Legume as Vegetal Nitrogen Source with Olive Mill Wastewater for Methane Production Through Two-Stage Anaerobic Co-Digestion Process
Abstract
1. Introduction
2. Materials and Methods
2.1. Inoculum and Substrates
2.2. Experimental Design and Reactor Setup
2.3. Analytical Methods
2.4. Energy Potential and Statistical Analysis
3. Results
3.1. Influence of Substrate Composition and OLR on Methane Production
3.2. Interactions of Parameters Measured in the Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Outlook for Biogas and Biomethane. A Global Geospatial Assessment. World Energy Outlook Special Report; International Energy Agency: Paris, France, 2025; Available online: www.iea.org (accessed on 20 June 2025).
- Simeonov, I.; Chorukva, E.; Kabainova, L. Two-stage anaerobic digestion for green energy production: A review. Processes 2025, 13, 294. [Google Scholar] [CrossRef]
- Nabaterega, R.; Kumar, V.; Khloei, S.; Eskicioglu, C. A review on two-stage anaerobic digestion options for optimizing municipal wastewater sludge treatment process. J. Environ. Chem. Eng. 2021, 9, 105502. [Google Scholar] [CrossRef]
- Holl, E.; Steinbrenner, J.; Merkel, W.; Krümpel, J.; Lansing, S.; Baier, U.; Oeschner, H.; Lemmer, A. Two-stage anaerobic digestion: State of technology and perspective roles in future energy systems. Bioresour. Technol. 2022, 360, 127633. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Mohino, F. Innovación y Sostenibilidad: Análisis de los Subproductos del Aceite de Oliva y su Aprovechamiento. Innovación y Sostenibilidad en el Sector Oleícola; Universidad Pontificia Comillas, Facultad de Ciencias Económicas y Empresariales: Madrid, Spain, 2021. (In Spanish) [Google Scholar]
- Parralejo, A.I.; Royano, L.; González, J.; González, J.F. Small scale biogas production with animal excrement and agricultural residues. Ind. Crops Prod. 2019, 131, 307–314. [Google Scholar] [CrossRef]
- Parralejo, A.I.; Royano, L.; Cabanillas, J.; González, J. Biogas from Nitrogen-Rich Biomass as an Alternative to Animal Manure Co-substrate in Anaerobic Co-Digestion Processes. Energies 2022, 15, 5978. [Google Scholar] [CrossRef]
- González, F.; Gil, A.; Llera, F.; González, J.A.; Maya, V. Catálogo de Variedades de Semillas Obtenidas en el Centro de Investigación la Orden-Valdesequera del Gobierno de Extremadura; Centro de Investigación La Orden-Valdesequera: Extremadura, Spain, 2012. [Google Scholar]
- De la Lama, C.; Borja, R.; Rincón, B. Performance evaluation and substrate removal kinetics in the semi-continuous anaerobic digestion of thermally pretreated two phase olive pomace or “Alperujo”. Process Saf. Environ. Prot. 2017, 105, 288–296. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Devens, K.U.; Camargo, F.P.; Sakamoto, I.K.; Varesche, M.B.A.; Silva, E.L. Synergizing sugarcane waste valorization: Optimization of two-stage anaerobic co-digestion for enhanced methane recovery and organic matter removal. Ind. Crops Prod. 2024, 221, 119297. [Google Scholar] [CrossRef]
- Standard Methods for Examination of Water and Wastewater, 22nd ed.; APHA (American Public Health Association): Washington, DC, USA, 2012.
- Rani, P.; Pathak, V.V.; Bansal, M. Co-digestion of wheat straw and animal manure pretreated with calcium hydroxide for biomethane production: Kinetic study. Curr. Res. Green Sustain. Chem. 2021, 4, 100145. [Google Scholar] [CrossRef]
- Buchauer, K. Titrations verfahren in der Abwasserund Schlam-manalytik zur Bestimmung von flüchtigen organischen Säuren. Das Gas-und Wasserfach (gfw). Wasser Abwasser. 1997, 138, 313–320. [Google Scholar]
- Norma UNE-EN 16948; Biocombustibles Sólidos, Determinación de Contenido Total de C, H y N. Método Instrumental; AENOR: Madrid, Spain, 2015.
- Parralejo, A.I. Cultivos Energéticos y Residuos Agroganaderos Como Sustratos para Optimizar el Potencial de Generación de Biogás en Procesos de Digestión Anaerobia. Ph.D. Thesis, Universidad de Extremadura, Badajoz, Spain, 2020. [Google Scholar]
- Usmanbaha, N.; Sani, K.; Jariyaboon, R.; Raketh, M.; O-Thong, S.; Kongjan, P. Co-digestion of palm oil mill effluent and Ceratophyllum demersum in a two-stage anaerobic bioreactor to recover gaseous biofuel. Int. J. Hydrogen Energy 2025, 97, 1375–1385. [Google Scholar] [CrossRef]
- Lukitawesa; Wikandari, R.; Millati, R.; Taherzadeh, M.J.; Niklasson, C. Effect of Effluent Recirculation on Biogas Production Using Two-Stage Anaerobic Digestion of Citrus Waste. Molecules 2018, 23, 3380. [Google Scholar] [CrossRef] [PubMed]
- Devens, K.U.; Ribeiro, A.R.; Camargo, F.P.; Sakamoto, I.K.; Varesche, M.B.A.; Silva, E.L. Two-stage versus single-stage anaerobic co-digestion on methane synthesis: Energy prospects and microbial community. Process Saf. Environ. Prot. 2025, 196, 106884. [Google Scholar] [CrossRef]
- Somridhivej, B.; Boyd, C.E. An assessment of factors affecting the reliability of total alkalinity measurements. Aquaculture 2016, 459, 99–109. [Google Scholar] [CrossRef]
- Parralejo, A.I.; González, J.; Royano, L.; González, J.F. Optimizing Anaerobic Co-Digestion Formula of Agro-Industrial Wastes in Semi-Continuous Regime. Energies 2025, 18, 1689. [Google Scholar] [CrossRef]
- Canaver, D.F.; Varella, R.; Maintinguer, S.I. Maximizing biogas production from expired dairy products: A two-stage anaerobic digestion approach. Int. J. Hydrogen Energy 2025, 100, 173–183. [Google Scholar] [CrossRef]
- Drosg, B. Process Monitoring in Biogas Plant. Task 37—Energy from Biogas and Landfill Gas; International Energy Agency (IEA) Bioenergy: Paris, France, 2013. [Google Scholar]
Parameter | PP | RO | CL | Lupin | OMW |
---|---|---|---|---|---|
C, % | 1.64 ± 0.10 | 74.00 ±0.50 | 44.80 ± 0.28 | 45.20 ± 0.57 | 11.8 ± 1.56 |
N, % | 0.11 ± 0.01 | 0 | 1.97 ± 0.06 | 3.20 ± 0.03 | 0.33 ± 0.03 |
C/N | 14.91 | - | 22.74 | 14.13 | 35.76 |
VST, % | 6.65 ± 0.10 | - | 80.64 ± 0.12 | 93.79 ± 0.12 | 11.47 ± 0.42 |
Assay | Composition in the feedstock, % over VS | ||||
1 | 50 | 17 | 22 | 11 | - |
2 | 53 | 18 | 12 | 17 | - |
3 | 50 | 18 | - | 32 | - |
4 | 24 | - | - | 40 | 36 |
5 | 8 | - | - | 40 | 52 |
6 | - | - | - | 40 | 60 |
7 * | - | - | - | 40 | 60 |
Parameter | Reactors 1 | Reactors 2 | Reactors 3 | Reactors 4 | Reactors 5 | Reactors 6 | Reactors 7 |
---|---|---|---|---|---|---|---|
HRT, days | 43 | 43 | 37 | 52 | 70 | 89 | 63 |
OLR, g VS L−1 d−1 | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 3.6 |
Total methane yield, L kg VS−1 | 487 | 532 | 522 | 342 | 467 | 408 | 510 |
COD removal, % | 87 | 85 | 88 | 74 | 80 | 70 | 58 |
Methane energy yield, kJ kg VS−1 | 19 | 21 | 21 | 14 | 19 | 16 | 20 |
Methane energy potential, kJ d−1 | 235 | 242 | 282 | 182 | 249 | 218 | 241 |
Methane concentration stage 1, % | 42 | 40 | 42 | 48 | 55 | 62 | 59 |
Methane concentration stage 2, % | 59 | 67 | 63 | 68 | 69 | 65 | 60 |
Total methane concentration, % | 51 | 53 | 53 | 58 | 62 | 64 | 59 |
Assay | pH | VFA, mg L−1 | N-NH4, mg L−1 | Alkalinity, mg CaCO3 L−1 |
---|---|---|---|---|
1 | 7.92 ± 0.12 | 818 ± 178 a | 1015 ± 47 | 8533 ± 464 |
2 | 7.98 ± 0.18 | 816 ± 129 a | 1028 ± 10 | 9007 ± 205 |
3 | 8.08 ± 0.02 | 722 ± 71 a | 1640 ± 136 | 13,630 ± 1682 |
4 | 8.05 ± 0.13 | 2828 ± 99 c | 2695 ± 118 | 17,775 ± 525 |
5 | 8.09 ± 0.03 | 1996 ± 142 b | 2380 ± 52 | 15,796 ± 159 |
6 | 8.19 ± 0.04 | 2740 ± 291 c | 2368 ± 188 | 17,275 ± 1183 |
7 | 8.19 ± 0.03 | 2766 ± 300 c | 2805 ± 109 | 19,472 ± 447 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parralejo, A.I.; González, J.; Royano, L.; González, J.F. Legume as Vegetal Nitrogen Source with Olive Mill Wastewater for Methane Production Through Two-Stage Anaerobic Co-Digestion Process. Energies 2025, 18, 4973. https://doi.org/10.3390/en18184973
Parralejo AI, González J, Royano L, González JF. Legume as Vegetal Nitrogen Source with Olive Mill Wastewater for Methane Production Through Two-Stage Anaerobic Co-Digestion Process. Energies. 2025; 18(18):4973. https://doi.org/10.3390/en18184973
Chicago/Turabian StyleParralejo, Ana I., Jerónimo González, Luis Royano, and Juan F. González. 2025. "Legume as Vegetal Nitrogen Source with Olive Mill Wastewater for Methane Production Through Two-Stage Anaerobic Co-Digestion Process" Energies 18, no. 18: 4973. https://doi.org/10.3390/en18184973
APA StyleParralejo, A. I., González, J., Royano, L., & González, J. F. (2025). Legume as Vegetal Nitrogen Source with Olive Mill Wastewater for Methane Production Through Two-Stage Anaerobic Co-Digestion Process. Energies, 18(18), 4973. https://doi.org/10.3390/en18184973