Thermal and Fluid Flow Performance Optimization of a Multi-Fin Multi-Channel Cooling System for PEMFC Using CFD and Experimental Validation
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Study on Flow Shape for Single Cell Cooling System of PEMFC
2.2. Design of Control System Cooling Multiple Fin Channel—Bipolar Plate Multi Cell of PEMFC
2.3. Experimental Setup
2.4. Calculation for Heat Transfer in Cooling System
2.4.1. Cooling System Heat ()
2.4.2. Convective Heat Transfer ()
2.4.3. Cooling System Efficiency
2.5. Parameter of Manifold and Cooling Channel
2.6. Numerical Method
2.6.1. Geometry Model
2.6.2. CFD Method System
3. Results and Discussion
3.1. Simulation Result Without Cooling System
3.2. Simulation Results of Multiple Channel Fin Cooling System
3.3. Temperature Difference in the Cooling Surface
3.4. Effect of Velocity on Cooling System Efficiency
3.5. Model Validation Using Experimental Results
3.6. Analysis of Fluid Flow and Temperature Distribution in the Cooling Fin Geometry of Cooling Plate 0.7 mm and 1 mm Using Old Model
3.7. Analysis of Fluid Flow and Temperature Distribution in the Cooling Fin Geometry of Cooling Plate 1 mm Using New Model
4. Conclusions
- The results showed that narrower fin widths (e.g., 0.3 mm) and higher inlet flow velocities (up to 3 m/s) significantly improved heat dissipation, reducing the cathode surface temperature and enhancing power density output. The optimized model achieved a maximum power density of 7954.19 W/m2, a substantial improvement from 5670.21 W/m2 without a cooling system. The cathode surface temperature was reduced from 340.41 K to 326.96 K, showing a positive impact of the cooling enhancement.
- Validation results between simulation and experiment showed close agreement, with error values under 3%, confirming the reliability of the numerical approach. The cooling system’s efficiency reached 67.04% in simulation and 54.51% in experimental results, depending on geometry and flow rate.
- Additionally, a zigzag cooling model with a 1 mm fin width further improved velocity distribution and temperature uniformity at high inlet velocities, confirming the potential of geometrical optimization to enhance cooling effectiveness in fuel cell applications.
- In conclusion, the multiple fin cooling design—especially when optimized for fin width, surface area, and inlet velocity—proves effective in improving PEMFC performance. These findings provide valuable guidance for future fuel cell cooling system designs aimed at enhancing thermal stability, power output, and operational durability.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PEMFC | Proton Exchange Membrane Fuel Cell |
CFD | Computational Fluid Dynamics |
PID | Proportional–Integral–Derivative |
O2 | Oxygen |
H2 | Hydrogen |
BCGSTAB | Bi-Conjugate Gradient Stabilized (numerical method) |
References
- Hadi, H.S.; Fan, C.; Takayama, A.; Nishida, K.; Ogata, Y.; Mahmud, R. Experimental Study on Diesel Spray Flame and Wall Heat Transfer of Two-Dimensional Combustion Chamber: Effect of Common Rail Pressure. Appl. Therm. Eng. 2024, 249, 123369. [Google Scholar] [CrossRef]
- Wei, J.; Qi, M.; Long, Q.; Zhang, H.; Zheng, S. Experimental Investigation and Modelling of the Air Compressor Performance used for Hydrogen Fuel Cell Systems Under Enhanced Cooling Conditions. Appl. Therm. Eng. 2025, 277, 127089. [Google Scholar] [CrossRef]
- Hadi, H.S.; Fan, C.; Takayama, A.; Nishida, K.; Ogata, Y. Experimental Study on Wall Heat Transfer from Diesel Spray Flame in Two-Dimensional Combustion Chamber Operated with Rapid Compression and Expansion Machine (RCEM). Appl. Therm. Eng. 2023, 231, 120882. [Google Scholar] [CrossRef]
- Basar, M.F.; Rais, N.A.M.; Rahman, A.A.; Mustafa, W.A.; Sopian, K.; Wong, K.V. Optimization of Reaction Typed Water Turbine in Very Low Head Water Resources for Pico Hydro. J. Adv. Res. Fluid Mech. Therm. Sci. 2022, 90, 23–39. [Google Scholar] [CrossRef]
- Simanjuntak, J.P.; Anis, S.; Syamsiro, M.; Baharuddin; Daryanto, E.; Tambunan, B.H. Thermal Energy Storage System from Household Wastes Combustion: System Design and Parameter Study. J. Adv. Res. Fluid Mech. Therm. Sci. 2024, 80, 115–126. [Google Scholar] [CrossRef]
- Mun, J.; Lee, C.; Kim, S. Cryogenic Cooling and Fuel Cell Hybrid System for HTS Maglev Trains Employing Liquid Hydrogen. Cryogenics 2025, 149, 104109. [Google Scholar] [CrossRef]
- Su, H.; Xu, H.; Wang, L.; Liu, Z.; Xie, L. A Review on Thermal Management Strategy for Liquid-Cooling Proton Exchange Membrane Fuel Cells: Temperature Regulation and Cold Start. Appl. Energy 2025, 393, 126142. [Google Scholar] [CrossRef]
- Yakubu, A.U.; Zhao, J.; Jiang, Q.; Ye, X.; Liu, J.; Yu, Q.; Xiong, S. A Comprehensive Review of Primary Cooling Techniques and Thermal Management Strategies for Polymer Electrolyte Membrane Fuel Cells PEMFC. Heliyon 2024, 10, e38556. [Google Scholar] [CrossRef]
- Song, K.; Hou, T.; Jiang, J.; Grigoriev, S.A.; Fan, F.; Qin, J.; Wang, Z.; Sun, C. Thermal Management of Liquid-Cooled Proton Exchange Membrane Fuel Cell: A Review. J. Power Source 2025, 648, 237227. [Google Scholar] [CrossRef]
- Tu, X.; Lv, J.; Wu, J.; Luo, X.; Tu, Z. Experimental Investigation of a Novel Open Cathode Air-Cooled Fuel Cell Stack Design Featuring Simultaneous Inlet Blowing and Outlet Suction. Energy 2025, 314, 134308. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Z.; Liu, J.; Ou, K.; Zhang, X.; Yang, J.; Wang, Y.X. Numerical Simulation and Optimized Design of Water-Cooled Volute for Turbine-Based Air Compressor used in Automotive Fuel Cells. Appl. Therm. Eng. 2025, 273, 126474. [Google Scholar] [CrossRef]
- Pei, H.; Liu, Z.; Chen, J.; Sun, L.; Wang, B.; Xing, L.; Cai, S.; Tu, Z. Dynamic Response Study of Air-Cooled Proton Exchange Membrane Fuel Cell Stack. Prog. Nat. Sci. Mater. Int. 2024, 34, 1318–1326. [Google Scholar] [CrossRef]
- Yang, H.; Li, T.; Wang, R.; Cao, S.; Hu, L.; Fu, J. Effect of Interstage Air-Cooling on Reducing Power Consumption of Fuel Cell Two-Stage Centrifugal Pressurization System. Case Stud. Therm. Eng. 2025, 70, 106095. [Google Scholar] [CrossRef]
- Cai, S.; Yang, J.; Zou, Y.; Hua, Z.; Li, S.; Tu, Z. Energy-Exergy-Emergy Optimization Analysis Designed for Combined Cooling and Power Systems Driven by Proton-Exchange Membrane Fuel Cell. Energy 2025, 329, 136407. [Google Scholar] [CrossRef]
- Yang, M.; Zhao, Y.; Quan, Z.; Wang, L.; Liu, Z.; Chang, Z. Design and Experimental Study on Performance of Different Types of Micro Heat Pipe Arrays for Thermal Management of a Novel Mixed-Cooling Proton Exchange Membrane Fuel Cells Stack. Renew. Energy 2025, 242, 122422. [Google Scholar] [CrossRef]
- Yu, X.; Cai, S.; Zhang, R.; Xiao, B.; Tu, Z. Performance Enhancement in Air-Cooled Proton Exchange Membrane Fuel Cell Stack during Cold-Start with Gas Recirculation. Fuel 2025, 396, 135289. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, Y.; Bai, Y.; Hu, X.; Li, H.; Li, Y.; Luo, L.; Yan, X.; Shen, S.; Guo, Y.; et al. Porous Titanium Water Transport Plates Applied in Liquid-Cooled H2-O2 Proton Exchange Membrane Fuel Cells for Enhanced Passive Water Management. J. Power Sources 2025, 647, 237274. [Google Scholar] [CrossRef]
- Zeng, R.; Kang, H.; Umar, M.; Xu, L.; Zhaio, Y.N. Design and Thermal Management Study of Fuel Cell Spray Cooling System. Appl. Therm. Eng. 2025, 270, 126271. [Google Scholar] [CrossRef]
- Wu, J.; Yu, X.; Cai, S.; Xiao, B.; Tu, Z. Performance Enhancement in an Air-Cooled Proton Exchange Membrane Fuel Cell Stack with Y-Shape Hydrogen Supply. Energy Convers. Manag. 2025, 333, 119768. [Google Scholar] [CrossRef]
- Gao, B.; Zhou, Y. Multi-Objective Optimization and Posteriori Multi-Criteria Decision Making on an Integrative Solid Oxide Fuel Cell Cooling, Heating and Power System with Semi-Empirical Model-Driven Co-Simulation. Energy Convers. Manag. 2025, 325, 119371. [Google Scholar] [CrossRef]
- Yang, M.; Quan, Z.; Wang, L.; Chang, Z.; Zhao, Y.; Xing, L.; Xuan, J. Experimental Design and Assessment of a Novel Mixed-Cooling Proton Exchange Membrane Fuel Cells Stack for Enhanced Power Generation and Thermal Management. Appl. Energy 2025, 386, 125573. [Google Scholar] [CrossRef]
- Çerçi, K.N.; Silva, I.R.O.; Kaşka, Ö.; Hooman, K. Summer Period Analysis of the Rotary Desiccant—Hybrid Cooling System Combined with Solid Oxide Fuel Cells using Human Waste Fuel. Clean. Eng. Technol. 2024, 23, 100818. [Google Scholar] [CrossRef]
- Qiao, Y.; Lu, G.; Li, S.; Xie, J.; Li, Y. Effects of Cathode Enhanced Cooling Channels and Microporous Metal Mesh on Performance of Open Cathode Air-Cooled Fuel Cells. Int. J. Electrochem. Sci. 2025, 2, 100927. [Google Scholar]
- Zhang, L.; Xia, Y.; Hu, G.; Wang, Q. Numerical Analysis of the Influence of Cooling Design on Temperature Uniformity in the Large Proton Exchange Membrane Fuel Cell Stack. Int. J. Hydrogen Energy 2024, 93, 668–681. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, Z.; Zhang, M.; Xu, X.; Dong, G.; Leung, D.Y.; Leoung, M.K.; Wang, Y. Combined Cooling and Power: Investigating the Coupling Effect Between a Microfluidic Fuel Cell and a Heating Chip. Chem. Eng. J. 2025, 504, 159031. [Google Scholar] [CrossRef]
- Tang, T.; Li, B.; Lu, M.; Feng, Y.; Wang, J. Synergistic Geothermal Energy and Ammonia Fuel Cell Utilization Towards Sustainable Power, Cooling, and Freshwater Production; An Exergoeconomic, Exergoenvironmental, and Technoeconomic Analysis. Renew. Energy 2025, 241, 122244. [Google Scholar] [CrossRef]
- Kumari, A.; Sonkar, K.; Chaudhari, C.; Jindal, T.; Katiyar, A.; Singh, S.; Bera, T.; Badhe, R.M.; Srivastva, U.; Sharma, A. Optimization of Air-Cooled PEM Fuel Cell System with Battery Hybridization and Experimental Validation on Hydrogen Powered Fuel Cell Bike. Renew. Energy 2025, 250, 123340. [Google Scholar] [CrossRef]
- Han, Y.; Gao, W.; Qin, Y. Performance Evaluation and Multi-Objective Optimization for a Direct Ammonia Solid Oxide Fuel Cell-Based Triple-Cycle Integrated System Providing Power and Cooling. Appl. Therm. Eng. 2025, 266, 125578. [Google Scholar] [CrossRef]
- Wu, X.; Xing, S.; Luo, J.; Wang, H.; Huang, F.; Zhao, C. Progress and Challenges on Air-Cooled Open-Cathode Proton Exchange Membrane Fuel Cells: Materials, Structures, and Systems. Energy Rev. 2025, 2, 100130. [Google Scholar] [CrossRef]
- Zhao, C.; Han, Y.; Xing, S.; Deng, Z.; Liu, K.; Xiao, W. Study on Performance Enhancement and Modeling of Air-Cooled Proton Exchange Membrane Fuel Cell for Different Runner Structure. Appl. Energy 2025, 389, 125794. [Google Scholar] [CrossRef]
- Jung, G.; Kim, J.; Choi, H.; Lee, H. Multi-Objective Optimization of an Offset Strip Fin Heat Exchanger Applied to Fuel Cell Electric Vehicles for Cooperative Cooling. Appl. Therm. Eng. 2025, 268, 125832. [Google Scholar] [CrossRef]
- Azamian, S. Dynamic Multicriteria Optimization of Household Heating and Cooling System for Reusing Fuel-Cell Waste Heat at Optimal Thermodynamic Conditions while Considering Climatic Effects. Energy Storage Sav. 2025, 4, 179–194. [Google Scholar] [CrossRef]
- Deng, Z.; Liu, K.; Xing, S.; Zhao, C. Optimization of Cathode Channel Design, Bolt Torque, and Assembly Mode for Enhanced Performance in Air-Cooled Proton Exchange Membrane Fuel Cells. Int. J. Hydrogen Energy 2025, 102, 702–714. [Google Scholar] [CrossRef]
- Tzelepis, S.; Kavadias, K.A.; Marnellos, G.E. A Three-Dimensional Simulation Model for Proton Exchange Membrane Fuel Cells with Conventional and Bimetallic Catalyst Layers. Energies 2023, 16, 4086. [Google Scholar] [CrossRef]
- Roschger, M.; Wolf, S.; Mayer, K.; Singer, M.; Hacker, V. Alkaline Direct Ethanol Fuel Cell: Effect of the Anode Flow Field Design and the Setup Parameters on Performance. Energies 2022, 15, 7234. [Google Scholar] [CrossRef]
- Karaca, A.; Glüsen, A.; Wippermann, K.; Mauger, S.; Yang-Neyerlin, A.C.; Woderich, S.; Gimmler, C.; Müller, M.; Bender, G.; Weller, H.; et al. Oxygen Reduction at PtNi Alloys in Direct Methanol Fuel Cells—Electrode Development and Characterization. Energies 2023, 16, 1115. [Google Scholar] [CrossRef]
- Caponetto, R.; Privitera, E.; Mirone, G.; Matera, F. Structural Analysis of Electrochemical Hydrogen Compressor End-Plates for High-Pressure Applications. Energies 2022, 15, 5823. [Google Scholar] [CrossRef]
- Idris, M.S.; Zakaria, I.A.; Wan Hamzah, W.A.; Wan Mohamed, W.A.N. The Characteristics of Hybrid Al2O3:SiO2 Nanofluids in Cooling Plate of PEMFC. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 72, 67–79. [Google Scholar]
- Samsun, R.C.; Rex, M.; Antoni, L.; Stolten, D. Deployment of Fuel Cell Vehicles and Hydrogen Refueling Station Infrastructure: A Global Overview and Perspectives. Energies 2022, 15, 4975. [Google Scholar] [CrossRef]
- Fahruddin, A.; Ichsani, D.; Taufany, F.; Widodo, B.U.K.; Widodo, W.A. The Effect of Baffle Shape on the Performance of a Polymer Electrolyte Membrane Fuel Cell with a Biometric Flow Field. Int. J. Hydrogen Energy 2021, 46, 6028–6036. [Google Scholar] [CrossRef]
- Kanti, P.K.; Prashantha Kumar, H.G.; Said, N.M.; Wanatasanappan, V.V.; Paramasivam, P.; Dabelo, L.H. Optimizing base fluid composition for PEMFC cooling: A machine learning approach to balance thermal and rheological performance. Sci. Rep. 2025, 15, 27335. [Google Scholar] [CrossRef] [PubMed]
- Karlapalem, V.; Bansode, A. Heat pipes for PEM fuel cell cooling—A numerical study. In Proceedings of the SAENIS TTTMS Thermal Management Systems Conference, Ypsilanti, MI, USA, 14–15 October 2025; Volume 28, p. 0335. [Google Scholar]
Parameter | Value |
---|---|
Channels per cell | 10 |
Channel cross-section | 2.50 mm × 2.50 mm |
Hydraulic diameter | 2.50 mm |
Channel length (representative) | 0.10 m |
Coolant | 20% ethylene-glycol/water |
Coolant density | 1030 kg·m−3 |
Coolant viscosity | 3.0 × 10−3 Pa·s |
Coolant cp | 3.9 kJ·kg−1·K−1 |
Per-cell mass flow | 0.1841 kg·s−1 |
Total area per cell | 6.25 × 10−5 m2 |
Mean channel velocity | ≈2.86 m·s−1 |
Reynolds number | ≈2.45 |
Estimated ΔP (per channel, L = 0.10 m) | ≈5 kPa |
Information | Value |
---|---|
Initial temperature of cathode | 333.33 K |
Average temperature after reaction | 340.41 K |
Minimum temperature | 332.88 K |
Maximum temperature | 378.57 K |
Current density | 8723.41 A/m2 |
Power density | 5670.21 W/m2 |
Parameter | Value |
---|---|
Plate length | 45 mm |
Plate width | 45 mm |
Corner radius | 4 mm |
Channel width | 1.0 mm |
Zigzag angle | 45° |
Material | Aluminum |
Fabrication process | CNC milling |
PEMFC Model | Parameter | Flow Rate | Simulation | Experiment | Error (%) |
---|---|---|---|---|---|
PEMFC (without cooling system) | Cathode temperature of bipolar plates | 3 m/s | 340.413 K | 342.103 K | 0.494 |
Power density | 5670.213 W/m2 | 5853.54 W/m2 | 3.131 | ||
PEMFC and Triple Channel Cooling System | Cathode temperature of bipolar plates | 3 m/s | 326.96 K | 327.3 K | 0.104 |
Power density | 7564.388 W/m2 | 7440.245 W/m2 | −1.668 | ||
Efficiency of cooling system | 55.33% | 54.51% | −1.498 | ||
PEMFC and Multiple Fin Channel Cooling System | Cathode temperature of bipolar plates | 3 m/s | 328.753 K | – | – |
Power density | 7954.193 W/m2 | – | – | ||
Efficiency of cooling system | 67.04% | – | – | ||
PEMFC and Cooling System | Outlet temperature | 5 m/s | 314.8 K | 316.0 K | −0.38 |
Average temperature | 312.2 K | 313.5 K | −0.41 | ||
Cooling efficiency | 82.70% | 83.50% | −0.96 | ||
Pressure drop | 68.4 Pa | 70.2 Pa | −2.56 |
PEMFC Model/Case | Flow Rate | Avg Velocity (m/s) | Turbulence Intensity (%) | Temperature Uniformity Index |
---|---|---|---|---|
PEMFC (without cooling) | — | — | — | 0.9897 |
PEMFC and triple-channel cooling (this work) | 3 m/s | 2.98 | 2.1 | 0.9963 |
PEMFC and multi-fin channel cooling (this work) | 3 m/s | 2.93 | 2.5 | 0.9971 |
PEMFC and cooling | 5 m/s | 4.98 | 1.6 | 0.9974 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iskandarianto, F.A.; Ichsani, D.; Taufany, F. Thermal and Fluid Flow Performance Optimization of a Multi-Fin Multi-Channel Cooling System for PEMFC Using CFD and Experimental Validation. Energies 2025, 18, 5048. https://doi.org/10.3390/en18195048
Iskandarianto FA, Ichsani D, Taufany F. Thermal and Fluid Flow Performance Optimization of a Multi-Fin Multi-Channel Cooling System for PEMFC Using CFD and Experimental Validation. Energies. 2025; 18(19):5048. https://doi.org/10.3390/en18195048
Chicago/Turabian StyleIskandarianto, Fitri Adi, Djatmiko Ichsani, and Fadlilatul Taufany. 2025. "Thermal and Fluid Flow Performance Optimization of a Multi-Fin Multi-Channel Cooling System for PEMFC Using CFD and Experimental Validation" Energies 18, no. 19: 5048. https://doi.org/10.3390/en18195048
APA StyleIskandarianto, F. A., Ichsani, D., & Taufany, F. (2025). Thermal and Fluid Flow Performance Optimization of a Multi-Fin Multi-Channel Cooling System for PEMFC Using CFD and Experimental Validation. Energies, 18(19), 5048. https://doi.org/10.3390/en18195048