Estimation of the Power Loss of a Soiled Photovoltaic Panel Using Image Analysis Techniques
Abstract
1. Introduction
2. Materials and Methods
2.1. Dust Simulator
2.2. Instrumentation Used for Data Acquisition
2.3. Equipment Setup in Experimental Tests
2.4. Methodology for Systematic Image Capture
- Preparation of the soiling system: The particulate material is introduced into the dust simulator container.
- Isolation of the test environment: The enclosure housing the solar panel is sealed to prevent interference from external air currents.
- Activation of the dispersion system: The fans are turned on to generate controlled movement of the dust within the workspace.
- Distribution of the particulate material: The sieve is activated to disperse the dust in a controlled manner, where small particles are displaced by the airflow, which impacts the inclined surface, generating a cloud of suspended particles.
- Settling time: The system is run for 30 s to ensure homogeneous coverage of the particulate matter.
- Dust settling: The fans are turned off and the system waits another 30 s to allow the suspended particles to settle on the panel surface completely.
- Exposure to solar radiation: The enclosure’s top cover is removed, allowing direct sunlight to hit the panel.
- Image capture: A photograph of the panel is captured using the camera with a resolution of 1600 × 1200 pixels, ensuring standardized lighting conditions.
- Measurement: The instantaneous current and voltage are recorded, along with the radiation in which the image is captured.
2.5. Dataset Construction
3. Empirical Model
3.1. Estimation Based on Image Analysis
3.2. Data Analysis
4. Results
4.1. Accuracy Assessment of Datasets—Images of the Same Dataset
4.2. Model Testing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LA | Lambert |
LP | Llanos de Potroso |
LM | Lo Miranda |
VAL | Validation |
PV | Photovoltaic |
Appendix A
Appendix B
Ps30 Enertik | SFM-29.8 W | |
---|---|---|
Max Power (PMax) | 30 W | 29.8 W |
Voltage at PMax (Vmp) | 18.54 V | 18.1 V |
Current at PMax (Imp) | 1.62 A | 1.64 A |
Open-Circuit Voltage (Voc) | 22.68 V | 21.6 V |
(Short-Circuit Current (Icc)) | 1.76 A | 1.8 A |
References
- Alshareef, M. A Comprehensive Review of the Soiling Effects on PV Module Performance. IEEE Access 2023, 11, 134623–134651. [Google Scholar] [CrossRef]
- Borah, P.; Micheli, L.; Sarmah, N. Analysis of Soiling Loss in Photovoltaic Modules: A Review of the Impact of Atmospheric Parameters, Soil Properties, and Mitigation Approaches. Sustainability 2023, 15, 16669. [Google Scholar] [CrossRef]
- Jaszczur, M.; Teneta, J.; Styszko, K.; Hassan, Q.; Burzyńska, P.; Marcinek, E.; Łopian, N. The field experiments and model of the natural dust deposition effects on photovoltaic module efficiency. Environ. Sci. Pollut. Res. 2019, 26, 8402–8417. [Google Scholar] [CrossRef] [PubMed]
- Ilse, K.; Figgis, B.; Naumann, V.; Hagendorf, C.; Bagdahn, J. Fundamentals of soiling processes on photovoltaic modules. Renew. Sustain. Energy Rev. 2018, 98, 239–254. [Google Scholar] [CrossRef]
- Conceição, R.; González-Aguilar, J.; Alami Merrouni, A.; Romero, M. Soiling effect in solar energy conversion systems: A review. Renew. Sust. Energ. Rev. 2022, 162, 112434. [Google Scholar] [CrossRef]
- Gholami, A.; Khazaee, I.; Eslami, S.; Zandi, M.; Akrami, E. Experimental investigation of dust deposition effects on photo-voltaic output performance. Sol. Energy 2018, 159, 346–352. [Google Scholar]
- Gupta, V.; Sharma, M.; Kumar Pachauri, R.; Dinesh Babu, R. Comprehensive review on effect of dust on solar photovoltaic system and mitigation techniques. Sol. Energy 2019, 191, 596–622. [Google Scholar] [CrossRef]
- Khodakaram-Tafti, A.; Yaghoubi, M. Experimental study on the effect of dust deposition on photovoltaic performance at various tilts in semi-arid environment. Sustain. Energy Technol. Assessments 2020, 42, 100822. [Google Scholar]
- Soiling losses–Impact on the Performance of Photovoltaic Power Plants; Jahn, U., Ed.; Report IEA-PVPS T13-21:2022; The International Energy Agency (IEA): Paris, France, 2022. [Google Scholar]
- Jamil, W.; Rahman, H.; Shaari, S.; Mat Desa, K. Modeling of Soiling Derating Factor in Determining Photovoltaic Outputs. IEEE J. Photovolt. 2020, 10, 1417–1423. [Google Scholar] [CrossRef]
- Cordero, R.R.; Damiani, A.; Laroze, D.; MacDonell, S.; Jorquera, J.; Sepúlveda, E.; Feron, S.; Llanillo, P.; Labbe, F.; Carrasco, J.; et al. Effects of soiling on photovoltaic (PV) modules in the Atacama Desert. Sci. Rep. 2018, 8, 13943. [Google Scholar] [CrossRef] [PubMed]
- Cristaldi, L.; Faifer, M.; Rossi, M.; Catelani, M.; Ciani, L.; Dovere, E.; Jerace, S. Economical evaluation of PV system losses due to the dust and pollution. In Proceedings of the 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Graz, Austria, 13–16 May 2012; pp. 614–618. [Google Scholar]
- Tasmim, T.; Miran - Ul - Hasan Sajoy, S.M.; Sajjad, R.; Khan, M. Automatic cleaning suggestion adapting to real-time soiling status of solar farms. Sol. Energy 2024, 282, 112940. [Google Scholar] [CrossRef]
- Cao, Y.; Pang, D.; Yan, Y.; Jiang, Y.; Tian, C. A photovoltaic surface defect detection method for building based on deep learning. J. Build. Eng. 2023, 70, 106375. [Google Scholar] [CrossRef]
- Cruz-Rojas, T.; Franco, J.; Hernandez-Escobedo, Q.; Ruiz-Robles, D.; Juarez-Lopez, J. A novel comparison of image semantic segmentation techniques for detecting dust in photovoltaic panels using machine learning and deep learning. Renew. Energy 2023, 217, 119126. [Google Scholar] [CrossRef]
- Fang, M.; Qian, W.; Qian, T.; Bao, Q.; Zhang, H.; Qiu, X. DGImNet: A deep learning model for photovoltaic soiling loss estimation. Appl. Energy 2024, 376, 124335. [Google Scholar] [CrossRef]
- Evstatiev, B.I.; Trifonov, D.T.; Gabrovska-Evstatieva, K.G.; Valov, N.P.; Mihailov, N.P. PV Module Soiling Detection Using Visible Spectrum Imaging and Machine Learning. Energies 2024, 17, 5238. [Google Scholar] [CrossRef]
- Fan, S.; Wang, X.; Wang, Z.; Sun, B.; Zhang, Z.; Cao, S.; Zhao, B.; Wang, Y. A novel image enhancement algorithm to determine the dust level on photovoltaic (PV) panels. Renew. Energy 2022, 201, 172–180. [Google Scholar] [CrossRef]
- Funes, G.; Peters, E.; Delpiano, J. Using Image Analysis Techniques for Dust Detection Over Photovoltaic Panels. ASME. J. Sol. Energy Eng. 2025, 147, 041006. [Google Scholar] [CrossRef]
- Muñoz-García, M.A.; Fouris, T.; Pilat, E. Analysis of the soiling effect under different conditions on different photovoltaic glasses and cells using an indoor soiling chamber. Renew. Energy 2021, 163, 1560–1568. [Google Scholar] [CrossRef]
- Hussain, n.; Shahzad, N.; Yousaf, T.; Waqas, A.; Hussain Javed, A.; Khan, S.; Ali, M.; Liaquat, R. Designing of homemade soiling station to explore soiling loss effects on PV modules. Sol. Energy 2021, 225, 624–633. [Google Scholar] [CrossRef]
- Fan, S.; Wang, Y.; Cao, S.; Sun, T.; Liu, P. A novel method for analyzing the effect of dust accumulation on energy efficiency loss in photovoltaic (PV) system. Energy 2021, 234, 121112. [Google Scholar] [CrossRef]
- Ali, M.L.; Zhang, Z. The YOLO Framework: A Comprehensive Review of Evolution, Applications, and Benchmarks in Object Detection. Computers 2024, 13, 336. [Google Scholar] [CrossRef]
- Cheng, S.; Chen, L.; Yang, K. DGSS-YOLOv8s: A Real-Time Model for Small and Complex Object Detection in Autonomous Vehicles. Algorithms 2025, 18, 358. [Google Scholar] [CrossRef]
- Francois Brunel. FONDEF-Segmentación Celdas. 2024. Available online: https://app.roboflow.com/fondefpaneles/fondef-segmentacion-celdas/1 (accessed on 5 May 2025).
LA | LM | LP | |
---|---|---|---|
Self-estimation (%) | 1.14 | 3.05 | 1.17 |
Cross-estimation (%) | 3.38 | 9.89 | 3.46 |
Cross-estimation (%) | 5.08 | 2.32 | 2.37 |
Soiling Level | Image | (W/) | [A] | [V] | [W] |
---|---|---|---|---|---|
1 | 732 | 1.392 | 19.85 | 21.497 | |
2 | 770 | 1.357 | 19.69 | 19.760 | |
3 | 778 | 1.350 | 19.80 | 19.570 | |
4 | 782 | 1.380 | 19.57 | 19.667 |
1 | 2 | 3 | 4 | Average | |
---|---|---|---|---|---|
LA (%) | 0.51 | 9.57 | 9.81 | 9.25 | 7.28 |
LM (%) | 0.25 | 10.84 | 8.88 | 8.23 | 7.05 |
LP (%) | 2.53 | 12.24 | 12.12 | 11.51 | 9.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunel, F.; López, R.; García, F.; Peters, E.; Funes, G. Estimation of the Power Loss of a Soiled Photovoltaic Panel Using Image Analysis Techniques. Energies 2025, 18, 4889. https://doi.org/10.3390/en18184889
Brunel F, López R, García F, Peters E, Funes G. Estimation of the Power Loss of a Soiled Photovoltaic Panel Using Image Analysis Techniques. Energies. 2025; 18(18):4889. https://doi.org/10.3390/en18184889
Chicago/Turabian StyleBrunel, Francois, Ricardo López, Florencio García, Eduardo Peters, and Gustavo Funes. 2025. "Estimation of the Power Loss of a Soiled Photovoltaic Panel Using Image Analysis Techniques" Energies 18, no. 18: 4889. https://doi.org/10.3390/en18184889
APA StyleBrunel, F., López, R., García, F., Peters, E., & Funes, G. (2025). Estimation of the Power Loss of a Soiled Photovoltaic Panel Using Image Analysis Techniques. Energies, 18(18), 4889. https://doi.org/10.3390/en18184889