Multi-Objective Optimal Design of an Axial Flux Permanent Magnet Motor for In-Wheel Drive Considering Torque Ripple Reduction
Abstract
1. Introduction
2. In-Wheel Motor Design
2.1. In-Wheel System
2.2. Initial Model of AFPM Motor
2.3. Optimal Design Process
2.4. Design Variable Optimization Search
3. Analytical Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thangavel, S.; Mohanraj, D.; Girijaprasanna, T.; Raju, S.; Dhanamjayulu, C.; Muyeen, S.M. A Comprehensive Review on Electric Vehicle: Battery Management System, Charging Station, Traction Motors. IEEE Access 2023, 11, 20994–21019. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, M.; Li, M.; Zhang, X. Design and Analysis of a Wheel−Leg Hybrid Robot with Passive Transformable Wheels. Symmetry 2023, 15, 800. [Google Scholar] [CrossRef]
- Song, Z.; Liu, C.; Chen, Y.; Huang, R. Air-Gap Permeance and Reluctance Network Models for Analyzing Vibrational Exciting Force of In-Wheel PMSM. IEEE Trans. Veh. Technol. 2022, 71, 7122–7133. [Google Scholar] [CrossRef]
- Zhao, Z.; Taghavifar, H.; Du, H.; Qin, Y.; Dong, M.; Gu, L. In-Wheel Motor Vibration Control for Distributed-Driven Electric Vehicles: A Review. IEEE Trans. Transp. Electrif. 2021, 7, 2864–2880. [Google Scholar] [CrossRef]
- Tak, B.-O.; Ro, J. Analysis and Design of an Axial Flux Permanent Magnet Motor for in-Wheel System Using a Novel Analytical Method Combined With a Numerical Method. IEEE Access 2020, 8, 203994–204011. [Google Scholar] [CrossRef]
- Cabuk, A.S.; Ustun, O. In Search of the Proper Dimensions of the Optimum In-Wheel Permanent Magnet Synchronous Motor Design. Energies 2024, 17, 1106. [Google Scholar] [CrossRef]
- Cetinceviz, Y. Optimal Design, Electromagnetic–Thermal Analysis and Application of In-Wheel Permanent Magnet BLDC Motor for E-Mobility. Appl. Sci. 2025, 15, 3258. [Google Scholar] [CrossRef]
- Zhang, H.S.; Yang, M.L.; Zhang, Y.; Tuo, J.Y.; Luo, S.; Xu, J. Analytical Calculation of Surface-Inset PM In-Wheel Motors and Reduction of Torque Ripple. IEEE Trans. Magn. 2021, 57, 1–11. [Google Scholar] [CrossRef]
- Wang, Q. Performance Evaluation of Outer Rotor Permanent Magnet Direct Drive In-Wheel Motor Based on Air-Gap Field Modulation Effect. World Electr. Veh. J. 2025, 16, 247. [Google Scholar] [CrossRef]
- Liu, T.; Quan, L.; Fan, D.; Zhu, X.; Chen, W.; Chen, Y. Low Vibration Research and Design of in-Wheel V-Shaped PM Motor From the Perspective of Winding Magnetomotive Force. IEEE Trans. Magn. 2024, 60, 8202107. [Google Scholar] [CrossRef]
- Shao, L.; Navaratne, R.; Popescu, M.; Liu, G. Design and Construction of Axial-Flux Permanent Magnet Motors for Electric Propulsion Applications—A Review. IEEE Access 2021, 9, 158998–159017. [Google Scholar] [CrossRef]
- Credo, A.; Tursini, M.; Villani, M.; Di Lodovico, C.; Orlando, M.; Frattari, F. Axial Flux PM In-Wheel Motor for Electric Vehicles: 3D Multiphysics Analysis. Energies 2021, 14, 2107. [Google Scholar] [CrossRef]
- Shi, Z.; Sun, X.; Yang, Z.; Cai, Y.; Lei, G.; Zhu, J.; Lee, C.H.T. Design Optimization of a Spoke-Type Axial-Flux PM Machine for In-Wheel Drive Operation. IEEE Trans. Transp. Electrif. 2023, 10, 3770–3781. [Google Scholar] [CrossRef]
- Hou, J.; Geng, W.; Li, Q.; Zhang, Z. 3-D Equivalent Magnetic Network Modeling and FEA Verification of a Novel Axial-Flux Hybrid-Excitation In-wheel Motor. IEEE Trans. Magn. 2021, 57, 8106912. [Google Scholar] [CrossRef]
- Chang, J.; Fan, Y.; Wu, J.; Zhu, B. A Yokeless and Segmented Armature Axial Flux Machine With Novel Cooling System for In-Wheel Traction Applications. IEEE Trans. Ind. Electron. 2021, 68, 4131–4140. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Liang, Y.; Ai, Q.; Dou, H. Multiphysics Analysis of an Axial-Flux In-Wheel Motor with an Amorphous Alloy Stator. IEEE Access 2020, 8, 27414–27425. [Google Scholar] [CrossRef]
- Gadiyar, N.; Van Verdeghem, J.; Severson, E.L. A Review of Axial Flux Permanent Magnet Machine Technology. IEEE Trans. Ind. Appl. 2023, 59, 3920–3933. [Google Scholar] [CrossRef]
- Islam, Z.; Khan, F.; Ullah, B.; Milyani, A.H.; Ahmed Azhari, A. Design and Analysis of Three Phase Axial Flux Permanent Magnet Machine with Different PM Shapes for Electric Vehicles. Energies 2022, 15, 7533. [Google Scholar] [CrossRef]
- Srikhumphun, P.; Seangwong, P.; Jongudomkarn, J.; Siritaratiwat, A.; Fernando, N.; Somkun, S.; Khunkitti, P. Design Optimization and Comparative Study of Skewed Halbach-Array Magnets TORUS Axial-Flux Permanent Magnet Motors for Electric Vehicles. IEEE Access 2024, 12, 99912–99920. [Google Scholar] [CrossRef]
- Choi, D.-H.; Han, H.-S.; Hong, M.-K.; Jung, D.-H.; Kim, W.-H. Design for Loss Reduction in a Compact AFPM Electric Water Pump with a PCB Motor. Energies 2025, 18, 2538. [Google Scholar] [CrossRef]
- Ouldhamrane, H.; Charpentier, J.-F.; Khoucha, F.; Zaoui, A.; Achour, Y.; Benbouzid, M. Optimal Design of Axial Flux Permanent Magnet Motors for Ship RIM-Driven Thruster. Machines 2022, 10, 932. [Google Scholar] [CrossRef]
- Huang, C.; Kou, B.; Zhao, X.; Niu, X.; Zhang, L. Multi-Objective Optimization Design of a Stator Coreless Multidisc Axial Flux Permanent Magnet Motor. Energies 2022, 15, 4810. [Google Scholar] [CrossRef]
- Ahn, J.-M.; Lim, D.-K.; Koo, M.-M. Evolved Motor Design Process to Reduce the Design Expense of Axial Flux Permanent Magnet Motor. IEEE Access 2025, 13, 131334–131346. [Google Scholar] [CrossRef]
- Yang, S.-H.; Pyo, H.-J.; Jung, D.-H.; Kim, W.-H. A Study on Optimal Design Process of Dual Rotor Axial-Flux Permanent Magnet Synchronous Motors. Machines 2023, 11, 445. [Google Scholar] [CrossRef]
- Deepak, K.; Frikha, M.A.; Benômar, Y.; El Baghdadi, M.; Hegazy, O. In-Wheel Motor Drive Systems for Electric Vehicles: State of the Art, Challenges, and Future Trends. Energies 2023, 16, 3121. [Google Scholar] [CrossRef]
- Shin, K.; Ko, K.; Hwang, J. The Development and Characteristics of an In-Wheel Assembly Using a Variable Speed-Reducing Device. World Electr. Veh. J. 2025, 16, 92. [Google Scholar] [CrossRef]
- Xu, X.; Wang, M.; Xiao, P.; Ding, J.; Zhang, X. In-Wheel Motor Control System for Four-Wheel Drive Electric Vehicle Based on CR-GWO-PID Control. Sensors 2023, 23, 8311. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Wang, S.; Jiang, L.; Xie, Y.; Zheng, S.; Wu, H. Robust Lateral Stabilization Control of In-Wheel-Motor-Driven Mobile Robots via Active Disturbance Suppression Approach. Sensors 2020, 20, 5238. [Google Scholar] [CrossRef]
- Qu, J.; Zhang, Z.; Li, H.; Li, M.; Xi, X.; Zhang, R. Design and Experiments of a Two-Stage Fuzzy Controller for the Off-Center Steer-by-Wire System of an Agricultural Mobile Robot. Machines 2023, 11, 314. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R.; Zhao, Z.; Liang, K.; Xu, W.; Zhao, P. Temperature Field Analysis and Cooling Structure Optimization for Integrated Permanent Magnet In-Wheel Motor Based on Electromagnetic-Thermal Coupling. Energies 2023, 16, 1527. [Google Scholar] [CrossRef]
- Elsherbiny, H.; Szamel, L.; Ahmed, M.K.; Elwany, M.A. High Accuracy Modeling of Permanent Magnet Synchronous Motors Using Finite Element Analysis. Mathematics 2022, 10, 3880. [Google Scholar] [CrossRef]
- Seo, H.-S.; Park, C.-B.; Kim, S.-H.; Lei, G.; Guo, Y.; Lee, H.-W. Utilizing MicroGenetic Algorithm for Optimal Design of Permanent-Magnet-Assisted WFSM for Traction Machines. Appl. Sci. 2024, 14, 5150. [Google Scholar] [CrossRef]
- Kim, H.; Baek, S. Optimal shape design to improve torque characteristics of interior permanent magnet synchronous motor for small electric vehicles. Microsyst. Technol. 2025, 31, 1203–1217. [Google Scholar] [CrossRef]
- Park, H.; Jung, S. Design and Automated Optimization of an Internal Turret Mooring System in the Frequency and Time Domain. J. Mar. Sci. Eng. 2021, 9, 581. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
Output power | 5 | kW |
Input DC voltage | 96 | V |
Input current | 30.2 | Arms |
Output rated speed | 1000 | rpm |
Output torque | 47.75 | Nm |
Slot/pole | 18/24 | - |
Outer diameter | 280 | mm |
Total height | 104 | mm |
Coil turn | 45 | - |
Current density | 5.815 | A/mm2 |
Magnet material | N35UH | |
Core material | Soft Magnetic Composite |
Parameter | Initial | Lower | Upper | Unit |
---|---|---|---|---|
X1 | 126 | 120 | 180 | degree |
X2 | 84 | 80 | 90 | mm |
X3 | 9.5 | 5 | 10 | mm |
X4 | 62 | 58 | 68 | mm |
X5 | 13 | 13 | 17 | mm |
X6 | 3 | 2 | 4 | mm |
X7 | 2 | 0 | 5 | mm |
X8 | 0 | −60 | 60 | degree |
X9 | 0 | −60 | 60 | degree |
Parameter | Model | RMSE |
---|---|---|
Average torque | PR | 1.072 |
KRG | 1.474 | |
EDT | 1.546 | |
RBF | 1.772 | |
MLP | 2.164 | |
Torque ripple | KRG | 0.844 |
PR | 0.944 | |
MLP | 1.025 | |
RBF | 1.064 | |
EDT | 1.135 | |
Cogging torque (peak-to-peak) | KRG | 0.847 |
EDT | 0.863 | |
PR | 1.048 | |
RBF | 1.089 | |
MLP | 1.128 |
Method | Iterations | Time per Iteration [Hr] | Total Time (Estimated) [Hr] | Relative Computation Cost [%] |
---|---|---|---|---|
Full 3D FEM analysis | 500 | 0.5 | 250 | 100% |
Metamodel-based optimization | 500 | 0.3 | 150 | 60% |
Parameter | Value | Unit |
---|---|---|
X1P | 136.2 | degree |
X2 | 85.8 | mm |
X3 | 6.3 | mm |
X4 | 65 | mm |
X5 | 14.8 | mm |
X6 | 2.6 | mm |
X7 | 1.9 | mm |
X8 | 2.6 | degree |
X9 | 23.2 | degree |
Average torque | 47.79 | Nm |
Torque ripple | 2.16 | Nm |
Cogging torque (peak-to-peak) | 1.97 | Nm |
Parameter | Initial | Metamodel | Optimal | Unit |
---|---|---|---|---|
Average torque | 47.75 | 47.79 | 48.85 | Nm |
Torque ripple | 4.88 | 2.16 | 2.83 | Nm |
Cogging torque (peak-to-peak) | 4.56 | 1.97 | 2.61 | Nm |
Parameter | Initial | Optimal | Unit |
---|---|---|---|
Iron loss | 193.37 | 204.9 | W |
Copper loss | 44.41 | 34.25 | W |
Output power | 5 | 5.12 | kW |
Efficiency | 95.46 | 95.53 | % |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-J.; Baek, S.-W. Multi-Objective Optimal Design of an Axial Flux Permanent Magnet Motor for In-Wheel Drive Considering Torque Ripple Reduction. Energies 2025, 18, 4936. https://doi.org/10.3390/en18184936
Kim H-J, Baek S-W. Multi-Objective Optimal Design of an Axial Flux Permanent Magnet Motor for In-Wheel Drive Considering Torque Ripple Reduction. Energies. 2025; 18(18):4936. https://doi.org/10.3390/en18184936
Chicago/Turabian StyleKim, Hyeon-Jun, and Soo-Whang Baek. 2025. "Multi-Objective Optimal Design of an Axial Flux Permanent Magnet Motor for In-Wheel Drive Considering Torque Ripple Reduction" Energies 18, no. 18: 4936. https://doi.org/10.3390/en18184936
APA StyleKim, H.-J., & Baek, S.-W. (2025). Multi-Objective Optimal Design of an Axial Flux Permanent Magnet Motor for In-Wheel Drive Considering Torque Ripple Reduction. Energies, 18(18), 4936. https://doi.org/10.3390/en18184936