Energy Densities: Standard and Advanced Performance. Redway ESS Industry Analysis. 2025. Available online: https://www.redwayess.com/how-are-higher-energy-density-lifepo4-batteries-revolutionizing-energy-storage/?utm_source (accessed on 19 February 2025).
- Li, M.; Hicks, R.P.; Chen, Z.; Luo, C.; Guo, J.; Wang, C.; Xu, Y. Electrolytes in organic batteries. Chem. Rev. 2023, 123, 1712–1773. [Google Scholar] [CrossRef]
- Tewari, C.; Kim, Y.; Kim, Y.N.; Ryu, S.; Jeong, H.S.; Jung, Y.C. Development of fluorescent epoxy composite with carbon-based nanomaterial additives derived from agricultural waste. J. Vinyl Addit. Technol. 2024, 30, 102–113. [Google Scholar] [CrossRef]
- Tewari, C.; SanthiBhushan, B.; Srivastava, A.; Sahoo, N.G. Metal doped graphene oxide derived from Quercus ilex fruits for selective and visual detection of iron (III) in water: Experiment and theory. Sustain. Chem. Pharm. 2021, 21, 100436. [Google Scholar] [CrossRef]
- Wang, H.G.; Yuan, S.; Ma, D.L.; Huang, X.L.; Meng, F.L.; Zhang, X.B. Tailored Aromatic Carbonyl Derivative Polyimides for High-Power and Long-Cycle Sodium-Organic Batteries. Adv. Energy Mater. 2014, 4, 1301651. [Google Scholar] [CrossRef]
- Yazie, N.; Worku, D.; Gabbiye, N.; Alemayehu, A.; Getahun, Z.; Dagnew, M. Development of polymer blend electrolytes for battery systems: Recent progress, challenges, and future outlook. Mater. Renew. Sustain. Energy 2023, 12, 73–94. [Google Scholar] [CrossRef]
- Fan, X.; Zhong, C.; Liu, J.; Ding, J.; Deng, Y.; Han, X.; Zhang, L.; Hu, W.; Wilkinson, D.P.; Zhang, J. Opportunities of flexible and portable electrochemical devices for energy storage: Expanding the spotlight onto semi-solid/solid electrolytes. Chem. Rev. 2022, 122, 17155–17239. [Google Scholar] [CrossRef]
- Chang, Z.; Yang, H.; Zhu, X.; He, P.; Zhou, H. A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments. Nat. Commun. 2022, 13, 1510. [Google Scholar] [CrossRef]
- Zhou, Q.; Xiong, X.; Peng, J.; Wu, W.; Fan, W.; Yang, H.; Wang, T.; Ma, Y.; Wang, F.; Wu, Y. Tailored Engineering on the Interface Between Lithium Metal Anode and Solid-State Electrolytes. Energy Environ. Mater. 2025, 8, e12831. [Google Scholar] [CrossRef]
- Liu, R.Z.; Wen, R. Recent Advances in In Situ Characterization of the Electrochemical Processes at the Alloy Anode-Electrolyte Interfaces. Langmuir 2025, 41, 6497–6514. [Google Scholar] [CrossRef]
- Yue, L.; Ma, J.; Zhang, J.; Zhao, J.; Dong, S.; Liu, Z.; Cui, G.; Chen, L. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 2016, 5, 139–164. [Google Scholar] [CrossRef]
- Raza, B.; Shamraiz, U.; Hu, M.; Xu, X.; Yu, B.; Jing, S.; Tao, Y.; Wang, J. Advances in Organic electrolytes for High-Performance zinc Batteries: Enhancing zinc anode Robustness and efficiency. Chem. Eng. J. 2025, 515, 163617. [Google Scholar] [CrossRef]
- Deng, K.; Zeng, Q.; Wang, D.; Liu, Z.; Qiu, Z.; Zhang, Y.; Xiao, M.; Meng, Y. Single-ion conducting gel polymer electrolytes: Design, preparation and application. J. Mater. Chem. A 2020, 8, 1557–1577. [Google Scholar] [CrossRef]
- Liang, B.; Tang, S.; Jiang, Q.; Chen, C.; Chen, X.; Li, S.; Yan, X. Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochim. Acta 2015, 169, 334–341. [Google Scholar] [CrossRef]
- Yu, X.; Manthiram, A. A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater. 2021, 34, 282–300. [Google Scholar] [CrossRef]
- Zheng, J.; Tang, M.; Hu, Y.Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 2016, 55, 12538–12542. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.Q.; Lv, F.; Xu, N.; Wu, M.T.; Liu, J.; Gao, X.P. Polyethylene oxide-based solid-state composite polymer electrolytes for rechargeable lithium batteries. ACS Appl. Energy Mater. 2021, 4, 4581–4601. [Google Scholar] [CrossRef]
- Li, X.; Hou, Q.; Huang, W.; Xu, H.-S.; Wang, X.; Yu, W.; Li, R.; Zhang, K.; Wang, L.; Chen, Z.; et al. Solution-Processable Covalent Organic Framework Electrolytes for All-Solid-State Li-Organic Batteries. ACS Energy Lett. 2020, 5, 3498–3506. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, Z.; Guo, P.; Song, J.; Shi, C. Covalent organic frameworks (COFs) as fast lithium-ion transport fillers for solid polymer electrolytes. Chem. Eng. J. 2025, 503, 158146. [Google Scholar] [CrossRef]
- Chen, R.; Liu, F.; Chen, Y.; Ye, Y.; Huang, Y.; Wu, F.; Li, L. An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries. J. Power Sources 2016, 306, 70–77. [Google Scholar] [CrossRef]
- Fan, L.Z.; Hu, Y.S.; Bhattacharyya, A.J.; Maier, J. Succinonitrile as a versatile additive for polymer electrolytes. Adv. Funct. Mater. 2007, 17, 2800–2807. [Google Scholar] [CrossRef]
- Kim, B.; Kang, H.; Kim, K.; Wang, R.Y.; Park, M.J. All-Solid-State Lithium–Organic Batteries Comprising Single-Ion Polymer Nanoparticle Electrolytes. ChemSusChem 2020, 13, 2271–2279. [Google Scholar] [CrossRef]
- Manohar, D.; Rani, M.U. Optimization of polymer electrolytes for Li-ion batteries: Focus on enhancement strategies and film casting techniques. Ionics 2025. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, Q.; Ma, W.; Yang, L. Polyethylene oxide-based composites as solid-state polymer electrolytes for lithium metal batteries: A mini review. Front. Chem. 2020, 8, 640. [Google Scholar] [CrossRef]
- Xin, C.; Wen, K.; Guan, S.; Xue, C.; Wu, X.; Li, L.; Nan, C.W. A cross-linked poly (ethylene oxide)-based electrolyte for all-solid-state lithium metal batteries with long cycling stability. Front. Mater. 2022, 9, 864478. [Google Scholar] [CrossRef]
- Ahmed, H.T.; Abdullah, O.G. Preparation and composition optimization of PEO: MC polymer blend films to enhance electrical conductivity. Polymers 2019, 11, 853. [Google Scholar] [CrossRef]
- Nguyen, H.B.T.; Ding, L.; Pohle, B.; Schmeida, T.; Nguyen, H.B.A.; Mikhailova, D. Ternary PEO/PVDF-HFP-Based Polymer Electrolytes for Li-Ion Batteries. Batteries 2025, 11, 45. [Google Scholar] [CrossRef]
- Rupp, B.; Schmuck, M.; Kern, W. PEO based polymer electrolytes for lithium ion batteries. In Proceedings of the 1st Joint Austrian & Slovenian Polymer Meeting ASPM, Graz, Austria, 26–28 March 2008. [Google Scholar]
- Prasannavenkadesan, V.; Katiyar, V.; Sudhakar, A.A. Polymer electrolytes: Evolution, challenges, and future directions for lithium-ion batteries. RSC Appl. Polym. 2025, 3, 499–531. [Google Scholar]
- Krutkramelis, K.; Xia, B.; Oakey, J. Monodisperse polyethylene glycol diacrylate hydrogel microsphere formation by oxygen-controlled photopolymerization in a microfluidic device. Lab Chip 2016, 16, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Brandell, D.; Sun, B.; Mindemark, J. Functional Solid-State Polymer Electrolytes through Utilization of Polycarbonates. In Electrochemical Society Meeting Abstracts imlb2016; The Electrochemical Society, Inc.: Pennington, NJ, USA, 2016; p. 276. [Google Scholar]
- Zhao, Y.; Bai, Y.; Bai, Y.; An, M.; Chen, G.; Li, W.; Li, C.; Zhou, Y. A rational design of solid polymer electrolyte with high salt concentration for lithium battery. J. Power Sources 2018, 407, 23–30. [Google Scholar] [CrossRef]
- Kumar, G.; Singh, R.; Chand, P.; Kumar, M.; Singh, R.R.; Kumar, A. A review on polymer electrolyte materials in context to modifications in PVDF-HFP polymer host. J. Solid State Electrochem. 2025, 1–36. [Google Scholar] [CrossRef]
- Ghosh, K.; Das, M.; Raja, M.W. Role of LLZO active filler in PVDF-modified cellulosic paper matrix: A sustainable, thermally durable and high-performance separator for next generation lithium batteries. J. Power Sources 2025, 654, 237838. [Google Scholar] [CrossRef]
- Khan, K.H.; Haleem, A.; Arwish, S.; Shah, A.; Hussain, H. PVDF-based solid polymer electrolytes for lithium-ion batteries: Strategies in composites, blends, dielectric engineering, and machine learning approaches. RSC Adv. 2025, 15, 20629–20656. [Google Scholar] [CrossRef]
- Liu, W.; Yi, C.; Li, L.; Liu, S.; Gui, Q.; Ba, D.; Li, Y.; Peng, D.; Liu, J. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew. Chem. 2021, 133, 13041–13050. [Google Scholar] [CrossRef]
- Lécuyer, M.; Gaubicher, J.; Barrès, A.L.; Dolhem, F.; Deschamps, M.; Guyomard, D.; Poizot, P. A rechargeable lithium/quinone battery using a commercial polymer electrolyte. Electrochem. Commun. 2015, 55, 22–25. [Google Scholar] [CrossRef]
- Zhang, W.; Koverga, V.; Liu, S.; Zhou, J.; Wang, J.; Bai, P.; Tan, S.; Dandu, N.K.; Wang, Z.; Chen, F.; et al. Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries. Nat. Energy 2024, 9, 386–400. [Google Scholar] [CrossRef]
- Kim, J.-K.; Cheruvally, G.; Choi, J.-W.; Ahn, J.-H.; Choi, D.S.; Song, C.E. Rechargeable Organic Radical Battery with Electrospun, Fibrous Membrane-Based Polymer Electrolyte. J. Electrochem. Soc. 2007, 154, A839. [Google Scholar] [CrossRef]
- Zhang, Y.; An, Y.; Dong, S.; Jiang, J.; Dou, H.; Zhang, X. Enhanced Cycle Performance of Polyimide Cathode Using a Quasi-Solid-State Electrolyte. J. Phys. Chem. C 2018, 122, 22294–22300. [Google Scholar] [CrossRef]
- Kim, H.W.; Kim, H.-J.; Byeon, H.; Kim, J.; Yang, J.W.; Kim, Y.; Kim, J.-K. Binder-Free Organic Cathode Based on Nitroxide Radical Polymer-Functionalized Carbon Nanotubes and Gel Polymer Electrolyte for High-Performance Sodium Organic Polymer Batteries. J. Mater. Chem. A 2020, 8, 17980–17986. [Google Scholar] [CrossRef]
- Li, M.; Yang, J.; Shi, Y.; Chen, Z.; Bai, P.; Su, H.; Xiong, P.; Cheng, M.; Zhao, J.; Xu, Y. Soluble Organic Cathodes Enable Long Cycle Life, High Rate, and Wide-Temperature Lithium-Ion Batteries. Adv. Mater. 2022, 34, 2107226. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.S.; Islam, M.; Raut, B.; Yun, S.; Kim, H.Y.; Nam, K.W. A comprehensive review of functional gel polymer electrolytes and applications in lithium-ion battery. Gels 2024, 10, 563. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Xue, L.; Xin, S.; Goodenough, J.B. A high-energy-density potassium battery with a polymer-gel electrolyte and a polyaniline cathode. Angew. Chem. 2018, 130, 5547–5551. [Google Scholar] [CrossRef]
- Muench, S.; Burges, R.; Lex-Balducci, A.; Brendel, J.C.; Jäger, M.; Friebe, C.; Wild, A.; Schubert, U.S. Printable ionic liquid-based gel polymer electrolytes for solid state all-organic batteries. Energy Storage Mater. 2020, 25, 750–755. [Google Scholar] [CrossRef]
- Du, L.; Xu, G.; Sun, C.; Zhang, Y.H.; Zhang, H.; Dong, T.; Huang, L.; Ma, J.; Sun, F.; Li, C.; et al. Smart gel polymer electrolytes enlightening high safety and long life sodium ion batteries. Nat. Commun. 2025, 16, 2979. [Google Scholar] [CrossRef]
- Liu, S.; Tian, W.; Shen, J.; Wang, Z.; Pan, H.; Kuang, X.; Yang, C.; Chen, S.; Han, X.; Quan, H.; et al. Bioinspired gel polymer electrolyte for wide temperature lithium metal battery. Nat. Commun. 2025, 16, 2474. [Google Scholar] [CrossRef]
- Weston, J.E.; Steele, B.C.H. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes. Solid State Ion. 1982, 7, 75–79. [Google Scholar] [CrossRef]
- Tambelli, C.C.; Bloise, A.C.; Rosario, A.V.; Pereira, E.C.; Magon, C.J.; Donoso, J.P. Characterisation of PEO–Al2O3 composite polymer electrolytes. Electrochim. Acta 2002, 47, 1677–1682. [Google Scholar] [CrossRef]
- Sun, H.Y.; Takeda, Y.; Imanishi, N.; Yamamoto, O.; Sohn, H.J. Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide-based electrolytes. J. Electrochem. Soc. 2000, 147, 2462. [Google Scholar] [CrossRef]
- Elbouazzaoui, K.; Mahun, A.; Shabikova, V.; Rubatat, L.; Edström, K.; Mindemark, J.; Brandell, D. Enabling High-Voltage Polymer-Based Solid-State Batteries Through Reinforcements with LiAlO2 Fillers. Adv. Energy Mater. 2025, 15, 2405249. [Google Scholar] [CrossRef]
- Zhu, Z.; Hong, M.; Guo, D.; Shi, J.; Tao, Z.; Chen, J. All-Solid-State Lithium Organic Battery with Composite Polymer Electrolyte and Pillar [5] Quinone Cathode. J. Am. Chem. Soc. 2014, 136, 16461–16464. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, L.; Sun, Y.; Wang, C.; Wang, Y.; Xia, Y. All-Solid-State Secondary Lithium Battery Using Solid Polymer Electrolyte and Anthraquinone Cathode. Solid State Ion. 2017, 300, 114–119. [Google Scholar] [CrossRef]
- Hanyu, Y.; Ganbe, Y.; Honma, I. Application of Quinonic Cathode Compounds for Quasi-Solid Lithium Batteries. J. Power Sources 2013, 221, 186–190. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Zhang, X.; Liu, T.; Lin, Y.H.; Li, L.; Shen, Y.; Nan, C.W. Lithium-Salt-Rich PEO/Li0.3La0.557TiO3 Interpenetrating Composite Electrolyte with Three-Dimensional Ceramic Nano-Backbone for All-Solid-State Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 24791–24798. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, J.; Cai, W.; Lai, Y.; Song, J.; Yu, J.; Ding, B. Elastic and Well-Aligned Ceramic LLZO Nanofiber Based Electrolytes for Solid-State Lithium Batteries. Energy Storage Mater. 2019, 23, 306–313. [Google Scholar] [CrossRef]
- Li, D.; Chen, L.; Wang, T.; Fan, L.Z. 3D Fiber-Network- Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-Free Lithium Metal Batteries. ACS Appl. Mater. Interfaces 2018, 10, 7069–7078. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; Shi, J.; Liu, Y.; Zheng, S.; Zou, H.; Chen, Y.; Kuang, W.; Ding, K.; Chen, L.; et al. A 3D Interconnected Metal- Organic Framework-Derived Solid-State Electrolyte for Dendrite-Free Lithium Metal Battery. Energy Storage Mater. 2022, 47, 262–270. [Google Scholar] [CrossRef]
- Kaur, H.; Thakur, A.; Thakur, R.C.; Kumar, A. A Review on Multifaceted Role of Ionic Liquids in Modern Energy Storage Systems: From Electrochemical Performance to Environmental Sustainability. Energy Fuels 2025, 39, 3703–3734. [Google Scholar] [CrossRef]
- Guillemin, T.; Douard, C.; Robert, K.; Asbani, B.; Lethien, C.; Brousse, T.; Le Bideau, J. Solid-state 3D micro-supercapacitors based on ionogel electrolyte: Influence of adding lithium and sodium salts to the ionic liquid. Energy Storage Mater. 2022, 50, 606–617. [Google Scholar] [CrossRef]
- Chen, G.; Chen, N.; Li, L.; Wang, Q.; Duan, W. Ionic liquid modified poly (vinyl alcohol) with improved thermal processability and excellent electrical conductivity. Ind. Eng. Chem. Res. 2018, 57, 5472–5481. [Google Scholar] [CrossRef]
- Li, H.; Xu, F.; Guan, T.; Li, Y.; Sun, J. Mechanically and environmentally stable triboelectric nanogenerator based on high-strength and anti-compression self-healing ionogel. Nano Energy 2021, 90, 106645. [Google Scholar] [CrossRef]
- Wu, J.; Huang, L.; Wang, S.; Li, X.; Wen, L.; Li, X.; Feng, T.; Li, P.; Fang, Z.; Wu, M.; et al. Ionogel electrolyte with dynamic metal-ligand interactions enabled self-healable supercapacitor with high energy density. Energy Storage Mater. 2023, 57, 549–556. [Google Scholar] [CrossRef]
- Cao, L.; Gong, Z.; Liu, C.; Fan, J.; Chen, Y. Design and fabrication of mechanically strong and self-healing rubbers via metal-ligand coordination bonds as dynamic crosslinks. Compos. Sci. Technol. 2021, 207, 108750. [Google Scholar] [CrossRef]
- Li, C.H.; Zuo, J.L. Self-healing polymers based on coordination bonds. Adv. Mater. 2020, 32, 1903762. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, T.; Chen, X.; Wu, D. Agar-based porous electrode and electrolyte for flexible symmetric supercapacitors with ultrahigh energy density. J. Power Sources 2021, 507, 230252. [Google Scholar] [CrossRef]
- Fdz De Anastro, A.; Casado, N.; Wang, X.; Rehmen, J.; Evans, D.; Mecerreyes, D.; Forsyth, M.; Pozo-Gonzalo, C. Poly(Ionic Liquid) Iongels for All-Solid Rechargeable Zinc/PEDOT Batteries. Electrochim. Acta 2018, 278, 271–278. [Google Scholar] [CrossRef]
- Leung, P.; Bu, J.; Quijano Velasco, P.; Roberts, M.R.; Grobert, N.; Grant, P.S. Single-Step Spray Printing of Symmetric All-Organic Solid-State Batteries Based on Porous Textile Dye Electrodes. Adv. Energy Mater. 2019, 9, 1901418. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tewari, C.; Rawat, K.S.; Yoon, S.; Jung, Y.C. Polymer-Based Electrolytes for Organic Batteries. Energies 2025, 18, 5168. https://doi.org/10.3390/en18195168
Tewari C, Rawat KS, Yoon S, Jung YC. Polymer-Based Electrolytes for Organic Batteries. Energies. 2025; 18(19):5168. https://doi.org/10.3390/en18195168
Chicago/Turabian StyleTewari, Chetna, Kundan Singh Rawat, Somi Yoon, and Yong Chae Jung. 2025. "Polymer-Based Electrolytes for Organic Batteries" Energies 18, no. 19: 5168. https://doi.org/10.3390/en18195168
APA StyleTewari, C., Rawat, K. S., Yoon, S., & Jung, Y. C. (2025). Polymer-Based Electrolytes for Organic Batteries. Energies, 18(19), 5168. https://doi.org/10.3390/en18195168