Influence of Fluctuating Food Waste Concentrations on Horizontal Anaerobic Reactor Performance and Biogas Output
Abstract
1. Introduction
2. Materials and Methods
2.1. Seed Inoculum and Food Waste
2.2. Horizontal Anaerobic Reactor (HAR)
2.3. Reactor Operation and Feeding Strategy
2.4. Physicochemical Analyses
2.5. Microbial Community Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Reactor Performance
3.2. Substrate Degradation
3.3. Biogas Production and Methane Concentration
3.4. Microbial Community Analysis
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tomczak, W.; Daniluk, M.; Kujawska, A. Food Waste as Feedstock for Anaerobic Mono-Digestion Process. Appl. Sci. 2024, 14, 10593. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, D.; Guo, S.; Wang, Y.; Wei, X. The World Trends and Patterns of Grain Loss and Waste Research and Their Implications. ACS Agric. Sci. Technol. 2024, 4, 82–91. [Google Scholar] [CrossRef]
- Uddin, M.M.; Wright, M.M. Anaerobic Digestion Fundamentals, Challenges, and Technological Advances. Phys. Sci. Rev. 2023, 8, 2819–2837. [Google Scholar] [CrossRef]
- Jin, C.; Sun, S.; Yang, D.; Sheng, W.; Ma, Y.; He, W.; Li, G. Anaerobic Digestion: An Alternative Resource Treatment Option for Food Waste in China. Sci. Total Environ. 2021, 779, 146397. [Google Scholar] [CrossRef] [PubMed]
- Alengebawy, A.; Ran, Y.; Osman, A.I.; Jin, K.; Samer, M.; Ai, P. Anaerobic Digestion of Agricultural Waste for Biogas Production and Sustainable Bioenergy Recovery: A Review. Environ. Chem. Lett. 2024, 22, 2641–2668. [Google Scholar] [CrossRef]
- Ebel, R.; Eberly, J.; Grimberg, B.I.; Seipel, T.; Menalled, F.D. Household-Scale Anaerobic Digestion of Food Waste—A Community Case Study from Bozeman, Montana. Front. Sustain. Food Syst. 2025, 9, 1561457. [Google Scholar] [CrossRef]
- Li, L.; Peng, X.; Wang, X.; Wu, D. Anaerobic Digestion of Food Waste: A Review Focusing on Process Stability. Bioresour. Technol. 2018, 248, 20–28. [Google Scholar] [CrossRef]
- Li, L.; He, Q.; Wei, Y.; He, Q.; Peng, X. Early Warning Indicators for Monitoring the Process Failure of Anaerobic Digestion System of Food Waste. Bioresour. Technol. 2014, 171, 491–494. [Google Scholar] [CrossRef]
- Wu, D.; Li, L.; Zhen, F.; Liu, H.; Xiao, F.; Sun, Y.; Peng, X.; Li, Y.; Wang, X. Thermodynamics of Volatile Fatty Acid Degradation during Anaerobic Digestion under Organic Overload Stress: The Potential to Better Identify Process Stability. Water Res. 2022, 214, 118187. [Google Scholar] [CrossRef]
- Slopiecka, K.; Liberti, F.; Massoli, S.; Bartocci, P.; Fantozzi, F. Chemical and Physical Characterization of Food Waste to Improve Its Use in Anaerobic Digestion Plants. Energy Nexus 2022, 5, 100049. [Google Scholar] [CrossRef]
- Shabbirahmed, A.M.; Somu, P.; Yang, H.H.; Hiruthyaswamy, S.P.; Karua, C.S.; Yadav, A.K. Challenges and Strategies for Waste Food Anaerobic Digestion: Insights and Future Directions. Environ. Dev. Sustain. 2024, 1–34. [Google Scholar] [CrossRef]
- Moonsamy, T.A.; Rajauria, G.; Priyadarshini, A.; Jansen, M.A.K. Food Waste: Analysis of the Complex and Variable Composition of a Promising Feedstock for Valorisation. Food Bioprod. Process. 2024, 148, 31–42. [Google Scholar] [CrossRef]
- Menzel, T.; Neubauer, P.; Junne, S. Spatial Monitoring of Hydrolysis in a Plug-Flow Bioreactor: A Support for Flexible Operation? Bioresour. Bioprocess. 2024, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Rossi, E.; Becarelli, S.; Pecorini, I.; Di Gregorio, S.; Iannelli, R. Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste in Plug-Flow Reactors: Focus on Bacterial Community Metabolic Pathways. Water 2022, 14, 195. [Google Scholar] [CrossRef]
- Zhou, H.; Jiang, J.; Zhao, Q.; Li, L.; Wang, K.; Wei, L. Effects of Organic Loading Rates on High-Solids Anaerobic Digestion of Food Waste in Horizontal Flow Reactor: Methane Production, Stability and Mechanism. Chemosphere 2022, 293, 133650. [Google Scholar] [CrossRef]
- Tongco, J.V.; Jannat, M.A.H.; Kim, S.; Park, S.H.; Hwang, S. Process Performance and Biogas Output: Impact of Fluctuating Acetate Concentrations on Methanogenesis in Horizontal Anaerobic Reactors. Energies 2025, 18, 3120. [Google Scholar] [CrossRef]
- APHA-AWWA-WEF. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washinton, DC, USA, 2005. [Google Scholar]
- Yu, Y.; Lee, C.; Kim, J.; Hwang, S. Group-Specific Primer and Probe Sets to Detect Methanogenic Communities Using Quantitative Real-Time Polymerase Chain Reaction. Biotechnol. Bioeng. 2005, 89, 670–679. [Google Scholar] [CrossRef]
- Kim, E.; Shin, S.G.; Jannat, M.A.H.; Tongco, J.V.; Hwang, S. Use of Food Waste-Recycling Wastewater as an Alternative Carbon Source for Denitrification Process: A Full-Scale Study. Bioresour. Technol. 2017, 245, 1016–1021. [Google Scholar] [CrossRef]
- Lee, J.; Kim, E.; Han, G.; Tongco, J.V.; Shin, S.G.; Hwang, S. Microbial Communities Underpinning Mesophilic Anaerobic Digesters Treating Food Wastewater or Sewage Sludge: A Full-Scale Study. Bioresour. Technol. 2018, 259, 388–397. [Google Scholar] [CrossRef]
- Roopnarain, A.; Nkuna, R.; Ndaba, B.; Adeleke, R. New Insights into the Metagenomic Link between Pre-Treatment Method, Addition of an Inoculum and Biomethane Yield during Anaerobic Digestion of Water Hyacinth (Eichhornia crassipes). J. Chem. Technol. Biotechnol. 2019, 94, 3217–3226. [Google Scholar] [CrossRef]
- Yulisa, A.; Park, S.H.; Chairattanawat, C.; Hwang, S. Effect of Feeding Strategies on the Start-up of Anaerobic Digestion of Fish Waste. Energy 2023, 280, 128199. [Google Scholar] [CrossRef]
- Hoffmann, R.A.; Garcia, M.L.; Veskivar, M.; Karim, K.; Al-Dahhan, M.H.; Angenent, L.T. Effect of Shear on Performance and Microbial Ecology of Continuously Stirred Anaerobic Digesters Treating Animal Manure. Biotechnol. Bioeng. 2008, 100, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.; Wang, C.; Wang, H.; Du, Y.; Yu, X.; Wang, Y. Comparison of Mesophilic and Thermophilic Anaerobic Digestion of Food Waste: Focusing on Methanogenic Performance and Pathogens Removal. Renew. Energy 2024, 233, 121184. [Google Scholar] [CrossRef]
- Palacios, P.A.; Sieborg, M.U.; Kuipers, S.B.; Fruergaard, S.; Kofoed, M.V.W. Temperature Tactics: Targeting Acetate or Methane Production in Autotrophic H2/CO2 Conversion with Mixed Cultures. Biochem. Eng. J. 2025, 214, 109574. [Google Scholar] [CrossRef]
- Battumur, U.; Yoon, Y.; Bae, G.S.; Kim, C.H. Isolation and Characterization of New Methanosarcina Mazei Strains KOR-3, -4, -5, and -6 from an Anaerobic Digester Using Pig Slurry. Asian-Australas. J. Anim. Sci. 2017, 30, 1198–1205. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Xing, W.; Li, R.; Yang, T. Responses of Anaerobic Digestion of Food Waste to Coupling Effects of Inoculum Origins, Organic Loads and PH Control under High Load: Process Performance and Microbial Characteristics. J. Environ. Manag. 2021, 279, 111772. [Google Scholar] [CrossRef]
- Hmissi, M.; Harmand, J.; Alcaraz-Gonzalez, V.; Shayeb, H. Evaluation of Alkalinity Spatial Distribution in an Up-Flow Fixed Bed Anaerobic Digester. Water Sci. Technol. 2018, 77, 948–959. [Google Scholar] [CrossRef]
- Diniz, B.C.; Wilfert, P.; Sorokin, D.Y.; van Loosdrecht, M.C.M. Anaerobic Digestion at High-PH and Alkalinity for Biomethane Production: Insights into Methane Yield, Biomethane Purity, and Process Performance. Bioresour. Technol. 2025, 429, 132505. [Google Scholar] [CrossRef]
- Hwang, S.; Hansen, C.L. Evaluating a Correlation between Volatile Suspended Solid and Adenosine 5’-Triphosphate Levels in Anaerobic Treatment of High Organic Suspended Solids Wastewater. Bioresour. Technol. 1998, 63, 243–250. [Google Scholar] [CrossRef]
- Tongco, J.V.; Kim, S.; Oh, B.; Heo, S.; Lee, J.; Hwang, S. Enhancement of Hydrolysis and Biogas Production of Primary Sludge by Use of Mixtures of Protease and Lipase. Biotechnol. Bioprocess. Eng. 2020, 25, 132–140. [Google Scholar] [CrossRef]
- Brown, M.R.; Hands, C.L.; Coello-Garcia, T.; Sani, B.S.; Ott, A.I.G.; Smith, S.J.; Davenport, R.J. A Flow Cytometry Method for Bacterial Quantification and Biomass Estimates in Activated Sludge. J. Microbiol. Methods 2019, 160, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Mathur, R.; Sharma, M.K.; Loganathan, K.; Abbas, M.; Hussain, S.; Kataria, G.; Alqahtani, M.S.; Srinivas Rao, K. Modeling of Two-Stage Anaerobic Onsite Wastewater Sanitation System to Predict Effluent Soluble Chemical Oxygen Demand through Machine Learning. Sci. Rep. 2024, 14, 1835. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Gu, J.; Liu, Y. Evaluation of Anaerobic Digestion of Food Waste and Waste Activated Sludge: Soluble COD versus Its Chemical Composition. Sci. Total Environ. 2018, 643, 21–27. [Google Scholar] [CrossRef]
- Lee, D.J.; Lee, S.Y.; Bae, J.S.; Kang, J.G.; Kim, K.H.; Rhee, S.S.; Park, J.H.; Cho, J.S.; Chung, J.; Seo, D.C. Effect of Volatile Fatty Acid Concentration on Anaerobic Degradation Rate from Field Anaerobic Digestion Facilities Treating Food Waste Leachate in South Korea. J. Chem. 2015, 2015, 640717. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Wang, J.; Meng, L. Effects of Volatile Fatty Acid Concentrations on Methane Yield and Methanogenic Bacteria. Biomass Bioenergy 2009, 33, 848–853. [Google Scholar] [CrossRef]
- Cheah, Y.K.; Dosta, J.; Mata-Álvarez, J. Enhancement of Volatile Fatty Acids Production from Food Waste by Mature Compost Addition. Molecules 2019, 24, 2986. [Google Scholar] [CrossRef]
- Ali, M.; Abdoul-latif, M.; Raganati, F.; Dolínska, B.; Raganati, F.; Klewicka, E.; Mohamed Ali, A.; Zahangir Alam, M.; Mohamed Abdoul-latif, F.; Saedi Jami, M.; et al. Production of Biogas from Food Waste Using the Anaerobic Digestion Process with Biofilm-Based Pretreatment. Processes 2023, 11, 655. [Google Scholar] [CrossRef]
- Cheong, W.L.; Chan, Y.J.; Tiong, T.J.; Chong, W.C.; Kiatkittipong, W.; Kiatkittipong, K.; Mohamad, M.; Daud, H.; Suryawan, I.W.K.; Sari, M.M.; et al. Anaerobic Co-Digestion of Food Waste with Sewage Sludge: Simulation and Optimization for Maximum Biogas Production. Water 2022, 14, 1075. [Google Scholar] [CrossRef]
- Rahman, M.A.; Shahazi, R.; Nova, S.N.B.; Uddin, M.R.; Hossain, M.S.; Yousuf, A. Biogas Production from Anaerobic Co-Digestion Using Kitchen Waste and Poultry Manure as Substrate—Part 1: Substrate Ratio and Effect of Temperature. Biomass Convers. Biorefin 2023, 13, 6635–6645. [Google Scholar] [CrossRef]
- Hassan, O.M.; Khamis, H.S. Biogas Production from Sewage Sludge by Anaerobic Digestion. Tikrit J. Pure Sci. 2015, 20, 27–32. [Google Scholar] [CrossRef]
- Shin, S.G.; Kim, S.; Hwang, S. Startup of Demo-Scale Anaerobic Digestion Plant Treating Food Waste Leachate: Process Instability and Recovery. Int. J. Environ. Res. Public Health 2022, 19, 6903. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, W.; Choudhry, M.; Arshad, M. Synergistic Enhancement of Biogas Production via Thermophilic Co-Digestion of Food Waste and Cheese Whey in a Continuous Stirred Tank Reactor. Phys. Educ. Health Soc. Sci. 2025, 3, 45–56. [Google Scholar] [CrossRef]
- Mulat, D.G.; Fabian Jacobi, H.; Feilberg, A.; Adamsen, A.P.S.; Richnow, H.H.; Nikolausz, M. Changing Feeding Regimes to Demonstrate Flexible Biogas Production: Effects on Process Performance, Microbial Community Structure, and Methanogenesis Pathways. Appl. Environ. Microbiol. 2016, 82, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, S.; Schnürer, A.; Bongcam-Rudloff, E.; Müller, B. Genome-Guided Analysis of Clostridium Ultunense and Comparative Genomics Reveal Different Strategies for Acetate Oxidation and Energy Conservation in Syntrophic Acetate-Oxidising Bacteria. Genes 2018, 9, 225. [Google Scholar] [CrossRef]
- Sakurai, R.; Yokoyama, Y.; Fukuda, Y.; Kawakami, M.; Hashimoto, S.; Tada, C. Discovery of a Microbial Carrier with High Adsorption Affinity for Syntrophic Long-Chain Fatty Acid-Degrading Microorganisms. ACS Omega 2024, 9, 39643–39651. [Google Scholar] [CrossRef]
- Aghasa, A.; Choi, S.; Lee, J.; Hwang, S. Effect of Initial Bacterial Diversity on Anaerobic Degradation of Long-Chain Fatty Acids. Biomass Bioenergy 2022, 162, 106498. [Google Scholar] [CrossRef]
- Mai, J.; Hu, B.B.; Zhu, M.J. Metabolic Division of Labor between Acetivibrio thermocellus DSM 1313 and Thermoanaerobacterium thermosaccharolyticum MJ1 Enhanced Hydrogen Production from Lignocellulose. Bioresour. Technol. 2023, 390, 129871. [Google Scholar] [CrossRef]
- Ishida, K.; Krabbe, J.; Meisinger, P.R.; Shabuer, G.; Schieferdecker, S.; Cyrulies, M.; Tank, C.; Barnes, E.; Paetz, C.; Hertweck, C. Discovery and Biosynthesis of Celluxanthenes, Antibacterial Arylpolyene Alkaloids From Diverse Cellulose-Degrading Anaerobic Bacteria. Angew. Chem. Int. Ed. 2025, 64, e202503697. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, X.; Zhou, C.; Zhao, Y.; Cowan, D.A.; Heaphy, S.; Grant, W.D.; Jones, B.E.; Ventosa, A.; Ma, Y. Caldalkalibacillus thermarum Gen. Nov., Sp. Nov., a Novel Alkalithermophilic Bacterium from a Hot Spring in China. Int. J. Syst. Evol. Microbiol. 2006, 56, 1217–1221. [Google Scholar] [CrossRef]
- Ueki, A.; Abe, K.; Kaku, N.; Watanabe, K.; Ueki, K. Bacteroides propionicifaciens Sp. Nov., Isolated from Rice-Straw Residue in a Methanogenic Reactor Treating Waste from Cattle Farms. Int. J. Syst. Evol. Microbiol. 2008, 58, 346–352. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, F.; Su, Y.; Wu, M.; Li, X.; Feng, D.; Dong, H.; Mustafa, A.M.; Luo, J.; Feng, L.; et al. Metagenomic and Proteomic Insights into Graphene Oxide-Boosted Anaerobic Co-Fermentation of Food Waste and Sewage Sludge for Volatile Fatty Acids Production. Chem. Eng. J. 2025, 504, 158706. [Google Scholar] [CrossRef]
- Chen, S.; Dong, X. Proteiniphilum acetatigenes Gen. Nov., Sp. Nov., from a UASB Reactor Treating Brewery Wastewater. Int. J. Syst. Evol. Microbiol. 2005, 55, 2257–2261. [Google Scholar] [CrossRef] [PubMed]
- Huser, B.A.; Wuhrmann, K.; Zehnder, A.J.B. Methanothrix soehngenii Gen. Nov. Sp. Nov., a New Acetotrophic Non-Hydrogen-Oxidizing Methane Bacterium. Arch. Microbiol. 1982, 132, 1–9. [Google Scholar] [CrossRef]
- Besteman, M.S.; Doloman, A.; Sousa, D.Z. Transcriptomic Evidence for an Energetically Advantageous Relationship between Syntrophomonas wolfei and Methanothrix soehngenii. Environ. Microbiol. Rep. 2024, 16, e13276. [Google Scholar] [CrossRef]
- Chang, H.; Yin, Q.; He, K.; De Vrieze, J.; Wu, G. Feeding Regime Selectively Enriching Acetoclastic Methanogens to Enhance Energy Production in Anaerobic Digestion Systems. Biochem. Eng. J. 2025, 220, 109764. [Google Scholar] [CrossRef]
- Bucci, L.; Ghiotto, G.; Zampieri, G.; Raga, R.; Favaro, L.; Treu, L.; Campanaro, S. Adaptation of Anaerobic Digestion Microbial Communities to High Ammonium Levels: Insights from Strain-Resolved Metagenomics. Environ. Sci. Technol. 2024, 58, 580–590. [Google Scholar] [CrossRef]
- Agostini, S.; Bucci, L.; Doni, D.; Costantini, P.; Gupte, A.; Müller, B.; Sibilla, F.; Basaglia, M.; Casella, S.; Kougias, P.G.; et al. Bioaugmentation Strategies Based on Bacterial and Methanogenic Cultures to Relieve Stress in Anaerobic Digestion of Protein-Rich Substrates. Renew. Energy 2024, 225, 120270. [Google Scholar] [CrossRef]
- Ma, K.; Liu, X.; Dong, X. Methanobacterium beijingense Sp. Nov., a Novel Methanogen Isolated from Anaerobic Digesters. Int. J. Syst. Evol. Microbiol. 2005, 55, 325–329. [Google Scholar] [CrossRef]
- Feldewert, C.; Lang, K.; Brune, A. The Hydrogen Threshold of Obligately Methyl-Reducing Methanogens. FEMS Microbiol. Lett. 2020, 367, fnaa137. [Google Scholar] [CrossRef]
- Söllinger, A.; Urich, T. Methylotrophic Methanogens Everywhere—Physiology and Ecology of Novel Players in Global Methane Cycling. Biochem. Soc. Trans. 2019, 47, 1895–1907. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y.; Cheng, H.; Hazen, T.C.; He, C.; He, Q. Identification of Propionate-Degrading Microbial Populations in Methanogenic Processes for Waste Treatment: Methanosaeta and Methanoculleus. Environ. Eng. Sci. 2022, 39, 202–211. [Google Scholar] [CrossRef]
- Kim, S.; Kim, E.; Hwang, S. Methanogenic Diversity Changes in Full-Scale Anaerobic Digesters by Co-Digestion of Food Waste and Sewage Sludge. J. Mater. Cycles Waste Manag. 2022, 24, 2669–2676. [Google Scholar] [CrossRef]
- Prasetiya, D.; Aminatun, T. Ecological Informatics Approach to Analyze Habitat Preferences of Auricularia Delicata (Italic) in Bingungan Forest, Turgo Natural Forest Conservation Area. In Proceedings of the ICBBB ’19: 2019 9th International Conference on Bioscience, Biochemistry and Bioinformatics, Singapore, 7–9 January 2019; pp. 102–108. [Google Scholar] [CrossRef]
- Bardhan, S.; Dey, A.; Mitra, S.; Manna, R.; Ghosh, P.; Das, S.; Bhattacharya, D.K. Enhancing Phylogenetic Analysis: A New Genome Sequence Comparison Approach Using Bray-Curtis Dissimilarity Metric. In Proceedings of the International Conference on Big Data Analytics in Bioinformatics, DABCon 2024, Kolkata, India, 21–23 November 2024; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2024. [Google Scholar]
- Cambria, S.; Minissale, P.; Tavilla, G. Phytosociological Investigations on the Afroalpine Vegetation of the Ruwenzori Mountains (Uganda). Land 2024, 13, 1752. [Google Scholar] [CrossRef]
- An, M.; Shen, L.; Liang, R.; Li, Y.; Zhao, G. Microbial Diagnostics Unveil Key Driver Bacteria and Methanogens Associated with System Stability and Biogas Production in Food Waste Anaerobic Digestion Systems. J. Environ. Chem. Eng. 2024, 12, 114435. [Google Scholar] [CrossRef]
- Hahnke, S.; Langer, T.; Koeck, D.E.; Klocke, M. Description of Proteiniphilum saccharofermentans Sp. Nov., Petrimonas mucosa Sp. Nov. and Fermentimonas caenicola Gen. Nov., Sp. Nov., Isolated from Mesophilic Laboratory-Scale Biogas Reactors, and Emended Description of the Genus Proteiniphilum. Int. J. Syst. Evol. Microbiol. 2016, 66, 1466–1475. [Google Scholar] [CrossRef]
- Sposob, M.; Moon, H.S.; Lee, D.; Kim, T.H.; Yun, Y.M. Comprehensive Analysis of the Microbial Communities and Operational Parameters of Two Full-Scale Anaerobic Digestion Plants Treating Food Waste in South Korea: Seasonal Variation and Effect of Ammonia. J. Hazard. Mater. 2020, 398, 122975. [Google Scholar] [CrossRef]
- Zafar, H.; Saier, M.H. Gut Bacteroides Species in Health and Disease. Gut Microbes 2021, 13, e1848158. [Google Scholar] [CrossRef]
- Onyango, S.O.; Juma, J.; De Paepe, K.; Van de Wiele, T. Oral and Gut Microbial Carbohydrate-Active Enzymes Landscape in Health and Disease. Front. Microbiol. 2021, 12, 653448. [Google Scholar] [CrossRef]
- Gagliano, M.C.; Sampara, P.; Plugge, C.M.; Temmink, H.; Sudmalis, D.; Ziels, R.M. Functional Insights of Salinity Stress-Related Pathways in Metagenome-Resolved Methanothrix Genomes. Appl. Environ. Microbiol. 2022, 88, e02449-21. [Google Scholar] [CrossRef]
- Feng, G.; Zeng, Y.; Wang, H.Z.; Chen, Y.T.; Tang, Y.Q. Proteiniphilum and Methanothrix harundinacea Became Dominant Acetate Utilizers in a Methanogenic Reactor Operated under Strong Ammonia Stress. Front. Microbiol. 2023, 13, 1098814. [Google Scholar] [CrossRef]
Parameter | Unit | Value * |
---|---|---|
pH | - | 7.8 ± 0.2 |
COD | g COD/L | 31.8 ± 0.5 |
sCOD | g/L | 3.7 ± 0.1 |
TS | g/L | 29.3 ± 1.4 |
VS | g/L | 18.1 ± 0.1 |
TSS | g/L | 25.1 ± 0.8 |
VSS | g/L | 16.8 ± 0.3 |
VFA + Ethanol | g/L | 0.08 ± 0.01 |
Parameter | Filling-Up Phase | Continuous Phase |
---|---|---|
Time (d) | 0–69 * | 70–260 |
FW concentration (g COD/L) | 180–280 | 180–280 |
Seeding (%) | 50 | - |
Working volume (L) | 5 | 10 |
Feeding strategy | Every 12 h | Every 12 h |
HRT (d) | 50–33.3 | 40 |
OLR (g COD/L/d) | ~3.5–8.5 | ~4.5–7.0 |
Q (L/d) | 0.1–0.15 | 0.25 |
pH | 7.5–8.0 | 7.5–8.0 |
Temperature (°C) | 37 | 37 |
Mixing rate (rpm) | 3 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tongco, J.V.; Park, S.H.; Kim, S.I.; Hwang, S. Influence of Fluctuating Food Waste Concentrations on Horizontal Anaerobic Reactor Performance and Biogas Output. Energies 2025, 18, 5064. https://doi.org/10.3390/en18195064
Tongco JV, Park SH, Kim SI, Hwang S. Influence of Fluctuating Food Waste Concentrations on Horizontal Anaerobic Reactor Performance and Biogas Output. Energies. 2025; 18(19):5064. https://doi.org/10.3390/en18195064
Chicago/Turabian StyleTongco, Jovale Vincent, Sang Hyeok Park, Su In Kim, and Seokhwan Hwang. 2025. "Influence of Fluctuating Food Waste Concentrations on Horizontal Anaerobic Reactor Performance and Biogas Output" Energies 18, no. 19: 5064. https://doi.org/10.3390/en18195064
APA StyleTongco, J. V., Park, S. H., Kim, S. I., & Hwang, S. (2025). Influence of Fluctuating Food Waste Concentrations on Horizontal Anaerobic Reactor Performance and Biogas Output. Energies, 18(19), 5064. https://doi.org/10.3390/en18195064