The Impact of Novel Artificial Intelligence Methods on Energy Productivity, Industrial Transformation and Digitalization Within the Framework of Energy Economics, Efficiency and Sustainability
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset
- RQ1: evolution of research topics over time;
- RQ2: geographical distribution of research, publications, authors, institutions and if available,
- RQ3: publications with the highest impact and topics that may shape future research programs.
2.2. Methods
- Item 3 (justification);
- Item 4 (objectives);
- Item 5 (eligibility criteria);
- Item 6 (information sources);
- Item 7 (search strategy);
- Item 8 (selection process);
- Item 9 (data collection process);
- Item 13a (synthesis methods);
- Item 20b (synthesis results);
- Item 23a (discussion).
3. Results
3.1. Data Sources
- In the WoS database, the “Subject” field (i.e., title, abstract, keywords, and other keywords) was used;
- In Scopus, the title, abstract, and keywords were used;
- In PubMed and dblp, manual keyword sets were used.
3.2. Advanced Digital Transformation in the Energy Sector
3.3. Integrating AI Increases Operational Efficiency Across Various Sectors, Significantly Contributing to Energy Savings and Cost Reductions
3.4. Using ML, DL, and genAI Companies Can Model Complex Energy Consumption Patterns
3.5. AI-Assisted Digitalization Fosters Smart Production, Resource Allocation, and Decarbonization Strategies
3.6. Risks and Advantages
4. Discussion
4.1. Technological and Economical Influence
4.2. Societal and Ethical Influence
4.3. Legal Influence
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
DL | Deep learning |
GenAI | Generative AI |
ML | Machine learning |
XAI | eXplainable AI |
References
- Huang, Z.; Shen, Y.; Li, J.; Fey, M.; Brecher, C. AI-Driven Digital Twins. Sensors 2021, 21, 6340. [Google Scholar] [CrossRef]
- Singh, R.; Akram, S.V.; Gehlot, A.; Buddhi, D.; Priyadarshi, N.; Twala, B. Energy System 4.0: Digitalization of the Energy Sector with Inclination towards Sustainability. Sensors 2022, 22, 6619. [Google Scholar] [CrossRef]
- Ghobakhloo, M.; Fathi, M. Industry 4.0 and opportunities for energy sustainability. J. Clean. Prod. 2021, 295, 126427. [Google Scholar] [CrossRef]
- Rojek, I.; Macko, M.; Mikołajewski, D.; Saga, M.; Burczynski, T. Modern methods in the field of machine modeling and simulation as a research and practical issue related to Industry 4.0. Bull. Pol. Acad. Sci. Tech. Sci. 2021, 69, e136719. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.E. Differentiating Digital Twin from Digital Shadow: Elucidating a Paradigm Shift to Expedite a Smart, Sustainable Built Environment. Buildings 2021, 11, 151. [Google Scholar] [CrossRef]
- Xi, T.; Benincá, I.M.; Kehne, S.; Fey, M.; Brecher, C. Tool wear monitoring in roughing and finishing processes based on machine internal data. Int. J. Adv. Manuf. Technol. 2021, 113, 3543–3554. [Google Scholar] [CrossRef]
- Moretti, M.; Rossi, A.; Senin, N. In-process monitoring of part geometry in fused filament fabrication using computer vision and digital twins. Addit. Manuf. 2021, 37, 101609. [Google Scholar] [CrossRef]
- Borowski, P.F. Digitization, digital twins, blockchain, and industry 4.0 as elements of management process in enterprises in the energy sector. Energies 2021, 14, 1885. [Google Scholar] [CrossRef]
- Rangel-Martinez, D.; Nigam, K.D.P.; Ricardez-Sandoval, L.A. Machine learning on sustainable energy: A review and outlook on renewable energy systems, catalysis, smart grid and energy storage. Chem. Eng. Res. Des. 2021, 174, 414–441. [Google Scholar] [CrossRef]
- Rojek, I.; Mikołajewski, D.; Kotlarz, P.; Tyburek, K.; Kopowski, J.; Dostatni, E. Traditional Artificial Neural Networks Versus Deep Learning in Optimization of Material Aspects of 3D Printing. Materials 2021, 14, 7625. [Google Scholar] [CrossRef] [PubMed]
- Alavikia, Z.; Shabro, M. A comprehensive layered approach for implementing internet of things-enabled smart grid: A survey. Digit. Commun. Netw. 2022, 8, 388–410. [Google Scholar] [CrossRef]
- He, B.; Liu, L.; Zhang, D. Digital Twin-driven Remaining Useful Life Prediction for Gear Performance Degradation: A Review. J. Comput. Inf. Sci. Eng. 2021, 21, 030801. [Google Scholar] [CrossRef]
- Heo, T.W.; Khairallah, S.A.; Shi, R.; Berry, J.; Perron, A.; Calta, N.P.; Martin, A.A.; Barton, N.R.; Roehling, J.D.; Roehling, T.; et al. A mesoscopic digital twin that bridges length and time scales for control of additively manufactured metal microstructures. J. Phys. Mater. 2021, 4, 034012. [Google Scholar] [CrossRef]
- Jazdi, N.; Ashtari Talkhestani, B.; Maschler, B.; Weyrich, M. Realization of AI-enhanced industrial automation systems using intelligent Digital Twins. Procedia CIRP 2021, 97, 396–400. [Google Scholar] [CrossRef]
- Guo, Y.; Wan, Z.; Cheng, X. When Blockchain Meets Smart Grids: A Comprehensive Survey. High-Confid. Comput. 2022, 2, 100059. [Google Scholar]
- Rojek, I.; Mroziński, A.; Kotlarz, P.; Macko, M.; Mikołajewski, D. AI-Based Computational Model in Sustainable Transformation of Energy Markets. Energies 2023, 16, 8059. [Google Scholar] [CrossRef]
- Bayer, B.; Diaz, R.D.; Melcher, M.; Striedner, G.; Duerkop, M. Digital twin application for model-based doe to rapidly identify ideal process conditions for space-time yield optimization. Processes 2021, 9, 1109. [Google Scholar] [CrossRef]
- Ma, X.; Cheng, J.; Qi, Q.; Tao, F. Artificial intelligence enhanced interaction in digital twin shop-floor. Procedia CIRP 2021, 100, 858–863. [Google Scholar] [CrossRef]
- Hardt, M.; Schraknepper, D.; Bergs, T. Investigations on the Application of the Downhill-Simplex-Algorithm to the Inverse Determination of Material Model Parameters for FE-Machining Simulations. Simul. Model. Pract. Theory 2021, 107, 129–148. [Google Scholar] [CrossRef]
- Xu, J.; Guo, T. Application and research on digital twin in electronic cam servo motion control system. Int. J. Adv. Manuf. Technol. 2021, 112, 1145–1158. [Google Scholar] [CrossRef]
- Zhou, Y.; Xing, T.; Song, Y.; Li, Y.; Zhu, X.; Li, G.; Ding, S. Digital-twin-driven geometric optimization of centrifugal impeller with free-form blades for five-axis flank milling. J. Manuf. Syst. 2021, 58, 22–35. [Google Scholar] [CrossRef]
- Zhang, D.Y. Artificial intelligence and computational pathology. Lab. Investig. 2021, 101, 412–422. [Google Scholar]
- Rojek, I.; Mikołajewski, D.; Mroziński, A.; Macko, M. Machine Learning- and Artificial Intelligence-Derived Prediction for Home Smart Energy Systems with PV Installation and Battery Energy Storage. Energies 2023, 16, 6613. [Google Scholar] [CrossRef]
- Yiping, G.; Xinyu, L.; Gao, L. A Deep Lifelong Learning Method for Digital-Twin Driven Defect Recognition with Novel Classes. J. Comput. Inf. Sci. Eng. 2021, 21, 031004. [Google Scholar] [CrossRef]
- Ganser, P.; Landwehr, M.; Schiller, S.; Vahl, C.; Mayer, S.; Bergs, T. Knowledge-Based Adaptation of Product and Process Design in Blisk Manufacturing. J. Eng. Gas Turbines Power 2022, 144, 011023. [Google Scholar] [CrossRef]
- Su, S.; Zhao, G.; Xiao, W.; Yang, Y.; Cao, X. An image-based approach to predict instantaneous cutting forces using convolutional neural networks in end milling operation. Int. J. Adv. Manuf. Technol. 2021, 115, 1657–1669. [Google Scholar] [CrossRef]
- Alguri, K.S.; Chia, C.C.; Harley, J.B. Sim-to-Real: Employing ultrasonic guided wave digital surrogates and transfer learning for damage visualization. Ultrasonics 2021, 111, 106338. [Google Scholar] [CrossRef]
- Song, Z.; Hackl, C.M.; Anand, A.; Thommessen, A.; Petzschmann, J.; Kamel, O.; Braunbehrens, R.; Kaifel, A.; Roos, C.; Hauptmann, S. Digital Twins for the Future Power System: An Overview and a Future Perspective. Sustainability 2023, 15, 5259. [Google Scholar] [CrossRef]
- Lv, Q.; Zhang, R.; Sun, X.; Lu, Y.; Bao, J. A digital twin-driven human-robot collaborative assembly approach in the wake of COVID-19. J. Manuf. Syst. 2021, 60, 837–851. [Google Scholar] [CrossRef] [PubMed]
- Conrad, C.; Al-Rubaye, S.; Tsourdos, A. Intelligent Embedded Systems Platform for Vehicular Cyber-Physical Systems. Electronics 2023, 12, 2908. [Google Scholar] [CrossRef]
- Różanowski, K.; Piotrowski, Z.; Ciolek, M. Mobile Application for Driver’s Health Status Remote Monitoring. In Proceedings of the 9th International Wireless Communications and Mobile Computing Conference (IWCMC), Sardinia, Italy, 1–5 July 2013; pp. 1738–1743. [Google Scholar]
- Jannasz, I.; Sondej, T.; Targowski, T.; Mańczak, M.; Obiała, K.; Dobrowolski, A.P.; Olszewski, R. Relationship between the Central and Regional Pulse Wave Velocity in the Assessment of Arterial Stiffness Depending on Gender in the Geriatric Population. Sensors 2023, 23, 5823. [Google Scholar] [CrossRef]
- Martinez-Ruedas, C.; Flores-Arias, J.-M.; Moreno-Garcia, I.M.; Linan-Reyes, M.; Bellido-Outeiriño, F.J. A Cyber–Physical System Based on Digital Twin and 3D SCADA for Real-Time Monitoring of Olive Oil Mills. Technologies 2024, 12, 60. [Google Scholar] [CrossRef]
- Mikołajczyk, T.; Kłodowski, A.; Mikołajewska, E.; Walkowiak, P.; Berjano, P.; Villafañe, J.H.; Aggogeri, F.; Borboni, A.; Fausti, D.; Petrogalli, G. Design and control of system for elbow rehabilitation: Preliminary findings. Adv. Clin. Exp. Med. 2018, 27, 12, 1661–1669. [Google Scholar] [CrossRef]
- Zhao, Z.; Shen, L.; Yang, C.; Wu, W.; Zhang, M.; Huang, G.Q. IoT and digital twin enabled smart tracking for safety management. Comput. Oper. Res. 2021, 128, 105183. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. A BIM-data mining integrated digital twin framework for advanced project management. Autom. Constr. 2021, 124, 103564. [Google Scholar] [CrossRef]
- Huynh, H.N.; Altintas, Y. Modeling the Dynamics of Five-Axis Machine Tool Using the Multibody Approach. J. Manuf. Sci. Eng. 2021, 143, 021012. [Google Scholar] [CrossRef]
- Rojek, I.; Kotlarz, P.; Dorożyński, J.; Mikołajewski, D. Sixth-Generation (6G) Networks for Improved Machine-to-Machine (M2M) Communication in Industry 4.0. Electronics 2024, 13, 1832. [Google Scholar] [CrossRef]
- Psarommatis, F. A generic methodology and a digital twin for zero defect manufacturing (ZDM) performance mapping towards design for ZDM. J. Manuf. Syst. 2021, 59, 507–521. [Google Scholar] [CrossRef]
- Joseph, A.J.; Kruger, K.; Basson, A.H. An Aggregated Digital Twin Solution for Human-Robot Collaboration in Industry 4.0 Environments; Springer International Publishing: Cham, Switzerland, 2021; pp. 135–147. [Google Scholar]
- Autiosalo, J.; Ala-Laurinaho, R.; Mattila, J.; Valtonen, M.; Peltoranta, V.; Tammi, K. Towards integrated digital twins for industrial products: Case study on an overhead crane. Appl. Sci. 2021, 11, 683. [Google Scholar] [CrossRef]
- Węgrzyn-Wolska, K.; Rojek, I.; Dostatni, E.; Mikołajewski, D.; Pawłowski, L. Modern approach to sustainable production in the context of Industry 4.0. Bull. Pol. Acad. Sci. Tech. Sci. 2022, 70, e143828. [Google Scholar] [CrossRef]
- Cirullies, J.; Schwede, C. On-demand Shared Digital Twins—An Information Architectural Model to Create Transparency inCollaborative Supply Networks. In Proceedings of the 54th Hawaii International Conference on System Sciences, Honolulu, HI, USA, 5–8 January 2021; pp. 1675–1684. [Google Scholar]
- Tipary, B.; Erdős, G. Generic development methodology for flexible robotic pick-and-place workcells based on Digital Twin. Robot. Comput.-Integr. Manuf. 2021, 71, 102140. [Google Scholar] [CrossRef]
- Wang, P.; Luo, M. A digital twin-based big data virtual and real fusion learning reference framework supported by industrial internet towards smart manufacturing. J. Manuf. Syst. 2021, 58, 16–32. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wan, X.; Feng, B. Tool Wear Online Monitoring Method Based on DT and SSAE-PHMM. J. Comput. Inf. Sci. Eng. 2021, 21, 034501. [Google Scholar] [CrossRef]
- Chakraborty, S.; Adhikari, S.; Ganguli, R. The role of surrogate models in the development of digital twins of dynamic systems. Appl. Math. Model. 2021, 90, 662–681. [Google Scholar] [CrossRef]
- Rojek, I.; Kowal, M.; Stoic, A. Predictive compensation of thermal deformations of ball screws in cnc machines using neural networks. Teh. Vjesn.-Tech. Gaz. 2017, 24, 1697–1703. [Google Scholar]
- Chakraborty, S.; Adhikari, S. Machine learning based digital twin for dynamical systems with multiple time-scales. Comput. Struct. 2021, 243, 106410. [Google Scholar] [CrossRef]
- He, B.; Cao, X.; Hua, Y. Data fusion-based sustainable digital twin system of intelligent detection robotics. J. Clean. Prod. 2021, 280, 124181. [Google Scholar] [CrossRef]
- Rezaei Aderiani, A.; Wärmefjord, K.; Söderberg, R. Evaluating different strategies to achieve the highest geometric quality in self-adjusting smart assembly lines. Robot. Comput.-Integr. Manuf. 2021, 71, 102164. [Google Scholar] [CrossRef]
- He, B.; Li, T.; Xiao, J. Digital twin-driven controller tuning method for dynamics. J. Comput. Inf. Sci. Eng. 2021, 21, 031010. [Google Scholar] [CrossRef]
- Rojek, I. Hybrid Neural Networks as Prediction Models. In Artificial Intelligence and Soft Computing, Lecture Notes in Artificial Intelligence; Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 88–95. [Google Scholar]
- Wang, Q.; Jiao, W.; Wang, P.; Zhang, Y. Digital Twin for Human-Robot Interactive Welding and Welder Behavior Analysis. IEEE/CAA J. Autom. Sin. 2021, 8, 334–343. [Google Scholar] [CrossRef]
- Denkena, B.; Pape, O.; Krödel, A.; Böß, V.; Ellersiek, L.; Mücke, A. Process design for 5-axis ball end milling using a real-time capable dynamic material removal simulation. Prod. Eng. 2021, 15, 89–95. [Google Scholar] [CrossRef]
- Singgih, I.K. Production Flow Analysis in a Semiconductor Fab Using Machine Learning Techniques. Processes 2021, 9, 407. [Google Scholar] [CrossRef]
- Ward, R.; Sencer, B.; Jones, B.; Ozturk, E. Accurate prediction of machining feedrate and cycle times considering interpolator dynamics. Int. J. Adv. Manuf. Technol. 2021, 116, 417–438. [Google Scholar] [CrossRef]
- Mourtzis, D.; Angelopoulos, J.; Panopoulos, N. Development of a PSS for Smart Grid Energy Distribution Optimization based on Digital Twin. Procedia CIRP 2022, 107, 1138–1143. [Google Scholar] [CrossRef]
- Heo, E.; Yoo, N. Numerical Control Machine Optimization Technologies through Analysis of Machining History Data Using Digital Twin. Appl. Sci. 2021, 11, 3259. [Google Scholar] [CrossRef]
- May, M.C.; Overbeck, L.; Wurster, M.; Kuhnle, A.; Lanza, G. Foresighted digital twin for situational agent selection in production control. Procedia CIRP 2021, 99, 27–32. [Google Scholar] [CrossRef]
- Malik, A.A.; Brem, A. Digital twins for collaborative robots: A case study in human-robot interaction. Robot. Comput.-Integr. Manuf. 2021, 68, 102092. [Google Scholar] [CrossRef]
- Domalewska, D. A longitudinal analysis of the creation of environmental identity and attitudes towards energy sustainability using the framework of identity theory and big data analysis. Energies 2021, 14, 647. [Google Scholar] [CrossRef]
- Han, X.; Chen, Y.; Feng, Q.; Luo, H. Augmented Reality in Professional Training: A Review of the Literature from 2001 to 2020. Appl. Sci. 2022, 12, 1024. [Google Scholar] [CrossRef]
- Garavand, A.; Aslani, N. Informatics in Medicine Unlocked Metaverse phenomenon and its impact on health: A scoping review. Inform. Med. Unlocked 2022, 32, 101029. [Google Scholar] [CrossRef]
- Sayed, K.; Abo-Khalil, A.G.; Eltamaly, A.M. Wind Power Plants Control Systems Based on SCADA System. In Control and Operation of Grid-Connected Wind Energy Systems; Springer: Cham, Switzerland, 2021; pp. 109–151. [Google Scholar]
- Ahmadpour, A.; Mokaramian, E.; Anderson, S. The effects of the renewable energies penetration on the surplus welfare under energy policy. Renew. Energy 2021, 164, 1171–1182. [Google Scholar] [CrossRef]
- Kulkarni, V.; Sahoo, S.K.; Mathew, R. Applications of Internet of Things for Microgrid. In Microgrid Technologies; Wiley: Hoboken, NJ, USA, 2021; pp. 405–428. [Google Scholar]
- Hua, H.; Qin, Z.; Dong, N.; Qin, Y.; Ye, M.; Wang, Z.; Chen, X.; Cao, J. Data-driven dynamical control for bottom-up energy Internet system. IEEE Trans. Sustain. Energy 2021, 13, 315–327. [Google Scholar] [CrossRef]
- Han, D.; Zhang, C.; Ping, J.; Yan, Z. Smart contract architecture for decentralized energy trading and management based on blockchains. Energy 2020, 199, 117417. [Google Scholar] [CrossRef]
- Damisa, U.; Nwulu, N.I.; Siano, P. Towards Blockchain-Based Energy Trading: A Smart Contract Implementation of Energy Double Auction and Spinning Reserve Trading. Energies 2022, 15, 4084. [Google Scholar] [CrossRef]
- Kumari, A.; ChintukumarSukharamwala, U.C.; Tanwar, S.; Raboaca, M.S.; Alqahtani, F.; Tolba, A.; Sharma, R.; Aschilean, I.; Mihaltan, T.C. Blockchain-Based Peer-to-Peer Transactive Energy Management Scheme for Smart Grid System. Sensors 2022, 22, 4826. [Google Scholar] [CrossRef]
- Al Moti, M.M.M.; Uddin, R.S.; Hai, M.A.; Bin Saleh, T.; Alam, M.G.R.; Hassan, M.M.; Hassan, M.R. Blockchain Based Smart-Grid Stackelberg Model for Electricity Trading and Price Forecasting Using Reinforcement Learning. Appl. Sci. 2022, 12, 5144. [Google Scholar] [CrossRef]
- Wang, X.; Xie, Z. Research on the Application of Blockchain Technology in Logistics Industry. Adv. Econ. Bus. Manag. Res. 2020, XXIX, 1339–1349. [Google Scholar]
- Gajić, D.B.; Petrović, V.B.; Horvat, N.; Dragan, D.; Stanisavljević, A.; Katić, V.; Popović, J. A Distributed Ledger-Based Automated Marketplace for the Decentralized Trading of Renewable Energy in Smart Grids. Energies 2022, 15, 2121. [Google Scholar] [CrossRef]
- Rocha, H.R.O.; Honorato, I.H.; Fiorotti, R.; Celeste, W.C.; Silvestre, L.J.; Silva, J.A.L. An Artificial Intelligence based scheduling algorithm for demand-side energy management in Smart Homes. Appl. Energy 2021, 282, 116145. [Google Scholar] [CrossRef]
- Albarakati, A.J.; Boujoudar, Y.; Azeroual, M.; Jabeur, R.; Aljarbouh, A.; El Moussaoui, H.; Lamhamdi, T.; Ouaaline, N. Real-time energy management for DC microgrids using artificial intelligence. Energies 2021, 14, 5307. [Google Scholar] [CrossRef]
- Nair, D.R.; Nair, M.G.; Thakur, T. A Smart Microgrid System with Artificial Intelligence for Power-Sharing and Power Quality Improvement. Energies 2022, 15, 5409. [Google Scholar] [CrossRef]
- Chen, C.; Hu, Y.; Karuppiah, M.; Kumar, P.M. Artificial intelligence on economic evaluation of energy efficiency and renewable energy technologies. Sustain. Energy Technol. Assess. 2021, 47, 101358. [Google Scholar]
- Goia, B.; Cioara, T.; Anghel, I. Virtual Power Plant Optimization in Smart Grids: A Narrative Review. Futur. Internet 2022, 14, 128. [Google Scholar] [CrossRef]
- Dhanalakshmi, J.; Ayyanathan, N. A systematic review of big data in energy analytics using energy computing techniques. Concurr. Comput. Pract. Exp. 2022, 34, e6647. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Name of Stage | Tasks |
---|---|
Defining study aim(s) | Defining aim(s) of the bibliometric analysis |
Selecting bibliometric database(s) | Selecting appropriate database(s), dataset(s) and developing research queries according to the aim(s) of the study |
Data preprocessing/preparation | Removing duplicates and irrelevant records from the collected dataset, classification of the records to adapt them to the requirements of the ML training set |
Bibliometric software selection | Selection of optimal tools from the area of bibliometric software for analysis |
Data and metadata analysis | Description, keywords, type of publication, author(s), affiliation, area/topic, country, etc. |
Analysis results/visualization of results (where possible) | Visualization of the results to emphasize insights |
Interpretation of results and discussion | Interpreting results in the context of the research questions (RQs) |
Parameter/Feature | Detailed Description |
---|---|
Inclusion criteria | Books, book chapters, articles (original, reviews, editorials), and conference proceedings, in English |
Exclusion criteria | Articles, books, chapters older than 10 years, letters, conference abstracts without full text, in other languages than English |
Keywords used | Artificial intelligence, machine learning, energy efficiency, energy productivity, energy transformation, energy optimization/optimization and similar |
Used field codes (WoS) | “Subject” field (i.e., title, abstract, keyword plus and other keywords) |
Used fields (Sopus) | Article title, abstract and keywords |
Used fields (PubMed) | Manually |
Used fields (dblp) | Manually |
Boolean operators used | Yes |
Filters used | Results were refined by year of publication, document type (e.g., articles and reviews), and subject area (e.g., industry, engineering, computer science, and physics) |
Iteration/validation option(s) | The query is used iteratively, refined in subsequent iterations based on the previous results, and verified by checking whether relevant publications appear among the top results |
Wildcarts and leverage truncation | Used symbol * for word variations (e.g., “energ*” for “energy” or “energetic”) |
Parameter/Feature | Value |
---|---|
Years of publication | Lack of publications before 2021–2025 |
Leading types of publication | Article (39.30%), Proceeding paper (26.20%), Book chapter (11.50%), Review article (11.50%) |
Leading areas of science (there is more than one possible for a single article) | Engineering Electrical Electronic (38.18), Computer Science Information Systems (34.55%), Telecommunications (34.55%) |
Leading country/countries | India (16.36%) |
Leading author(s) | None prevalent |
Leading affiliation(s) | None prevalent |
Leading funders (where information concerning founding is available) | None prevalent |
Leading Sustainable Development Goals (SDGs) | Responsible Consumption and Production, Industry Innovation and Infrastructure, Sustainable cities and Communities, Good Health and Well Being |
Advantages | Risks |
---|---|
Improved energy forecasting (demand, prices, renewable generation) Enhanced grid stability and reliability through real-time monitoring Optimization of energy dispatch and load balancing Integration of renewable and distributed energy resources Predictive maintenance reducing downtime and costs Dynamic pricing and market efficiency improvements Support for decarbonization and sustainability goals | Data privacy and security vulnerabilities Algorithmic bias leading to unfair or inefficient decisions High initial investment and implementation costs Over-reliance on black-box models with limited explainability Cybersecurity threats to critical infrastructure Integration challenges with legacy systems Potential job displacement in traditional grid management |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojek, I.; Mikołajewski, D.; Prokopowicz, P. The Impact of Novel Artificial Intelligence Methods on Energy Productivity, Industrial Transformation and Digitalization Within the Framework of Energy Economics, Efficiency and Sustainability. Energies 2025, 18, 5138. https://doi.org/10.3390/en18195138
Rojek I, Mikołajewski D, Prokopowicz P. The Impact of Novel Artificial Intelligence Methods on Energy Productivity, Industrial Transformation and Digitalization Within the Framework of Energy Economics, Efficiency and Sustainability. Energies. 2025; 18(19):5138. https://doi.org/10.3390/en18195138
Chicago/Turabian StyleRojek, Izabela, Dariusz Mikołajewski, and Piotr Prokopowicz. 2025. "The Impact of Novel Artificial Intelligence Methods on Energy Productivity, Industrial Transformation and Digitalization Within the Framework of Energy Economics, Efficiency and Sustainability" Energies 18, no. 19: 5138. https://doi.org/10.3390/en18195138
APA StyleRojek, I., Mikołajewski, D., & Prokopowicz, P. (2025). The Impact of Novel Artificial Intelligence Methods on Energy Productivity, Industrial Transformation and Digitalization Within the Framework of Energy Economics, Efficiency and Sustainability. Energies, 18(19), 5138. https://doi.org/10.3390/en18195138