Economic Analysis and Life Cycle Assessment of an Electrochemical Reactor for CO2 and Ethylene Glycol Conversion
Abstract
1. Introduction
2. Methodology
- —cash flow in year t, ;
- —weighted average cost of capital, ;
- —subsequent year of the investment project, starting from the beginning of construction (t = 0), ;
- —project duration.
- —investment cost, ;
- —revenues from sales, ;
- —costs ;
- —decommissioning, .
- —unit investment cost, ;
- —power of the installation, ;
- —cost of equity capital, ;
- —cost of loan, .
- —loan interest rate, ;
- —cost of equity capital, ;
- —income tax (flat), .
- —risk-free interest rate, ;
- —risk factor, ;
- —market return rate, .
- —revenue from glycolic acid sales, ;
- —revenue from carbon monoxide sales, ;
- —price of glycolic acid, ;
- —mass flow rate of glycolic acid, ;
- —reactor operating time per year, .
- —price of carbon monoxide, ;
- —mass flow rate of carbon monoxide, .
- —operating costs, ;
- —income tax, .
- —fixed costs, ;
- —variable costs, ;
- —depreciation, .
- —operation and maintenance costs, .
- —unit operating and maintenance costs, .
- —cost of purchasing carbon dioxide, ;
- —cost of purchasing ethylene glycol, ;
- —cost of purchasing electrical energy, ;
- —price of carbon dioxide, ;
- —mass flow rate of carbon dioxide, .
- —price of ethylene glycol, ;
- —electricity price, .
3. Scheme and Assumptions
4. Results and Discussion
4.1. Economic Results
4.2. Life Cycle Assessment Results
5. Perspective
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CCU | Carbon Capture and Utilization |
CCS | Carbon Capture and Storage |
CO | Carbon Monoxide |
CO2 | Carbon Dioxide |
DAC | Direct Air Capture |
EG | Ethylene Glycol |
EU | European Union |
GA | Glycolic Acid |
GHG | Greenhouse Gases |
GWP | Global Warming Potential |
LCA | Life Cycle Assessment |
NPV | Net Present Value |
PET | Polyethylene Terephthalate |
PGA | Polyglycolic |
RES | Renewable Energy Sources |
TRL | Technology Readiness Level |
References
- GHG Emissions of All World Countries—Publications Office of the EU. Available online: https://op.europa.eu/en/publication-detail/-/publication/0cde0e23-5057-11ee-9220-01aa75ed71a1/language-en (accessed on 18 August 2025).
- Ritchie, H.; Roser, M. CO2 Emissions. Our World Data 2020, 2, 189–205. [Google Scholar] [CrossRef]
- CO2 Emissions—Global Energy Review 2025—Analysis—IEA. Available online: https://www.iea.org/reports/global-energy-review-2025/co2-emissions (accessed on 18 August 2025).
- Rahman, M.M.; Alam, K.; Velayutham, E. Reduction of CO2 Emissions: The Role of Renewable Energy, Technological Innovation and Export Quality. Energy Rep. 2022, 8, 2793–2805. [Google Scholar] [CrossRef]
- Deng, Z.; Zhu, B.; Davis, S.J.; Ciais, P.; Guan, D.; Gong, P.; Liu, Z. Global Carbon Emissions and Decarbonization in 2024: Climate Chronicles. Nat. Rev. Earth Environ. 2025, 6, 231–233. [Google Scholar] [CrossRef]
- What Is the Kyoto Protocol?|UNFCCC. Available online: https://unfccc.int/kyoto_protocol (accessed on 18 August 2025).
- The Kyoto Protocol—European Commission. Available online: https://climate.ec.europa.eu/eu-action/international-action-climate-change/kyoto-protocol_en (accessed on 18 August 2025).
- The Paris Agreement|United Nations. Available online: https://www.un.org/en/climatechange/paris-agreement (accessed on 18 August 2025).
- The Paris Agreement|UNFCCC. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement (accessed on 18 August 2025).
- Kuh, K.F. The Law of Climate Change Mitigation: An Overview. Encycl. Anthr. 2018, 1–5, 505–510. [Google Scholar] [CrossRef]
- The European Green Deal—European Commission. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 18 August 2025).
- European Green Deal—Consilium. Available online: https://www.consilium.europa.eu/en/policies/european-green-deal/ (accessed on 18 August 2025).
- Delivering the European Green Deal—European Commission. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/delivering-european-green-deal_en (accessed on 18 August 2025).
- Fit for 55—Consilium. Available online: https://www.consilium.europa.eu/en/policies/fit-for-55/ (accessed on 18 August 2025).
- EU CCS Directive—CO2 Storage Rules for CCS & Carbon Removal. Available online: https://tracker.carbongap.org/policy/eu-ccs-directive/ (accessed on 18 August 2025).
- Hanson, E.; Nwakile, C.; Hammed, V.O. Carbon Capture, Utilization, and Storage (CCUS) Technologies: Evaluating the Effectiveness of Advanced CCUS Solutions for Reducing CO2 Emissions. Results Surf. Interfaces 2025, 18, 100381. [Google Scholar] [CrossRef]
- Niesporek, K.; Wiciak, G.; Kotowicz, J.; Baszczeńska, O. Effect of Humidity on the Energy and CO2 Separation Characteristics of Membranes in Direct Air Capture Technology. Energies 2025, 18, 3422. [Google Scholar] [CrossRef]
- Kotowicz, J.; Niesporek, K.; Baszczeńska, O. Advancements and Challenges in Direct Air Capture Technologies: Energy Intensity, Novel Methods, Economics, and Location Strategies. Energies 2025, 18, 496. [Google Scholar] [CrossRef]
- Peres, C.B.; Resende, P.M.R.; Nunes, L.J.R.; de Morais, L.C. Advances in Carbon Capture and Use (CCU) Technologies: A Comprehensive Review and CO2 Mitigation Potential Analysis. Clean Technol. 2022, 4, 1193–1207. [Google Scholar] [CrossRef]
- Liu, Z.; Qian, J.; Zhang, G.; Zhang, B.; He, Y. Electrochemical CO2-to-CO Conversion: A Comprehensive Review of Recent Developments and Emerging Trends. Sep. Purif. Technol. 2024, 330, 125177. [Google Scholar] [CrossRef]
- Sajna, M.S.; Zavahir, S.; Popelka, A.; Kasak, P.; Al-Sharshani, A.; Onwusogh, U.; Wang, M.; Park, H.; Han, D.S. Electrochemical System Design for CO2 Conversion: A Comprehensive Review. J. Environ. Chem. Eng. 2023, 11, 110467. [Google Scholar] [CrossRef]
- Boutin, E.; Patel, M.; Kecsenovity, E.; Suter, S.; Janáky, C.; Haussener, S. Photo-Electrochemical Conversion of CO2 Under Concentrated Sunlight Enables Combination of High Reaction Rate and Efficiency. Adv. Energy Mater. 2022, 12, 2200585. [Google Scholar] [CrossRef]
- Sacco, A.; Speranza, R.; Savino, U.; Zeng, J.; Farkhondehfal, M.A.; Lamberti, A.; Chiodoni, A.; Pirri, C.F. An Integrated Device for the Solar-Driven Electrochemical Conversion of CO2 to CO. ACS Sustain. Chem. Eng. 2020, 8, 7563–7568. [Google Scholar] [CrossRef]
- Dokl, M.; Copot, A.; Krajnc, D.; Fan, Y.V.; Vujanović, A.; Aviso, K.B.; Tan, R.R.; Kravanja, Z.; Čuček, L. Global Projections of Plastic Use, End-of-Life Fate and Potential Changes in Consumption, Reduction, Recycling and Replacement with Bioplastics to 2050. Sustain. Prod. Consum. 2024, 51, 498–518. [Google Scholar] [CrossRef]
- Kusumocahyo, S.P.; Ambani, S.K.; Kusumadewi, S.; Sutanto, H.; Widiputri, D.I.; Kartawiria, I.S. Utilization of Used Polyethylene Terephthalate (PET) Bottles for the Development of Ultrafiltration Membrane. J. Environ. Chem. Eng. 2020, 8, 104381. [Google Scholar] [CrossRef]
- North, E.J.; Halden, R.U. Plastics and Environmental Health: The Road Ahead. Rev. Environ. Health 2013, 28, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Plastics—The Fast Facts 2023. Plastics Europe. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/ (accessed on 18 August 2025).
- Ren, T.; Zhan, H.; Xu, H.; Chen, L.; Shen, W.; Xu, Y.; Zhao, D.; Shao, Y.; Wang, Y. Recycling and High-Value Utilization of Polyethylene Terephthalate Wastes: A Review. Environ. Res. 2024, 249, 118428. [Google Scholar] [CrossRef] [PubMed]
- Electrochemical CO2 Reduction in Modern Energy as a Method of Production of Propanol and Other Alternative Fuels|Rynek-Energii.Pl. Available online: https://rynek-energii.pl/pl/node/4744 (accessed on 18 August 2025).
- Yan, Y.; Fu, Y.; Yang, J.; Shi, Q.; Wang, Z.; Zhang, Z.; Zhou, H.; Li, Z.; Shao, M.; Yan, Y.; et al. Electrocatalytic Upcycling of Polyethylene Terephthalate Waste to Biodegradable Polymer Coupled with Hydrogen Production at Ampere-Level Current Density. CCS Chem. 2025, 1–15. [Google Scholar] [CrossRef]
- Iturrondobeitia, M.; Alonso, L.; Lizundia, E. Prospective Life Cycle Assessment of Poly (Ethylene Terephthalate) Upcycling via Chemoselective Depolymerization. Resour. Conserv. Recycl. 2023, 198, 107182. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/37456.html (accessed on 1 September 2025).
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/38498.html (accessed on 1 September 2025).
- Mapping the Cost of Carbon Capture and Storage in Europe—Clean Air Task Force. Available online: https://www.catf.us/2023/02/mapping-cost-carbon-capture-storage-europe/ (accessed on 18 August 2025).
- Ethylene Glycol Price Index—Businessanalytiq. Available online: https://businessanalytiq.com/procurementanalytics/index/ethylene-glycol-price-index/ (accessed on 18 August 2025).
- Cena Energii Elektrycznej 2025. Ile Kosztuje 1 Kwh (Tauron, PGE, Enea). Available online: https://corab.pl/aktualnosci/ile-kosztuje-1-kwh-energii-elektrycznej-w-2025-roku-z-czego-wynika-cena (accessed on 18 August 2025).
- Kumar, B.; Muchharla, B.; Dikshit, M.; Dongare, S.; Kumar, K.; Gurkan, B.; Spurgeon, J.M. Electrochemical CO2 Conversion Commercialization Pathways: A Concise Review on Experimental Frontiers and Technoeconomic Analysis. Environ. Sci. Technol. Lett. 2024, 11, 1161–1174. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zha, M.; Cao, J.; Yan, H.; Feng, X.; Chen, D.; Yang, C. Glycolic Acid Production from Ethylene Glycol via Sustainable Biomass Energy: Integrated Conceptual Process Design and Comparative Techno-Economic-Society-Environment Analysis. ACS Sustain. Chem. Eng. 2021, 9, 10948–10962. [Google Scholar] [CrossRef]
- Stopa Wolna Od Ryzyka—Urząd Regulacji Energetyki. Available online: https://www.ure.gov.pl/pl/biznes/taryfy-zalozenia/stopa-wolna-od-ryzyka/7860,Stopa-wolna-od-ryzyka.html (accessed on 18 August 2025).
- Średnie Stopy Zwrotu Spółek GPW z Podziałem Na Branże—BiznesRadar.Pl. Available online: https://www.biznesradar.pl/branze/ (accessed on 18 August 2025).
- Mrożenie Cen Energii w 2025 Roku. Available online: https://www.gkpge.pl/grupa-pge/dla-mediow/komunikaty-prasowe/korporacyjne/mrozenie-cen-energii-w-2025-roku (accessed on 18 August 2025).
- Kursy Walut—Tabela A|Narodowy Bank Polski—Internetowy Serwis Informacyjny. Available online: https://nbp.pl/statystyka-i-sprawozdawczosc/kursy/tabela-a/ (accessed on 18 August 2025).
Parameter | Symbol | Value | Unit |
---|---|---|---|
Power PV-EC | 20 | ||
Efficiency degradation | 0.0075 | ||
Project duration | 20 | ||
Reactor operating time | 8000 | ||
Liquidation ratio | 20 | ||
Income tax | 19 | ||
Share of credit | 75 | ||
Loan interest rate | 6 | ||
Loan repayment period | 10 | ||
Deprecation rate | 4 | ||
Share of own funds | 25 | ||
Unit operation and maintenance cost | 20 | ||
Price of CO2, [34] | 0.15 | ||
Price of EG, [35] | 0.53 | ||
Price of electricity, [36] | 0.2 | ||
Price of CO, [37] | 0.4 | ||
Price of GA, [38] | 1.29 | ||
CO2 mass flow | 8.14 | ||
EG mass flow | 5.44 | ||
GA mass flow | 5.99 | ||
CO mass flow | 4.66 |
Parameter | Symbol | Value | Unit |
---|---|---|---|
Power PV-EC | 20 | ||
Efficiency degradation | 0.0075 | ||
Project duration | 20 | ||
Reactor operating time | 8000 | ||
Liquidation ratio | 20 | ||
Income tax | 19 | ||
Share of credit | 75 |
Parameter | Symbol | Value | Unit |
---|---|---|---|
Power PV-EC | 20 | ||
Efficiency degradation | 0.0075 | ||
Project duration | 20 | ||
Reactor operating time | 8000 | ||
Liquidation ratio | 20 | ||
Income tax | 19 | ||
Share of credit | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliwia, B.; Janusz, K.; Antonio, A.; Kamil, N.; Mateusz, B. Economic Analysis and Life Cycle Assessment of an Electrochemical Reactor for CO2 and Ethylene Glycol Conversion. Energies 2025, 18, 5125. https://doi.org/10.3390/en18195125
Oliwia B, Janusz K, Antonio A, Kamil N, Mateusz B. Economic Analysis and Life Cycle Assessment of an Electrochemical Reactor for CO2 and Ethylene Glycol Conversion. Energies. 2025; 18(19):5125. https://doi.org/10.3390/en18195125
Chicago/Turabian StyleOliwia, Baszczeńska, Kotowicz Janusz, Andretta Antonio, Niesporek Kamil, and Brzęczek Mateusz. 2025. "Economic Analysis and Life Cycle Assessment of an Electrochemical Reactor for CO2 and Ethylene Glycol Conversion" Energies 18, no. 19: 5125. https://doi.org/10.3390/en18195125
APA StyleOliwia, B., Janusz, K., Antonio, A., Kamil, N., & Mateusz, B. (2025). Economic Analysis and Life Cycle Assessment of an Electrochemical Reactor for CO2 and Ethylene Glycol Conversion. Energies, 18(19), 5125. https://doi.org/10.3390/en18195125