Process Optimization of Biodiesel Production from Waste Cooking Oil and Neem Oil Blend
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Design of Experiments and Statistical Analysis
2.4. Experimental Procedure
2.5. Catalyst Recovery and Reuse
3. Results and Discussion
3.1. Catalyst Characterization
3.1.1. X-Ray Diffraction (XRD)
3.1.2. Brunauer–Emmet–Teller (BET) Analysis
3.1.3. X-Ray Photoelectron Spectroscopy (XPS)
3.1.4. Transmission Electron Microscopy (TEM)
3.1.5. Thermogravimetric Analysis (TGA)
3.2. Feedstock Characterization
3.3. Statistical Analysis of Transesterification Experiments
* D + 0.019286 * AB − 0.011074 * AC − 0.019550 * AD − 0.000034 * BC + 0.002900
* BD − 0.000120 * CD
3.4. Parameter Interactions and 3-D Plots
3.5. Model Optimization
3.6. Catalyst Performance Comparison
3.7. Biodiesel Characterization
3.7.1. Heating Value
3.7.2. Density
3.7.3. FTIR
3.7.4. Ultimate Analysis
3.8. Catalyst Reusability
3.9. Metal Leaching from the CoZnFe4O8 Catalyst
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BBD | Box–Behnken Design |
BET | Brunauer–Emmett–Teller |
CCD | Central Composite Design |
FTIR | Fourier Transform Infrared |
ICP-OES | Inductively Coupled Plasma-Optical Emission Spectrometry |
RSM | Response Surface Methodology |
WCO | Waste Cooking Oil |
XRD | X-Ray Diffraction |
References
- Jones, C.S.; Mayfield, S.P. Our Energy Future: Introduction to Renewable Energy and Biofuels; University of California Press: Oakland, CA, USA, 2016; Available online: https://books.google.ae/books?id=K7QwDwAAQBAJ (accessed on 29 March 2023).
- Asaad, S.M.; Inayat, A.; Rocha-Meneses, L.; Jamil, F.; Ghenai, C.; Shanableh, A. Prospective of Response Surface Methodology as an Optimization Tool for Biomass Gasification Process. Energies 2022, 16, 40. [Google Scholar] [CrossRef]
- Mitchell, R.; Sweeney, F. Air Pollution; Scientific e-Resources: New Delhi, India, 2018; Available online: https://books.google.ca/books?id=WNW_DwAAQBAJ (accessed on 29 August 2025).
- Soeder, D.J. Fossil Fuels and Climate Change. In Fracking and the Environment; Springer International Publishing: Cham, Switzerland, 2021; pp. 155–185. [Google Scholar] [CrossRef]
- Shahzad, U. The need for renewable energy sources. Int. J. Inf. Technol. Electr. Eng. 2012, 2, 16–18. [Google Scholar]
- Qazi, A.; Hussain, F.; Rahim, N.A.B.D.; Hardaker, G.; Alghazzawi, D.; Shaban, K.; Haruna, K. Towards Sustainable Energy: A Systematic Review of Renewable Energy Sources, Technologies, and Public Opinions. IEEE Access 2019, 7, 63837–63851. [Google Scholar] [CrossRef]
- Dahiya, A. Bioenergy: Biomass to Biofuels and Waste to Energy, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Available online: https://www.sciencedirect.com/book/9780128154977/bioenergy (accessed on 18 November 2021).
- Tursi, A. A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Res. J. 2019, 6, 962–979. [Google Scholar] [CrossRef]
- Capareda, S. Introduction to Biomass Energy Conversions; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2013. [Google Scholar] [CrossRef]
- Russo, D.; Portarapillo, M.; Di Benedetto, A. Flash point of biodiesel/glycerol/alcohol mixtures for safe processing and storage. J. Loss Prev. Process Ind. 2023, 83, 105077. [Google Scholar] [CrossRef]
- Dincer, K. Lower Emissions from Biodiesel Combustion. Energy Sources Part A Recover. Util. Environ. Eff. 2008, 30, 963–968. [Google Scholar] [CrossRef]
- Chozhavendhan, S.; Vijay Pradhap Singh, M.; Fransila, B.; Praveen Kumar, R.; Karthiga Devi, G. A review on influencing parameters of biodiesel production and purification processes. Curr. Res. Green Sustain. Chem. 2020, 1–2, 1–6. [Google Scholar] [CrossRef]
- Dharma, S.; Masjuki, H.H.; Ong, H.C.; Sebayang, A.H.; Silitonga, A.S.; Kusumo, F.; Mahlia, T.M.I. Optimization of biodiesel production process for mixed Jatropha curcas-Ceiba pentandra biodiesel using response surface methodology. Energy Convers. Manag. 2016, 115, 178–190. [Google Scholar] [CrossRef]
- Chen, W.-H.; Carrera Uribe, M.; Kwon, E.E.; Lin, K.-Y.A.; Park, Y.-K.; Ding, L.; Saw, L.H. A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM). Renew. Sustain. Energy Rev. 2022, 169, 112917. [Google Scholar] [CrossRef]
- Asaad, S.M.; Inayat, A.; Ghenai, C.; Shanableh, A. Response Surface Methodology in Biodiesel Production and Engine Performance Assessment. Int. J. Thermofluids 2024, 21, 100551. [Google Scholar] [CrossRef]
- Veljković, V.B.; Veličković, A.V.; Avramović, J.M.; Stamenković, O.S. Modeling of biodiesel production: Performance comparison of Box–Behnken, face central composite and full factorial design. Chin. J. Chem. Eng. 2019, 27, 1690–1698. [Google Scholar] [CrossRef]
- Ayoub, M.; Ullah, S.; Inayat, A.; Bhat, A.H.; Hailegiorgis, S.M. Process Optimization for Biodiesel Production from Waste Frying Oil over Montmorillonite Clay K-30. Procedia Eng. 2016, 148, 742–749. [Google Scholar] [CrossRef]
- Asaad, S.M.; Inayat, A.; Jamil, F.; Ghenai, C.; Shanableh, A. Optimization of Biodiesel Production from Waste Cooking Oil Using a Green Catalyst Prepared from Glass Waste and Animal Bones. Energies 2023, 16, 2322. [Google Scholar] [CrossRef]
- Singh Pali, H.; Sharma, A.; Kumar, N.; Singh, Y. Biodiesel yield and properties optimization from Kusum oil by RSM. Fuel 2021, 291, 120218. [Google Scholar] [CrossRef]
- Bharti, P.; Singh, B.; Dey, R.K. Process optimization of biodiesel production catalyzed by CaO nanocatalyst using response surface methodology. J. Nanostruct. Chem. 2019, 9, 269–280. [Google Scholar] [CrossRef]
- Hasni, K.; Ilham, Z.; Dharma, S.; Varman, M. Optimization of biodiesel production from Brucea javanica seeds oil as novel non-edible feedstock using response surface methodology. Energy Convers. Manag. 2017, 149, 392–400. [Google Scholar] [CrossRef]
- Borah, M.J.; Das, A.; Das, V.; Bhuyan, N.; Deka, D. Transesterification of waste cooking oil for biodiesel production catalyzed by Zn substituted waste egg shell derived CaO nanocatalyst. Fuel 2019, 242, 345–354. [Google Scholar] [CrossRef]
- Hosseini, S.A. Nanocatalysts for biodiesel production. Arab. J. Chem. 2022, 15, 104152. [Google Scholar] [CrossRef]
- Melchiorre, M.; Amoresano, A.; Budzelaar, P.H.M.; Cucciolito, M.E.; Mocerino, F.; Pinto, G.; Ruffo, F.; Tuzi, A.; Esposito, R. Parts-Per-Million (Salen)Fe(III) Homogeneous Catalysts for the Production of Biodiesel from Waste Cooking Oils. Catal. Lett. 2022, 152, 3785–3794. [Google Scholar] [CrossRef]
- Ramos, M.; Dias, A.P.S.; Puna, J.F.; Gomes, J.; Bordado, J.C. Biodiesel production processes and sustainable raw materials. Energies 2019, 12, 4408. [Google Scholar] [CrossRef]
- Okechukwu, O.D.; Joseph, E.; Nonso, U.C.; Kenechi, N.-O. Improving heterogeneous catalysis for biodiesel production process. Clean. Chem. Eng. 2022, 3, 100038. [Google Scholar] [CrossRef]
- Bano, S.; Ganie, A.S.; Sultana, S.; Sabir, S.; Khan, M.Z. Fabrication and Optimization of Nanocatalyst for Biodiesel Production: An Overview. Front. Energy Res. 2020, 8, 579014. [Google Scholar] [CrossRef]
- Asaad, S.M.; Inayat, A.; Jamil, F.; Ghenai, C.; Shanableh, A. Prospective of Nanocatalysts in Transesterification Process for the Biodiesel Production. In Proceedings of the 2023 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 20–23 February 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Shah, M.; Ali, S.; Tariq, M.; Khalid, N.; Ahmad, F.; Khan, M.A. Catalytic conversion of jojoba oil into biodiesel by organotin catalysts, spectroscopic and chromatographic characterization. Fuel 2014, 118, 392–397. [Google Scholar] [CrossRef]
- Mohamad, M.; Ngadi, N.; Wong, S.L.; Jusoh, M.; Yahya, N.Y. Prediction of biodiesel yield during transesterification process using response surface methodology. Fuel 2017, 190, 104–112. [Google Scholar] [CrossRef]
- Aleman-Ramirez, J.L.; Reyes-Vallejo, O.; Okoye, P.U.; Sanchez-Albores, R.; Maldonado-Álvarez, A.; Sebastian, P.J. Crystal phase evolution of high temperature annealed Fe3O4-CaO catalysts for biodiesel production. Biofuels Bioprod. Biorefining 2023, 17, 843–858. [Google Scholar] [CrossRef]
- Kumar, M.; Sharma, A.; Maurya, I.K.; Thakur, A.; Kumar, S. Synthesis of ultra small iron oxide and doped iron oxide nanostructures and their antimicrobial activities. J. Taibah Univ. Sci. 2019, 13, 280–285. [Google Scholar] [CrossRef]
- Macías-Martínez, B.I.; Cortés-Hernández, D.A.; Zugasti-Cruz, A.; Cruz-Ortíz, B.R.; Múzquiz-Ramos, E.M. Heating ability and hemolysis test of magnetite nanoparticles obtained by a simple co-precipitation method. J. Appl. Res. Technol. 2016, 14, 239–244. [Google Scholar] [CrossRef]
- Kumar, H.; Rani, R. Structural and Optical Characterization of ZnO Nanoparticles Synthesized by Microemulsion Route. Int. Lett. Chem. Phys. Astron. 2013, 19, 26–36. [Google Scholar] [CrossRef]
- Pasupulety, N.; Rempel, G.L.; Ng, F.T.T. Studies on Mg-Zn mixed oxide catalyst for biodiesel production. Appl. Catal. A Gen. 2015, 489, 77–85. [Google Scholar] [CrossRef]
- Gul, I.; Khan, S.M.; Mehmood, T.; Ahmad, Z.; Badshah, H.; Shah, H. Characterization of Cobalt Oxide and Calcium-Aluminum Oxide nano-catalyst through Scanning Electron Microscopy, X-ray diffraction, and Energy Dispersive X-ray Spectroscopy. Microsc. Res. Tech. 2020, 83, 1124–1131. [Google Scholar] [CrossRef]
- Lendzion-Bielun, Z.; Narkiewicz, U.; Arabczyk, W. Cobalt-based Catalysts for Ammonia Decomposition. Materials 2013, 6, 2400–2409. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, X.; Huang, J.; Chen, J. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co3O4 nanododecahedras in situ decorated on carbon nanotubes for glucose detection and biofuel cell application. Anal. Bioanal. Chem. 2018, 410, 2019–2029. [Google Scholar] [CrossRef] [PubMed]
- Tong, D.-G.; Chu, W.; Luo, Y.-Y.; Ji, X.-Y.; He, Y. Effect of crystallinity on the catalytic performance of amorphous Co–B particles prepared from cobalt nitrate and potassium borohydride in the cinnamaldehyde hydrogenation. J. Mol. Catal. A Chem. 2007, 265, 195–204. [Google Scholar] [CrossRef]
- Yurdakal, S.; Garlisi, C.; Özcan, L.; Bellardita, M.; Palmisano, G. (Photo)catalyst Characterization Techniques. In Heterogeneous Photocatalysis; Elsevier: Amsterdam, The Netherlands, 2019; pp. 87–152. [Google Scholar] [CrossRef]
- Tompsett, G.A.; Krogh, L.; Griffin, D.W.; Conner, W.C. Hysteresis and Scanning Behavior of Mesoporous Molecular Sieves. Langmuir 2005, 21, 8214–8225. [Google Scholar] [CrossRef] [PubMed]
- Bardestani, R.; Patience, G.S.; Kaliaguine, S. Experimental methods in chemical engineering: Specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can. J. Chem. Eng. 2019, 97, 2781–2791. [Google Scholar] [CrossRef]
- Changmai, B.; Sudarsanam, P.; Rokhum, S.L. Biodiesel production using a renewable mesoporous solid catalyst. Ind. Crops Prod. 2020, 145, 111911. [Google Scholar] [CrossRef]
- List, G.R. Bleaching and Purifying Fats and Oils: Theory and Practice; Elsevier Inc.: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Lani, N.S.; Ngadi, N.; Yahya, N.Y.; Rahman, R.A. Synthesis, characterization and performance of silica impregnated calcium oxide as heterogeneous catalyst in biodiesel production. J. Clean. Prod. 2017, 146, 116–124. [Google Scholar] [CrossRef]
- Mohapatra, J.; Xing, M.; Elkins, J.; Beatty, J.; Liu, J.P. Size-dependent magnetic hardening in CoFe2O4 nanoparticles: Effects of surface spin canting. J. Phys. D. Appl. Phys. 2020, 53, 504004. [Google Scholar] [CrossRef]
- Nanostructured & Amorphous Materials, Inc. Cobalt-Zinc Iron Oxide Nanopowder (Co0.5Zn0.5Fe2O4, 99.5%, 30–50 nm). Available online: https://www.nanoamor.com/inc/sdetail/10983/3966 (accessed on 14 October 2024).
- Li, H.; Niu, S.; Lu, C.; Wang, Y. Comprehensive Investigation of the Thermal Degradation Characteristics of Biodiesel and Its Feedstock Oil through TGA–FTIR. Energy Fuels 2015, 29, 5145–5153. [Google Scholar] [CrossRef]
- Samanta, S.; Sahoo, R.R. Waste Cooking (Palm) Oil as an Economical Source of Biodiesel Production for Alternative Green Fuel and Efficient Lubricant. BioEnergy Res. 2021, 14, 163–174. [Google Scholar] [CrossRef]
- Abdullah; Rahmawati Sianipar, R.N.; Ariyani, D.; Nata, I.F. Conversion of palm oil sludge to biodiesel using alum and KOH as catalysts. Sustain. Environ. Res. 2017, 27, 291–295. [Google Scholar] [CrossRef]
- Mekonnen, K.D. Fourier transform infrared spectroscopy as a tool for identifying the unique characteristic bands of lipid in oilseed components: Confirmed via Ethiopian indigenous desert date fruit. Heliyon 2023, 9, e14699. [Google Scholar] [CrossRef]
- De, B.; Gupta, K.; Mandal, M.; Karak, N. Tough hyperbranched epoxy/neem-oil-modified OMMT thermosetting nanocomposite with an antimicrobial attribute. N. J. Chem. 2015, 39, 595–603. [Google Scholar] [CrossRef]
- Muhammad, G.; Potchamyou Ngatcha, A.D.; Lv, Y.; Xiong, W.; El-Badry, Y.A.; Asmatulu, E.; Xu, J.; Alam, M.A. Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network. Renew. Energy 2022, 184, 753–764. [Google Scholar] [CrossRef]
- Massoudinejad, M.; Sadani, M.; Gholami, Z.; Rahmati, Z.; Javaheri, M.; Keramati, H.; Sarafraz, M.; Avazpour, M.; Shiri, S. Optimization and modeling of photocatalytic degradation of Direct Blue 71 from contaminated water by TiO2 nanoparticles: Response surface methodology approach (RSM). Iran. J. Catal. 2019, 9, 121–132. Available online: https://oiccpress.com/ijc/article/view/4038 (accessed on 22 March 2024).
- Peng, Y.; Khaled, U.; Al-Rashed, A.A.A.A.; Meer, R.; Goodarzi, M.; Sarafraz, M.M. Potential application of Response Surface Methodology (RSM) for the prediction and optimization of thermal conductivity of aqueous CuO (II) nanofluid: A statistical approach and experimental validation. Phys. A Stat. Mech. Its Appl. 2020, 554, 124353. [Google Scholar] [CrossRef]
- Plonsky, L.; Ghanbar, H. Multiple Regression in L2 Research: A Methodological Synthesis and Guide to Interpreting R 2 Values. Mod. Lang. J. 2018, 102, 713–731. [Google Scholar] [CrossRef]
- Rewatkar, K.; Shende, D.Z.; Wasewar, K.L. Modeling and Optimization of Reactive Extraction of Gallic Acid Using RSM. Chem. Eng. Commun. 2017, 204, 522–528. [Google Scholar] [CrossRef]
- Faraway, J.J. Practical Regression and ANOVA Using R; Self-Published; University of Michigan: Ann Arbor, MI, USA, 2002; Available online: http://csyue.nccu.edu.tw/Practical%20Regression%20and%20Anova%20using%20R.pdf (accessed on 18 May 2024).
- Brown, S.; Tauler, R.; Walczak, B. (Eds.) Comprehensive Chemometrics; Elsevier: Amsterdam, The Netherlands, 2020; Available online: https://www.sciencedirect.com/referencework/9780444641663/comprehensive-chemometrics (accessed on 18 May 2024).
- Prajapati, N.; Oza, S.; Kodgire, P.; Singh Kachhwaha, S. Microwave assisted biodiesel production: Assessment of optimization via RSM techniques. Mater. Today Proc. 2022, 57, 1637–1644. [Google Scholar] [CrossRef]
- Onu, C.E.; Nwabanne, J.T.; Ohale, P.E.; Asadu, C.O. Comparative analysis of RSM, ANN and ANFIS and the mechanistic modeling in eriochrome black-T dye adsorption using modified clay. S. Afr. J. Chem. Eng. 2021, 36, 24–42. [Google Scholar] [CrossRef]
- Uzun, B.B.; Kılıç, M.; Özbay, N.; Pütün, A.E.; Pütün, E. Biodiesel production from waste frying oils: Optimization of reaction parameters and determination of fuel properties. Energy 2012, 44, 347–351. [Google Scholar] [CrossRef]
- Salimi, Z.; Hosseini, S.A. Study and optimization of conditions of biodiesel production from edible oils using ZnO/BiFeO3 nano magnetic catalyst. Fuel 2019, 239, 1204–1212. [Google Scholar] [CrossRef]
- Seffati, K.; Honarvar, B.; Esmaeili, H.; Esfandiari, N. Enhanced biodiesel production from chicken fat using CaO/CuFe2O4 nanocatalyst and its combination with diesel to improve fuel properties. Fuel 2019, 235, 1238–1244. [Google Scholar] [CrossRef]
- Rasouli, H.; Esmaeili, H. Characterization of MgO nanocatalyst to produce biodiesel from goat fat using transesterification process. 3 Biotech 2019, 9, 429. [Google Scholar] [CrossRef]
- Mihankhah, T.; Delnavaz, M.; Khaligh, N.G. Application of TiO2 nanoparticles for eco-friendly biodiesel production from waste olive oil. Int. J. Green Energy 2018, 15, 69–75. [Google Scholar] [CrossRef]
- Changmai, B.; Vanlalveni, C.; Ingle, A.P.; Bhagat, R.; Rokhum, S.L. Widely used catalysts in biodiesel production: A review. RSC Adv. 2020, 10, 41625–41679. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, J.; Alagu, K.; Appavu, P.; Joy, N.; Jayaram, P.; Mariadoss, A. Enzymatic production of biodiesel using lipase catalyst and testing of an unmodified compression ignition engine using its blends with diesel. Renew. Energy 2020, 145, 399–407. [Google Scholar] [CrossRef]
- ASTM D6751; Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels. ASTM International: Conshohocken, PA, USA, 2020.
- Giakoumis, E.G.; Sarakatsanis, C.K. Estimation of biodiesel cetane number, density, kinematic viscosity and heating values from its fatty acid weight composition. Fuel 2018, 222, 574–585. [Google Scholar] [CrossRef]
- EN 14213:2003; Heating Fuels—Fatty Acid Methyl Esters (FAME)—Requirements and Test Methods. European Committee for Standardization (CEN): Brussels, Belgium, 2003.
- Rashid, U.; Anwar, F.; Knothe, G. Evaluation of biodiesel obtained from cottonseed oil. Fuel Process. Technol. 2009, 90, 1157–1163. [Google Scholar] [CrossRef]
- Abdalla, I.E. Experimental studies for the thermo-physiochemical properties of Biodiesel and its blends and the performance of such fuels in a Compression Ignition Engine. Fuel 2018, 212, 638–655. [Google Scholar] [CrossRef]
- Saini, P.; Gupta, C.; Shankar, R. Characterization of corn oil biodiesel and its application in diesel engine. Energy Sources, Part A Recover. Util. Environ. Eff. 2023, 45, 9498–9512. [Google Scholar] [CrossRef]
- Kiprono, J.; Rutto, H.; Seodigeng, T.; Enweremadu, C. Biodiesel Production Using Calcined Phosphate Rock as a Precursor of Calcium Oxide Heterogeneous Catalyst. Environ. Clim. Technol. 2022, 26, 968–981. [Google Scholar] [CrossRef]
- Alptekin, E.; Canakci, M.; Sanli, H. Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Manag. 2014, 34, 2146–2154. [Google Scholar] [CrossRef]
- Bandem Adnyana, I.W.; Suaniti, N.M. Ultimate analysis and acid value of biodiesel from waste oil and ethanol. IOP Conf. Ser. Mater. Sci. Eng. 2019, 508, 012097. [Google Scholar] [CrossRef]
- Oueda, N.; Bonzi-Coulibaly, Y.L.; Ouédraogo, I.W.K. Deactivation Processes, Regeneration Conditions and Reusability Performance of CaO or MgO Based Catalysts Used for Biodiesel Production—A Review. Mater. Sci. Appl. 2017, 8, 94–122. [Google Scholar] [CrossRef]
- Gholami, A.; Pourfayaz, F.; Rodygin, K. Reusable chemical catalysts for sustainable biodiesel production: The role of metallic elements. ChemBioEng Rev. 2025, 12, e202400033. [Google Scholar] [CrossRef]
- Verma, P.; Sharma, M.P. Review of process parameters for biodiesel production from different feedstocks. Renew. Sustain. Energy Rev. 2016, 62, 1063–1071. [Google Scholar] [CrossRef]
- Di Serio, M.; Tesser, R.; Casale, L.; D’Angelo, A.; Trifuoggi, M.; Santacesaria, E. Heterogeneous Catalysis in Biodiesel Production: The Influence of Leaching. Top. Catal. 2010, 53, 811–819. [Google Scholar] [CrossRef]
Factor | Symbol | Unit | Levels | ||
---|---|---|---|---|---|
−1 | 0 | 1 | |||
Catalyst concentration | A | wt% | 2 | 3.5 | 5 |
Methanol-to-oil molar ratio | B | - | 6:1 | 13:1 | 20:1 |
Time | C | mins | 60 | 150 | 240 |
WCO: Neem | D | - | 0:100 | 50:50 | 100:0 |
Wavenumber (cm−1) | Assignment | References |
---|---|---|
2920, 2852 | C–H stretching (CH2, CH3) | [48] |
1743 | C=O stretching (ester) | [48,52] |
1460 | C–H bending (CH2/CH3) | [49] |
1158, 1029 | C–O stretching (ester) | [49,50] |
723 | CH2 rocking | [51] |
Std | Run | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Response |
---|---|---|---|---|---|---|
A: Catalyst Concentration (wt%) | B: Methanol-to-Oil Molar Ratio | C: Time (Minutes) | D: WCO: Neem | Biodiesel Yield (%) | ||
10 | 1 | 5 | 6 | 60 | 100 | 89.8 |
6 | 2 | 5 | 6 | 240 | 0 | 90.64 |
14 | 3 | 5 | 6 | 240 | 100 | 87.61 |
25 | 4 | 3.5 | 13 | 150 | 50 | 86 |
12 | 5 | 5 | 20 | 60 | 100 | 90.43 |
22 | 6 | 3.5 | 13 | 240 | 50 | 90.98 |
4 | 7 | 5 | 20 | 60 | 0 | 86.35 |
21 | 8 | 3.5 | 13 | 60 | 50 | 91.23 |
17 | 9 | 2 | 13 | 150 | 50 | 90.07 |
24 | 10 | 3.5 | 13 | 150 | 100 | 91.77 |
2 | 11 | 5 | 6 | 60 | 0 | 90.49 |
26 | 12 | 3.5 | 13 | 150 | 50 | 89.02 |
1 | 13 | 2 | 6 | 60 | 0 | 89.95 |
9 | 14 | 2 | 6 | 60 | 100 | 93.71 |
7 | 15 | 2 | 20 | 240 | 0 | 86.05 |
30 | 16 | 3.5 | 13 | 150 | 50 | 86.73 |
3 | 17 | 2 | 20 | 60 | 0 | 80.42 |
27 | 18 | 3.5 | 13 | 150 | 50 | 88.76 |
18 | 19 | 5 | 13 | 150 | 50 | 92.71 |
28 | 20 | 3.5 | 13 | 150 | 50 | 87.83 |
13 | 21 | 2 | 6 | 240 | 100 | 94.1 |
5 | 22 | 2 | 6 | 240 | 0 | 90.61 |
20 | 23 | 3.5 | 20 | 150 | 50 | 87.14 |
19 | 24 | 3.5 | 6 | 150 | 50 | 90.48 |
29 | 25 | 3.5 | 13 | 150 | 50 | 86.38 |
8 | 26 | 5 | 20 | 240 | 0 | 83.07 |
11 | 27 | 2 | 20 | 60 | 100 | 89.24 |
16 | 28 | 5 | 20 | 240 | 100 | 82.63 |
15 | 29 | 2 | 20 | 240 | 100 | 93.36 |
23 | 30 | 3.5 | 13 | 150 | 0 | 87.13 |
Source | Sequential p-Value | Lack of Fit p-Value | R2 | Adjusted R2 | |
---|---|---|---|---|---|
Linear | 0.0040 | 0.0412 | 0.4471 | 0.3587 | |
2FI | 0.0127 | 0.1097 | 0.7462 | 0.6127 | Suggested |
Quadratic | 0.7244 | 0.0793 | 0.7770 | 0.5689 | |
Cubic | 0.5916 | 0.0261 | 0.8869 | 0.5314 | Aliased |
Std. Dev. | 2.03 | ||||
Mean | 88.82 | ||||
C.V. % | 2.28 | ||||
Adeq Precision | 10.9576 | ||||
Adjusted R2 | 0.6127 | ||||
Predicted R2 | 0.2257 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 229.46 | 10 | 22.95 | 5.59 | 0.0007 | significant |
A-Catalyst concentration | 10.55 | 1 | 10.55 | 2.57 | 0.1255 | |
B-Methanol-to-oil ratio | 83.20 | 1 | 83.20 | 20.26 | 0.0002 | |
C-Time | 0.3669 | 1 | 0.3669 | 0.0893 | 0.7683 | |
D-WCO/neem | 43.37 | 1 | 43.37 | 10.56 | 0.0042 | |
AB | 0.6561 | 1 | 0.6561 | 0.1598 | 0.6938 | |
AC | 35.76 | 1 | 35.76 | 8.71 | 0.0082 | |
AD | 34.40 | 1 | 34.40 | 8.38 | 0.0093 | |
BC | 0.0072 | 1 | 0.0072 | 0.0018 | 0.9670 | |
BD | 16.48 | 1 | 16.48 | 4.01 | 0.0596 | |
CD | 4.67 | 1 | 4.67 | 1.14 | 0.2998 | |
Residual | 78.03 | 19 | 4.11 | |||
Lack of Fit | 69.94 | 14 | 5.00 | 3.09 | 0.1097 | not significant |
Pure Error | 8.09 | 5 | 1.62 | |||
Cor Total | 307.49 | 29 |
Catalyst | Feedstock | Reaction Conditions | Biodiesel Yield | References |
---|---|---|---|---|
NaOH | Waste frying oil |
| 96% | [62] |
ZnO/BiFeO3 magnetic nanocatalyst | Canola oil |
| 95.43% | [63] |
CaO/CuFe2O4 nanoparticles | Chicken fat |
| 94.52% | [64] |
CoZnFe4O8 nanopowder | Waste cooking oil and neem oil |
| 94.10% | Present study |
MgO nanocatalyst | Goat fat |
| 93.12% | [65] |
TiO2 nanoparticles | Waste cooking/frying olive oil |
| 91.2% | [66] |
H2SO4 | Waste cooking oil |
| 90% | [67] |
Lipase | Waste cooking oil |
| 88% | [68] |
Property | Measured Value (This Study) | Range | References |
---|---|---|---|
HHV (MJ/kg) | 38.15 | >35 | [72] |
Density at 20 °C (g/cm3) | 0.9137 | 0.825–0.931 a | [73] |
Carbon (%) | 69.89 | ~60–80 | [74,77] |
Hydrogen (%) | 4.76 | ~11–12.6 | [74,77] |
Nitrogen (%) | 0.05 | 0.03 | [74] |
Sulfur (%) | 0.0063 | 0.05 | [72] |
Sample | Co (mg/L) | Fe (mg/L) | Zn (mg/L) |
---|---|---|---|
Neem oil | 0.1458 | 4.2028 | 0.1077 |
Biodiesel (Neem oil) | 0.5115 | 4.0455 | 1.0976 |
WCO | 0.2709 | 4.5458 | 0.0587 |
Biodiesel (WCO) | 0.4751 | 4.0323 | 0.2536 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asaad, S.M.; Inayat, A.; Jamil, F.; Hellier, P. Process Optimization of Biodiesel Production from Waste Cooking Oil and Neem Oil Blend. Energies 2025, 18, 4944. https://doi.org/10.3390/en18184944
Asaad SM, Inayat A, Jamil F, Hellier P. Process Optimization of Biodiesel Production from Waste Cooking Oil and Neem Oil Blend. Energies. 2025; 18(18):4944. https://doi.org/10.3390/en18184944
Chicago/Turabian StyleAsaad, Sara Maen, Abrar Inayat, Farrukh Jamil, and Paul Hellier. 2025. "Process Optimization of Biodiesel Production from Waste Cooking Oil and Neem Oil Blend" Energies 18, no. 18: 4944. https://doi.org/10.3390/en18184944
APA StyleAsaad, S. M., Inayat, A., Jamil, F., & Hellier, P. (2025). Process Optimization of Biodiesel Production from Waste Cooking Oil and Neem Oil Blend. Energies, 18(18), 4944. https://doi.org/10.3390/en18184944