Probabilistic Assessment of Solar-Based Hydrogen Production Using PVGIS, Metalog Distributions, and LCOH Modeling
Abstract
1. Introduction
2. Building of New Energy Generating Capacity for Hydrogen Production
3. Materials and Methods
4. Results
4.1. Characteristics of Energy Production from Photovoltaic Systems in Various European Countries
4.1.1. Characteristics of Energy Production from Photovoltaic Systems in Poland (Lublin)
4.1.2. Characteristics of Energy Production from Photovoltaic Systems in Hungary (Budapest)
4.1.3. Characteristics of Energy Production from Photovoltaic Systems in Spain (City of Malaga)
4.1.4. Comparison of the Performance of Photovoltaic Systems Located in Three European Countries
- Fueling hydrogen vehicle fleets—enough to refuel several passenger cars (e.g., Toyota Mirai) or smaller delivery vehicles.
- Supporting industrial processes—hydrogen is a key raw material in the production of chemicals, e.g., ammonia and methanol.
- Reducing emissions in the steel industry—it can replace coke in iron ore reduction processes.
- Powering fuel cells—it can provide electricity and heat in company facilities or mobile power units.
- Process heat production—burning hydrogen in industrial furnaces can reduce CO2 emissions.
- Storing renewable energy—surplus energy from RESs can be converted to hydrogen and used during periods of low production.
- Powering forklifts and warehouse equipment—hydrogen can replace batteries in electric forklifts.
- Research and development—laboratories can use hydrogen to test hydrogen technologies and advanced fuel cells.
- Synthetic fuel production—hydrogen can be used to synthesize low-emission fuels.
- Support for start-ups and innovation—companies can test new ways to use hydrogen, such as in drones or maritime transport.
5. Discussion
5.1. Discussion on an Integrated Research Approach
5.2. Levelized Cost of Hydrogen Calculations
- PV system capacity: 100 kWp
- Annual energy production (from the article):
- -
- Poland: 108.3 MWh
- -
- Hungary: 124.6 MWh
- -
- Spain: 170.95 MWh
- Energy demand: 50 kWh per 1 kg H2
- PV system cost (CAPEX): EUR 900/kWp = EUR 90,000 [86]
- Electrolyzer cost (CAPEX): EUR 1000/kW = EUR 100,000 [87]
- Operating cost (OPEX): 3% CAPEX = EUR 5700/year [88]
- System lifetime: 20 years
- Discount rate: 5%
- Annual hydrogen production is calculated from Equation (1), as follows:
- Poland: 108,313 kWh → 2166 kg H2
- Hungary: 124,638 kWh → 2493 kg H2
- Spain: 170,953 kWh → 3419 kg H2
- 2.
- LCOH is calculated from Equation (2) [85], as follows:
- 3.
- Total costs are as follows:
- Total CAPEX: EUR 90,000 (PV) + EUR 100,000 (electrolyzer) = EUR 190,000
- Annual OPEX: EUR 5700
- Annual CAPEX: EUR 190,000 × 0.08024 ≈ EUR 15,246
- 4.
- The results of the LCOH calculations in three European countries are presented in Table 7.
- Spain has the lowest LCOH (approximately EUR 6.13/kg) due to having the highest PV energy production and lowest seasonal variations.
- In Poland and Hungary, the cost of hydrogen is higher (EUR 8.4–9.7/kg), primarily due to lower energy production and seasonality.
- The results are consistent with general trends in the literature—green hydrogen production is cheaper in countries with high solar radiation.
5.3. Hybrid PV–Wind Solutions for Year-Round Hydrogen Continuity
- (1)
- (2)
- Storage layering: Combine battery (intra-day) and H2 buffer (inter-day/seasonal) to respect electrolyzer dynamics and reduce CAPEX-intensive overbuild [5].
- (3)
- Operational policy: Adopt dispatch rules that prioritize renewable self-consumption for H2, use brief battery support to keep the stack within efficient operating windows, and curtail only when both storage layers saturate [72].
- (4)
5.4. Energy Storage System Solutions for Year-Round Hydrogen Continuity
5.5. Scalability: Impact of Plant Size and Economies of Scale on LCOH
- S0 (no scale effect): PV EUR 900/kWp, EL EUR 1000/kW (as in the base case).
- S1 (moderate scale effect, ~1 MW): PV EUR 750/kWp, EL EUR 800/kW.
- S2 (strong scale effect, ~5 MW): PV EUR 600/kWp, EL EUR 500/kW.
- Scaling without scale effects (S0): LCOH does not change versus 100 kWp (costs and output rise linearly): Poland EUR 9.67/kg, Hungary EUR 8.40/kg, Spain EUR 6.13/kg.
- 1 MWp, moderate scale effect (S1): LCOH decreases by ~18.4% to EUR 7.89/kg (PL), EUR 6.85/kg (HU), EUR 5.00/kg (ES).
- 1 MWp, stronger effect (S2): decrease of ~34.2% to EUR 6.36/kg (PL), EUR 5.53/kg (HU), EUR 4.03/kg (ES).
- MWp, moderate effect (S1): decrease of ~28.9% to EUR 6.87/kg (PL), EUR 5.97/kg (HU), EUR 4.35/kg (ES).
- MWp, strong effect (S2): decrease of ~42.1% to EUR 5.60/kg (PL), EUR 4.86/kg (HU), EUR 3.55/kg (ES).
- (1)
- Pure scaling without lower unit costs does not improve LCOH; gains stem from economies of scale (lower EUR/kWp and EUR/kW).
- (2)
- Relative reductions are similar across locations, yet Spain remains cheapest as a result of having the highest PV yield.
- (3)
- When we include the previously shown electrolyzer degradation (0.8%/yr) and replacement CAPEX (40% of total system CAPEX in year 6), every scenario increases by approximately 29.5%; for example, Spain 5 MWp, S2: EUR 3.55 → EUR 4.59/kg. In practice, further LCOH reductions require parallel optimization of the supply profile (PV–wind hybrid) and layered storage (battery + H2 buffer) to raise electrolyzer utilization and limit losses/cycling.
5.6. Sensitivity Analysis and Uncertainty Bounds
- Tornado plots (one per country, at r = 5%) showing which input drives LCOH the most (CAPEX, specific energy, discount rate).
- Heat maps (one per country, at r = 5%) over a 3 × 3 grid of CAPEX multipliers × specific energy (45/50/55 kWh/kg).
- A summary table of uncertainty bounds (min/median/max LCOH) for each country at r = 3%, 5%, 7% under CAPEX ±20% and specific energy (efficiency) ±10%—see the interactive table titled “LCOH sensitivity summary (bounds by CAPEX ±20%, specific energy ±10%)”.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AEM | Aion Exchange Membrane |
AFC | Alkaline Fuel Cell |
CDFs | Cumulative Density Functions |
CNG | Compressed Natural Gas |
ESSs | Energy Storage Systems |
FCV | Fuel Cell Vehicle |
HRESs | Hybrid Renewable Energy Systems |
HVO | Hydrotreated Vegetable Oil |
LCOH | Levelized Cost of Hydrogen |
LNG | Liquefied Natural Gas |
LPG | Liquefied Petroleum Gas |
MCFC | Molten Carbonate Fuel Cell |
NG | Natural Gas |
PEM | Proton Exchange Membrane |
PDFs | Probability Density Functions |
PV | Photovoltaic |
RESs | Renewable Energy Sources |
SOFC | Solid Oxide Fuel Cell |
References
- Shahabuddin, M.; Rhamdhani, M.A.; Brooks, G.A. Technoeconomic Analysis for Green Hydrogen in Terms of Production, Compression, Transportation and Storage Considering the Australian Perspective. Processes 2023, 11, 2196. [Google Scholar] [CrossRef]
- Fragiacomo, P.; Genovese, M.; Piraino, F.; Massari, F.; Boroomandnia, M. Analysis of a distributed green hydrogen infrastructure designed to support the sustainable mobility of a heavy-duty fleet. Int. J. Hydrogen Energy 2023, 51, 576–594. [Google Scholar] [CrossRef]
- Haoran, C.; Xia, Y.; Wei, W.; Yongzhi, Z.; Bo, Z.; Leiqi, Z. Safety and efficiency problems of hydrogen production from alkaline water electrolyzers driven by renewable energy sources. Int. J. Hydrogen Energy 2023, 54, 700–712. [Google Scholar] [CrossRef]
- Ma, N.; Zhao, W.; Wang, W.; Li, X.; Zhou, H. Large scale of green hydrogen storage: Opportunities and challenges. Int. J. Hydrogen Energy 2023, 50, 379–396. [Google Scholar] [CrossRef]
- Zhao, D.; Xia, Z.; Guo, M.; He, Q.; Xu, Q.; Li, X.; Ni, M. Capacity optimization and energy dispatch strategy of hybrid energy storage system based on proton exchange membrane electrolyzer cell. Energy Convers. Manag. 2022, 272, 116366. [Google Scholar] [CrossRef]
- Reddy, V.J.; Hariram, N.P.; Maity, R.; Ghazali, M.F.; Kumarasamy, S. Sustainable E-Fuels: Green Hydrogen, Methanol and Ammonia for Carbon-Neutral Transportation. World Electr. Veh. J. 2023, 14, 349. [Google Scholar] [CrossRef]
- Dall’armi, C.; Pivetta, D.; Taccani, R. Hybrid PEM Fuel Cell Power Plants Fuelled by Hydrogen for Improving Sustainability in Shipping: State of the Art and Review on Active Projects. Energies 2023, 16, 2022. [Google Scholar] [CrossRef]
- Di Micco, S.; Romano, F.; Jannelli, E.; Perna, A.; Minutillo, M. Techno-economic analysis of a multi-energy system for the co-production of green hydrogen, renewable electricity and heat. Int. J. Hydrogen Energy 2023, 48, 31457–31467. [Google Scholar] [CrossRef]
- Małek, A.; Dudziak, A.; Caban, J.; Matijošius, J. Probabilistic Analysis of Low-Emission Hydrogen Production from a Photovoltaic Carport. Appl. Sci. 2024, 14, 9531. [Google Scholar] [CrossRef]
- Heras-Saizarbitoria, I.; Cilleruelo, E.; Zamanillo, I. Public acceptance of renewables and the media: An analysis of the Spanish PV solar experience. Renew. Sustain. Energy Rev. 2011, 15, 4685–4696. [Google Scholar] [CrossRef]
- Balitskii, A.I.; Osipowicz, T.K.; Abramek, K.F.; Eliasz, J.J.; Mrozik, M. Modifying Injection Equipment Components for Their Adaptation to Work with Greener Hydrogen-Containing Fuels for Non-Road Vehicle Engines. Energies 2024, 17, 3262. [Google Scholar] [CrossRef]
- Ciupek, B.J.; Brodzik, Ł.; Semkło, Ł.; Prokopowicz, W.; Sielicki, P.W. Analysis of the Environmental Parameters of the GTM 400 Turbojet Engine During the Co-Combustion of JET A-1 Jet Oil with Hydrogen. J. Ecol. Eng. 2024, 25, 205–211. [Google Scholar] [CrossRef]
- Ozkara, M.; Gul, M.Z. Optimization of a Heavy-Duty Hydrogen-Fueled Internal Combustion Engine Injector for Optimum Performance and Emission Level. Appl. Sci. 2025, 15, 8131. [Google Scholar] [CrossRef]
- Szpica, D.; Ashok, B.; Köten, H. Development Trends in Vehicle Propulsion Sources—A Short Review. Vehicles 2023, 5, 1133–1137. [Google Scholar] [CrossRef]
- Gis, W.; Gis, M. Overview of the Method and State of Hydrogenization of Road Transport in the World and the Resulting Development Prospects in Poland. Open Eng. 2021, 11, 570–583. [Google Scholar] [CrossRef]
- Pečman, J.; Šarkan, B.; Ližbetinová, L.; Ľupták, V.; Loman, M.; Bartuška, L. Impact of acceleration style on vehicle emissions and perspectives for improvement through transportation engineering solutions. Arch. Automot. Eng. 2024, 104, 48–62. [Google Scholar] [CrossRef]
- Martinez-Boggio, S.; Bibiloni, S.; Rivoir, F.; Irimescu, A.; Merola, S. Mitigating Power Deficits in Lean-Burn Hydrogen Engines with Mild Hybrid Support for Urban Vehicles. Vehicles 2025, 7, 88. [Google Scholar] [CrossRef]
- Krakowski, R. Analysis of Replacement of Internal Combustion Engine with the Hydrogen Fuel Cell in Ship Powertrain. Adv. Sci. Technol. Res. J. 2024, 18, 385–399. [Google Scholar] [CrossRef] [PubMed]
- Wasiak, A.; Orynycz, O.; Tucki, K.; Świć, A. Hydrogen Enriched Hydrocarbons as New Energy Resources—As Studied by Means of Computer Simulations. Adv. Sci. Technol. Res. J. 2022, 16, 78–85. [Google Scholar] [CrossRef]
- Rathouský, B.; Klouček, O. The useable drivetrains in contemporary bus transport. Perner’s Contacts 2021, 16. [Google Scholar] [CrossRef]
- Budianto, A.; Setyono, G.; Sumari, S.; Aini, H.N.; Kusdarini, E. Development of Environmentally Friendly Fuel Mixtures Based on Tamanu Oil and Pertasol, as Well as Performance Testing on Gasoline Engines. J. Ecol. Eng. 2024, 25, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Domański, M.; Paszkowski, J.; Sergey, O.; Zarajczyk, J.; Siłuch, D. Analysis of Energy Properties of Granulated Plastic Fuels and Selected Biofuels. Agric. Eng. 2020, 24, 1–9. [Google Scholar] [CrossRef]
- Vignesh, R.; Ashok, B.; Kumar, M.S.; Szpica, D.; Harikrishnan, A.; Josh, H. Adaptive neuro fuzzy inference system-based energy management controller for optimal battery charge sustaining in biofuel powered non-plugin hybrid electric vehicle. Sustain. Energy Technol. Assess. 2023, 59, 103379. [Google Scholar] [CrossRef]
- Yılbaşı, Z. Biofuels, E-Fuels, and Waste-Derived Fuels: Advances, Challenges, and Future Directions. Sustainability 2025, 17, 6145. [Google Scholar] [CrossRef]
- Borowski, P.F.; Kupczyk, A.; Biernat, K.; Mączyńska-Sęczek, J.; Detka, T.; Golisz, E.; Gawłowska, A.; Di Nardo, M. Problems of Selected Sectors of Biofuels for Transport in Poland. Processes 2021, 9, 1573. [Google Scholar] [CrossRef]
- Ariani, B.; Felayati, F.M.; Batutah, M.A. Experimental Analysis of the Influence of a Compressed Natural Gas (CNG)—Air Mixer on Performance and Emissions in Partial Load CNG-Diesel Dual Fuel Engines. Automot. Exp. 2024, 7, 224–235. [Google Scholar] [CrossRef]
- Kuranc, A.; Bawej, S.; Słowik, T.; Šarkan, B.; Dudziak, A.; Zając, G.; Paciolla, F.; Pascuzzi, S.; Łyp-Wrońska, K. Experimental Assessment of Energy-Ecological Parameters of Biogas-Powered Tractor Within Circular Economy. Energies 2025, 18, 7. [Google Scholar] [CrossRef]
- Dziewiątkowski, M.; Szpica, D. Evaluation of the conversion rate regarding hydrocarbons contained in the exhaust eases of an engine fuelled with compressed natural gas (CNG) using different catalysts operating at different temperatures. Mechanika 2021, 27, 492–497. [Google Scholar]
- Jurkovič, M.; Kalina, T.; Skrúcaný, T.; Gorzelanczyk, P.; Ľupták, V. Environmental Impacts of Introducing LNG as Alternative Fuel for Urban Buses—Case Study in Slovakia. Promet—Traffic Transp. 2020, 32, 837–847. [Google Scholar] [CrossRef]
- Passalacqua, M.; Traverso, A. From LNG to LH2 in Maritime Transport: A Review of Technology, Materials, and Safety Challenges. J. Mar. Sci. Eng. 2025, 13, 1748. [Google Scholar] [CrossRef]
- Beik, Y.; Dziewiątkowski, M.; Szpica, D. Exhaust Emissions of an engine fuelled by petrol and liquefied petroleum gas with control algorithm adjustment. SAE Int. J. Engines 2020, 13, 739–759. [Google Scholar] [CrossRef]
- Procházka, R.; Dittrich, A.; Zvolský, T.; Phu, D.N. The Knocking in the Gas Dual-fuel Engine with Liquid LPG Injection into the Intake Manifold. Int. J. Mech. Eng. Robot. Res. 2021, 10, 694–701. [Google Scholar] [CrossRef]
- Pulawski, G.; Szpica, D. The modelling of operation of the compression ignition engine powered with diesel fuel with LPG admixture. Mechanika 2015, 21, 493–499–505. [Google Scholar] [CrossRef]
- Ding, S.-L.; Song, E.-Z.; Yang, L.-P.; Litak, G.; Wang, Y.-Y.; Yao, C.; Ma, X.-Z. Analysis of chaos in the combustion process of premixed natural gas engine. Appl. Therm. Eng. 2017, 121, 768–778. [Google Scholar] [CrossRef]
- Yang, L.; Ji, S.; Niu, W.; Zare, A.; Hunicz, J.; Brown, R.J. Effect of split injection strategy of diesel fuel on multi-stage heat release and performance of a RCCI engine fueled with diesel and natural gas. Fuel 2024, 362, 130930. [Google Scholar] [CrossRef]
- Januszewicz, K.; Hunicz, J.; Kazimierski, P.; Rybak, A.; Suchocki, T.; Duda, K.; Mikulski, M. An experimental assessment on a diesel engine powered by blends of waste-plastic-derived pyrolysis oil with diesel. Energy 2023, 281, 128330. [Google Scholar] [CrossRef]
- Al-Mohannadi, A.A.; Ertogral, K.; Erkoc, M. Alternative Fuels in Sustainable Logistics—Applications, Challenges, and Solutions. Sustainability 2024, 16, 8484. [Google Scholar] [CrossRef]
- Emblemsvåg, J. A Study on the Limitations of Green Alternative Fuels in Global Shipping in the Foreseeable Future. J. Mar. Sci. Eng. 2025, 13, 79. [Google Scholar] [CrossRef]
- Mielcarzewicz, D.; Pielecha, I. The Influence of Helium Addition on the Combustion Process in a Hydrogen-Fueled Turbulent Jet Ignition Engine. Appl. Sci. 2024, 14, 8996. [Google Scholar] [CrossRef]
- Gnap, J.; Dočkalik, M. Impact of the operation of LNG trucks on the environment. Open Eng. 2021, 11, 937–947. [Google Scholar] [CrossRef]
- Gołębiowski, W.; Wolak, A.; Šarkan, B. Engine Oil Degradation in the Real-World Bus Fleet Test Based on Two Consecutive Operational Intervals. Lubricants 2024, 12, 101. [Google Scholar] [CrossRef]
- Li, N.; Lukszo, Z.; Schmitz, J. An approach for sizing a PV–battery–electrolyzer–fuel cell energy system: A case study at a field lab. Renew. Sustain. Energy Rev. 2023, 181, 113308. [Google Scholar] [CrossRef]
- Małek, A.; Marciniak, A.; Bednarczyk, T. Probabilistic Analysis of Electricity Production from a Photovoltaic–Wind Energy Mix for Sustainable Transport Needs. Sustainability 2024, 16, 10164. [Google Scholar] [CrossRef]
- Tavares, A.M.; Conceição, R.; Lopes, F.M.; Silva, H.G. Effect of Solar Irradiation Inter-Annual Variability on PV and CSP Power Plants Production Capacity: Portugal Case-Study. Energies 2024, 17, 5490. [Google Scholar] [CrossRef]
- Gryniewicz-Jaworska, M. Analysis of the Selection of Compensation Devices Determining the Reactive Power Balance of Wind Farms. Adv. Sci. Technol. Res. J. 2020, 14, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Ukoima, K.N.; Okoro, O.I.; Obi, P.I.; Akuru, U.B.; Davidson, I.E. Optimal Sizing, Energy Balance, Load Management and Performance Analysis of a Hybrid Renewable Energy System. Energies 2024, 17, 5275. [Google Scholar] [CrossRef]
- Aghmadi, A.; Mohammed, O.A. Energy Storage Systems: Technologies and High-Power Applications. Batteries 2024, 10, 141. [Google Scholar] [CrossRef]
- AlZohbi, G. An Overview of Hydrogen Energy Generation. Chemengineering 2024, 8, 17. [Google Scholar] [CrossRef]
- Arcos, J.M.M.; Santos, D.M.F. The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production. Gases 2023, 3, 25–46. [Google Scholar] [CrossRef]
- Pivetta, D.; Volpato, G.; Carraro, G.; Dall’aRmi, C.; Da Lio, L.; Lazzaretto, A.; Taccani, R. Optimal decarbonization strategies for an industrial port area by using hydrogen as energy carrier. Int. J. Hydrogen Energy 2023, 52, 1084–1103. [Google Scholar] [CrossRef]
- Vedrtnam, A.; Kalauni, K.; Pahwa, R. Water Electrolysis Technologies and Their Modeling Approaches: A Comprehensive Review. Eng 2025, 6, 81. [Google Scholar] [CrossRef]
- Dang, J.; Zhang, J.; Deng, X.; Yang, S.; Liu, B.; Zhu, X.; Li, Y.; Yang, F.; Ouyang, M. Hydrogen crossover measurement and durability assessment of high-pressure proton exchange membrane electrolyzer. J. Power Sources 2023, 563, 232776. [Google Scholar] [CrossRef]
- Yang, R.; Mohamed, A.; Kim, K. Optimal design and flow-field pattern selection of proton exchange membrane electrolyzers using artificial intelligence. Energy 2022, 264, 126135. [Google Scholar] [CrossRef]
- Faqeeh, A.H.; Symes, M.D. A standard electrolyzer test cell design for evaluating catalysts and cell components for anion exchange membrane water electrolysis. Electrochim. Acta 2023, 444, 142030. [Google Scholar] [CrossRef]
- Vidales, A.G.; Millan, N.C.; Bock, C. Modeling of anion exchange membrane water electrolyzers: The influence of operating parameters. Chem. Eng. Res. Des. 2023, 194, 636–648. [Google Scholar] [CrossRef]
- Iliev, I.K.; Filimonova, A.A.; Chichirov, A.A.; Chichirova, N.D.; Pechenkin, A.V.; Vinogradov, A.S. Theoretical and Experimental Studies of Combined Heat and Power Systems with SOFCs. Energies 2023, 16, 1898. [Google Scholar] [CrossRef]
- Xu, Y.; Cai, S.; Chi, B.; Tu, Z. Technological limitations and recent developments in a solid oxide electrolyzer cell: A review. Int. J. Hydrogen Energy 2023, 50, 548–591. [Google Scholar] [CrossRef]
- Järvinen, L.; Puranen, P.; Kosonen, A.; Ruuskanen, V.; Ahola, J.; Kauranen, P.; Hehemann, M. Automized parametrization of PEM and alkaline water electrolyzer polarisation curves. Int. J. Hydrogen Energy 2022, 47, 31985–32003. [Google Scholar] [CrossRef]
- Giacoppo, G.; Trocino, S.; Vecchio, C.L.; Baglio, V.; Díez-García, M.I.; Aricò, A.S.; Barbera, O. Numerical 3D Model of a Novel Photoelectrolysis Tandem Cell with Solid Electrolyte for Green Hydrogen Production. Energies 2023, 16, 1953. [Google Scholar] [CrossRef]
- Ćwieka, K.; Bojarska, Z.; Czelej, K.; Łomot, D.; Dziegielewski, P.; Maximenko, A.; Nikiforow, K.; Gradoń, L.; Qi, M.; Xu, Y.; et al. Zero carbon footprint hydrogen generation by photoreforming of methanol over Cu/TiO2 nanocatalyst. Chem. Eng. J. 2023, 474, 145687. [Google Scholar] [CrossRef]
- Czelej, K.; Colmenares, J.C.; Jabłczyńska, K.; Ćwieka, K.; Werner, Ł.; Gradoń, L. Sustainable hydrogen production by plasmonic thermophotocatalysis. Catal. Today 2021, 380, 156–186. [Google Scholar] [CrossRef]
- Alfarizi, M.G.; Ustolin, F.; Vatn, J.; Yin, S.; Paltrinieri, N. Towards accident prevention on liquid hydrogen: A data-driven approach for releases prediction. Reliab. Eng. Syst. Saf. 2023, 236, 109276. [Google Scholar] [CrossRef]
- Pivetta, D.; Dall’aRmi, C.; Sandrin, P.; Bogar, M.; Taccani, R. The role of hydrogen as enabler of industrial port area decarbonization. Renew. Sustain. Energy Rev. 2024, 189, 113912. [Google Scholar] [CrossRef]
- Campari, A.; Darabi, M.; Alvaro, A.; Ustolin, F.; Paltrinieri, N. A Machine Learning Approach to Predict the Materials’ Susceptibility to Hydrogen Embrittlement. Chem. Eng. Trans. 2023, 99, 193–198. [Google Scholar] [CrossRef]
- Gul, W.; Xia, Y.E.; Gérard, P.; Ha, S.K. Characterization of Polymeric Composites for Hydrogen Tank. Polymers 2023, 15, 3716. [Google Scholar] [CrossRef] [PubMed]
- Malfroy, J.; Steelant, J.; Vandepitte, D. A Design Guide to Tapered Conformable Pressure Tanks for Liquid Hydrogen Storage. Aerospace 2025, 12, 190. [Google Scholar] [CrossRef]
- Hassan, Q.; Azzawi, I.D.J.; Sameen, A.Z.; Salman, H.M. Hydrogen Fuel Cell Vehicles: Opportunities and Challenges. Sustainability 2023, 15, 11501. [Google Scholar] [CrossRef]
- Chiang, P.-H.; Ke, B.-R.; Yen, S.-J.; Chien, W.-C. Minimization of Construction and Operation Costs of the Fuel Cell Bus Transportation System. Systems 2024, 12, 573. [Google Scholar] [CrossRef]
- Borghetti, F.; Longo, M.; Bonera, M.; Libretti, M.; Somaschini, C.; Martinelli, V.; Medeghini, M.; Mazzoncini, R. Battery Electric Buses or Fuel Cell Electric Buses? A Decarbonization Case Study in the City of Brescia, Italy. Infrastructures 2023, 8, 178. [Google Scholar] [CrossRef]
- Perna, A.; Jannelli, E.; Di Micco, S.; Romano, F.; Minutillo, M. Designing, sizing and economic feasibility of a green hydrogen supply chain for maritime transportation. Energy Convers. Manag. 2023, 278, 116702. [Google Scholar] [CrossRef]
- Alharthi, Y.Z. An Analysis of Hybrid Renewable Energy-Based Hydrogen Production and Power Supply for Off-Grid Systems. Processes 2024, 12, 1201. [Google Scholar] [CrossRef]
- Ramadan, A.; Gabbar, H.A. Evaluation of Hydrogen Generation with Hybrid Renewable Energy Sources. Appl. Sci. 2024, 14, 6235. [Google Scholar] [CrossRef]
- Tuluhong, A.; Chang, Q.; Xie, L.; Xu, Z.; Song, T. Current Status of Green Hydrogen Production Technology: A Review. Sustainability 2024, 16, 9070. [Google Scholar] [CrossRef]
- Pereira, J.; Souza, R.; Oliveira, J.; Moita, A. Hydrogen Production, Transporting and Storage Processes—A Brief Review. Clean Technol. 2024, 6, 1260–1313. [Google Scholar] [CrossRef]
- Dorel, S.; Lucian, M.; Gheorghe, L.; Cristian, L.G. Green Hydrogen, a Solution for Replacing Fossil Fuels to Reduce CO2 Emissions. Processes 2024, 12, 1651. [Google Scholar] [CrossRef]
- Renewable Hydrogen. Available online: https://energy.ec.europa.eu/topics/eus-energy-system/hydrogen/renewable-hydrogen_en (accessed on 17 September 2025).
- Hydrogen Valleys. Available online: https://www.clean-hydrogen.europa.eu/get-involved/hydrogen-valleys_en (accessed on 6 December 2024).
- Keelin, T.W. The Metalog Distributions. Decis. Anal. 2016, 13, 243–277. [Google Scholar] [CrossRef]
- Keelin, T.W.; Howard, R.A. The Metalog Distributions: Virtually Unlimited Shape Flexibility, Combining Expert Opinion in Closed Form, and Bayesian Updating in Closed Form; Stanford University: Stanford, CA, USA, 2021. [Google Scholar]
- GeNIe Modeler: Complete Modeling Freedom. Available online: https://www.bayesfusion.com/genie/ (accessed on 31 March 2025).
- Runolinna, M.; Turnquist, M.; Teittinen, J.; Ilmonen, P.; Koskinen, L. Extreme Path Delay Estimation of Critical Paths in Within-Die Process Fluctuations Using Multi-Parameter Distributions. J. Low Power Electron. Appl. 2023, 13, 22. [Google Scholar] [CrossRef]
- PVGIS—Interactive Tools. Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/ (accessed on 31 March 2025).
- Tharasawatpipat, C.; Choo-In, S.; Kayee, P.; Javadi, B. Evaluation of wastewater treatment and solar energy-based solutions for enhanced water quality improvement. J. Ecol. Eng. 2025, 26, 198–208. [Google Scholar] [CrossRef]
- Povacz, L.; Bhandari, R. Analysis of the Levelized Cost of Renewable Hydrogen in Austria. Sustainability 2023, 15, 4575. [Google Scholar] [CrossRef]
- Khalil, Y.F. Scoring and Ranking Methods for Evaluating the Techno-Economic Competitiveness of Hydrogen Production Technologies. Sustainability 2025, 17, 5770. [Google Scholar] [CrossRef]
- Yan, X.; Zheng, W.; Wei, Y.; Yan, Z. Current Status and Economic Analysis of Green Hydrogen Energy Industry Chain. Processes 2024, 12, 315. [Google Scholar] [CrossRef]
- Pompodakis, E.E.; Papadimitriou, T. Techno-Economic Assessment of Pink Hydrogen Produced from Small Modular Reactors for Maritime Applications. Hydrogen 2025, 6, 47. [Google Scholar] [CrossRef]
- Yin, C.; Jin, L. Estimating Hydrogen Price Based on Combined Machine Learning Models by 2060: Especially Comparing Regional Variations in China. Sustainability 2025, 17, 1049. [Google Scholar] [CrossRef]
- Franco, A. Green Hydrogen and the Energy Transition: Hopes, Challenges, and Realistic Opportunities. Hydrogen 2025, 6, 28. [Google Scholar] [CrossRef]
- Brusiło, P.; Węgrzyn, A.; Graczyk, A.; Graczyk, A.M. Hydrogen SWOT Analysis of Poland’s Energy Transition. Energies 2025, 18, 1789. [Google Scholar] [CrossRef]
- Šarkan, B.; Caban, J.; Małek, A.; Marciniak, A. Determining Signatures for Energy Mix Produced by Photovoltaic Systems and Wind Turbines. Appl. Sci. 2025, 15, 1800. [Google Scholar] [CrossRef]
- Małek, A.; Dudziak, A.; Marciniak, A.; Słowik, T. Designing a Photovoltaic–Wind Energy Mix with Energy Storage for Low-Emission Hydrogen Production. Energies 2025, 18, 846. [Google Scholar] [CrossRef]
- Małek, A. Low-Emission Hydrogen for Transport—A Technology Overview from Hydrogen Production to Its Use to Power Vehicles. Energies 2025, 18, 4425. [Google Scholar] [CrossRef]
- Başaran, K.; Özdemir, M.T.; Bayrak, G. Sizing and Techno-Economic Analysis of Utility-Scale PV Systems with Energy Storage Systems in Factory Buildings: An Application Study. Appl. Sci. 2025, 15, 3876. [Google Scholar] [CrossRef]
- Sonawane, P.R.; Bhandari, S.; Patil, R.B.; Al-Dahidi, S. Reliability and Criticality Analysis of a Large-Scale Solar Photovoltaic System Using Fault Tree Analysis Approach. Sustainability 2023, 15, 4609. [Google Scholar] [CrossRef]
- Bristowe, G.; Smallbone, A. The Key Techno-Economic and Manufacturing Drivers for Reducing the Cost of Power-to-Gas and a Hydrogen-Enabled Energy System. Hydrogen 2021, 2, 273–300. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; He, Y.; Zhang, H.; Chen, W.; Yang, C.; Dong, H. Capacity Optimization of Renewable-Based Hydrogen Production–Refueling Station for Fuel Cell Electric Vehicles: A Real-Project-Based Case Study. Sustainability 2025, 17, 7311. [Google Scholar] [CrossRef]
- Lanni, F.; Serri, L.; Manzini, G.; Travaglini, R.; Superchi, F.; Bianchini, A. Techno-Economic Analysis of Sustainable Hydrogen Production from Offshore Wind Farms: Two Italian Study Cases. Processes 2025, 13, 1219. [Google Scholar] [CrossRef]
- McIvor, C.; Roy, S.; Morgan, N.; Maxwell, B.; Smallbone, A. Techno-Economic Evaluation of Scalable and Sustainable Hydrogen Production Using an Innovative Molten-Phase Reactor. Hydrogen 2025, 6, 66. [Google Scholar] [CrossRef]
- Zun, M.T.; McLellan, B.C. Cost Projection of Global Green Hydrogen Production Scenarios. Hydrogen 2023, 4, 932–960. [Google Scholar] [CrossRef]
- Azzaoui, A.; Attiaoui, M.; Chaabelasri, E.; Silva, H.G.; Alami Merrouni, A. Techno-Economic Assessment of Linear Fresnel-Based Hydrogen Production in the MENA Region: Toward Affordable, Locally Driven Deployment for Enhanced Profitability and Reduced Costs. Energies 2025, 18, 3633. [Google Scholar] [CrossRef]
Probability | Energy Production [MWh] |
---|---|
0.05 | 2.837840080261 |
0.25 | 5.273059844971 |
0.5 | 10.72251987457 |
0.75 | 13.08139038086 |
0.95 | 13.58475017548 |
Energy [MWh] | Probability ≤ | Probability > |
---|---|---|
5 | 0.25 | 0.75 |
10 | 0.5 | 0.5 |
15 | 1 | 0 |
Probability | Energy Production |
---|---|
0.05 | 4.545269966125 |
0.25 | 7.201940059662 |
0.5 | 11.66884040833 |
0.75 | 13.84545993805 |
0.95 | 14.47589969635 |
Energy [MWh] | Probability ≤ | Probability > |
---|---|---|
5 | 0.0833 | 0.9167 |
10 | 0.4166 | 0.5834 |
15 | 1 | 0 |
Probability | Energy Production |
---|---|
0.05 | 11.35138988495 |
0.25 | 12.17833995819 |
0.5 | 14.92626953125 |
0.75 | 16.34178924561 |
0.95 | 16.78140068054 |
Energy [MWh] | Probability ≤ | Probability > |
---|---|---|
5 | 0 | 1 |
10 | 0 | 1 |
15 | 0.6666 | 0.3334 |
Country | Annual H2 Production [kg] | Annual Costs [EUR] | LCOH [EUR/kg H2] |
---|---|---|---|
Poland | 2166 | 15,246 + 5700 = EUR 20,946 | 9.67 |
Hungary | 2493 | EUR 20,946 | 8.40 |
Spain | 3419 | EUR 20,946 | 6.13 |
Country | LCOH Base (EUR/kg) | LCOH Alt (EUR/kg) | Δ LCOH (EUR/kg) | Increase vs. Base (%) | NPV Costs Base (EUR) | NPV Costs Alt (EUR) | NPV H2 Base (kg) | NPV H2 Alt (kg) |
---|---|---|---|---|---|---|---|---|
Spain | 6.13 | 7.93 | 1.81 | 29.5 | 261,035 | 317,747 | 42,609 | 40,049 |
Hungary | 8.40 | 10.88 | 2.48 | 29.5 | 261,035 | 317,747 | 31,065 | 29,199 |
Poland | 9.67 | 12.52 | 2.85 | 29.5 | 261,035 | 317,747 | 26,997 | 25,374 |
Country | Discount Rate | Base LCOH (EUR/kg) | Min LCOH (EUR/kg) | Median LCOH (EUR/kg) | Max LCOH (EUR/kg) | Range (EUR/kg) |
---|---|---|---|---|---|---|
Poland | 3% | 8.53 | 6.14 | 8.53 | 11.26 | 5.12 |
Poland | 5% | 9.67 | 6.96 | 9.67 | 12.76 | 5.8 |
Poland | 7% | 10.91 | 7.86 | 10.91 | 14.4 | 6.55 |
Hungary | 3% | 7.41 | 5.34 | 7.41 | 9.78 | 4.45 |
Hungary | 5% | 8.4 | 6.05 | 8.4 | 11.09 | 5.04 |
Hungary | 7% | 9.48 | 6.83 | 9.48 | 12.52 | 5.69 |
Spain | 3% | 5.4 | 3.89 | 5.4 | 7.13 | 3.24 |
Spain | 5% | 6.13 | 4.41 | 6.13 | 8.09 | 3.68 |
Spain | 7% | 6.91 | 4.98 | 6.91 | 9.12 | 4.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caban, J.; Małek, A.; Siemiątkowski, Z. Probabilistic Assessment of Solar-Based Hydrogen Production Using PVGIS, Metalog Distributions, and LCOH Modeling. Energies 2025, 18, 4972. https://doi.org/10.3390/en18184972
Caban J, Małek A, Siemiątkowski Z. Probabilistic Assessment of Solar-Based Hydrogen Production Using PVGIS, Metalog Distributions, and LCOH Modeling. Energies. 2025; 18(18):4972. https://doi.org/10.3390/en18184972
Chicago/Turabian StyleCaban, Jacek, Arkadiusz Małek, and Zbigniew Siemiątkowski. 2025. "Probabilistic Assessment of Solar-Based Hydrogen Production Using PVGIS, Metalog Distributions, and LCOH Modeling" Energies 18, no. 18: 4972. https://doi.org/10.3390/en18184972
APA StyleCaban, J., Małek, A., & Siemiątkowski, Z. (2025). Probabilistic Assessment of Solar-Based Hydrogen Production Using PVGIS, Metalog Distributions, and LCOH Modeling. Energies, 18(18), 4972. https://doi.org/10.3390/en18184972