Practical Verification of the Approximation Method of the Influence of Guillotine and Laser Cutting and Core Dimensions on Losses and Magnetization of Induction Motor Cores
Abstract
1. Introduction
2. Approximation of the Magnetization and Loss Characteristics of the Electrotechnical Sheet Metal
2.1. Magnetization Characteristics
2.2. Approximation of Loss Characteristics
3. Method of Calculation of Induction Motor Core Losses
4. Operating Parameters of Selected Induction Motors Made of Different Types of Electrotechnical Sheet Metal and Cutting Technology
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bramerdorfer, G.; Tapia, J.A.; Pyrhönen, J.J.; Cavagnino, A. Modern Electrical Machine Design Optimization: Techniques, Trends, and Best Practices. IEEE Trans. Ind. Electron. 2018, 65, 7672–7684. [Google Scholar] [CrossRef]
- Bozorth, R.M. Ferromagnetism; Wiley-IEEE Press: Piscataway, NJ, USA, 1993. [Google Scholar]
- Bali, M.; Muetze, A. The Degradation Depth of Non-grain Oriented Electrical Steel Sheets of Electric Machines Due to Mechanical and Laser Cutting: A State-of-the-Art Review. IEEE Trans. Ind. Appl. 2019, 55, 366–375. [Google Scholar] [CrossRef]
- Bali, M.; Muetze, A. Modeling the effect of cutting on the magnetic properties of electrical steel sheets. IEEE Trans. Ind. Electron. 2017, 64, 2547–2556. [Google Scholar] [CrossRef]
- Mahmouditabar, F.; Baker, N. A Review on the Effect of Electrical Steel Manufacturing Processes on the Performance of Electric Machines. Energies 2023, 16, 7954. [Google Scholar] [CrossRef]
- Dems, M.; Gmyrek, Z.; Komeza, K. The Influence of Cutting Technology on Magnetic Properties of Non-Oriented Electrical Steel—Review State of the Art. Energies 2023, 16, 4299. [Google Scholar] [CrossRef]
- Senda, K.; Ishida, M.; Nakasu, Y.; Yagi, M. Influence of shearing process on domain structure and magnetic properties of non-oriented electrical steel. J. Magn. Magn. Mater. 2006, 304, e513–e515. [Google Scholar] [CrossRef]
- Bali, M.; Muetze, A. The degradation depth of electrical steel sheets due to mechanical and laser cutting. In Proceedings of the 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Tinos, Greece, 29 August–1 September 2017; pp. 544–549. [Google Scholar] [CrossRef]
- Manescu Paltanea, V.; Paltanea, G.; Gavrila, H.; Nemoianu, I.V. Estimation of the Damaged Zone Width due to Mechanical Cutting on High Quality Non-Oriented Steels. In Proceedings of the 2018 International Symposium on Fundamentals of Electrical Engineering (ISFEE), Bucharest, Romania, 1–3 November 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Lewis, N.; Anderson, P.; Hall, J.; Gao, Y. Power Loss Models in Punched Non-Oriented Electrical Steel Rings. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Bali, M.; Gersem, H.D.; Muetze, A. Determination of Original Nondegraded and Fully Degraded Magnetic Properties of Material Subjected to Mechanical Cutting. IEEE Trans. Ind. Appl. 2016, 52, 2297–2305. [Google Scholar] [CrossRef][Green Version]
- Bali, M.; Gersem, H.D.; Muetze, A. Determination of Original Nondegraded and Fully Degraded Magnetic Characteristics of Material Subjected to Laser Cutting. IEEE Trans. Ind. Appl. 2017, 53, 4242–4251. [Google Scholar] [CrossRef]
- Araujo, E.G.; Schneider, J.; Verbeken, K.; Pasquarella, G.; Houbaert, Y. Dimensional effects on magnetic properties of Fe–Si steels due to laser and mechanical cutting. IEEE Trans. Magn. 2010, 46, 213–216. [Google Scholar] [CrossRef]
- Saleem, A.; Alatawneh, N.; Rahman, T.; Lowther, D.A.; Chromik, R.R. Effects of laser cutting on microstructure and magnetic properties of non-orientation electrical steel laminations. IEEE Trans. Magn. 2020, 56, 1–9. [Google Scholar] [CrossRef]
- Sundaria, R.; Nair, D.G.; Lehikoinen, A.; Arkkio, A.; Belahcen, A. Effect of Laser Cutting on Core Losses in Electrical Machines—Measurements and Modeling. IEEE Trans. Ind. Electron. 2020, 67, 7354–7363. [Google Scholar] [CrossRef]
- Dems, M.; Komeza, K.; Szulakowski, J. Practical Approximation of Sheet Losses Taking into Account the Guillotine and Laser Cutting Effect. Energies 2023, 16, 2831. [Google Scholar] [CrossRef]
- Naumoski, H.; Riedmüller, B.; Minkow, A.; Herr, U. Investigation of the influence of different cutting procedures on the global and local magnetic properties of non-oriented electrical steel. J. Magn. Magn. Mater. 2015, 392, 126–133. [Google Scholar] [CrossRef]
- Dems, M.; Komeza, K. The Influence of Electrical Sheet on the Core Losses at No-Load and Full-Load of Small Power Induction Motors. IEEE Trans. Ind. Electron. 2017, 64, 2433–2442. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, T.; Zhao, H.; Wu, T. An Analytical Iron Loss Calculation Model of Inverter-Fed Induction Motors Considering Supply and Slot Harmonics. IEEE Trans. Ind. Electron. 2019, 66, 9194–9204. [Google Scholar] [CrossRef]
- Liu, H.C.; Lee, J. Optimum Design of an IE4 Line-Start Synchronous Reluctance Motor Considering Manufacturing Process Loss Effect. IEEE Trans. Ind. Electron. 2018, 65, 3104–3114. [Google Scholar] [CrossRef]
- Hofmann, M.J.; Herzog, H.-G. Modeling magnetic power losses in electrical steel sheets in respect of arbitrary alternating induction waveforms: Theoretical considerations and model synthesis. IEEE Trans. Magn. 2015, 51, 1–11. [Google Scholar] [CrossRef]
- Gmyrek, Z. Impact of a Punching Process on the SyRM Iron Loss: SPICE Model as an Effective Tool for Iron Loss Modeling. Energies 2021, 14, 7185. [Google Scholar] [CrossRef]
- Dems, M.; Komeza, K.; Gmyrek, Z.; Szulakowski, J. The Effect of Sample’s Dimension and Cutting Technology on Magnetization and Specific Iron Losses of FeSi Laminations. Energies 2022, 15, 2086. [Google Scholar] [CrossRef]
- Gmyrek, Z.; Kucharska, B. Investigation of local properties of the Fe-Si alloy subjected to mechanical and laser cutting. Arch. Electr. Eng. 2023, 72, 697–713. [Google Scholar] [CrossRef]
- Gmyrek, Z.; Cavagnino, A.; Ferraris, L. Estimation of the magnetic properties of the damaged area resulting from the punching process: Experimental research and fem modeling. IEEE Trans. Ind. Appl. 2013, 49, 2069–2077. [Google Scholar] [CrossRef]
- Biasion, M.; Peixoto, I.S.P.; Fernandes, J.F.P.; Vaschetto, S.; Bramerdorfer, G.; Cavagnino, A. Iron Loss Characterization in Laminated Cores at Room and Liquid Nitrogen Temperature. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Sliwinski, T. The Methods of the Induction Motors Calculation; PWN: Warszawa, Poland, 2008; p. 324. (In Polish) [Google Scholar]
x < 10 mm | Sample Width-x 10 mm ≤ x < 30 mm | x ≥ 30 mm | |
---|---|---|---|
a1 | 0.00530579x2 − 0.10468422x + 0.66216722 | 0.00020397x2 − 0.00999001x + 0.22456257 | −0.00022896x + 0.11500792 |
a9 | 0.00305011x2 − 0.09882070x + 0.74171217 | 0.00054375x2 − 0.02565346x + 0.25082739 | 0.00034587x − 0.04197109 |
a11 | −0.00103136x2 + 0.05376345x − 0.44505727 | −0.00034513x2 + 0.0157832x − 0.12466469 | −0.00060647x + 0.05851273 |
a13 | 0.00002318x2 − 0.00708952x + 0.07130214 | 0.00005455x2−0.00241898x+ 0.01955544 | 0.00015443x − 0.00899416 |
x < 10 mm | Sample Width-x 10 mm ≤ x < 30 mm | x ≥ 30 mm | |
---|---|---|---|
a1 | 0.00456309x2 − 0.13203596x + 1.29456589 | 0.00075238x2 − 0.04232056x + 0.77703872 | −0.00192148x + 0.24180396 |
a9 | 0.01293691x2 − 0.21691801x + 0.88129844 | 0.00003138x2 + 0.00069892x − 0.00836756 | −0.00058466x + 0.05819845 |
a11 | −0.00952104x2 + 0.16197559x − 0.66266359 | 0.00002706x2 − 0.00332134x + 0.03946426 | 0.00043548x − 0.04844816 |
a13 | 0.00171481x2 − 0.02959676x + 0.12739373 | 0.00001410x2 + 0.00105769x − 0.00693274 | −0.00007705x + 0.01436672 |
x < 10 mm | Sample Width-x 10 mm ≤ x < 30 mm | x ≥ 30 mm | |
---|---|---|---|
a1 | 0.00331095x2 − 0.07264214x + 0.51856131 | 0.00009547x2 − 0.00533485x + 0.16473088 | −0.00014719x + 0.09443036 |
a9 | 0.00864965x2 − 0.17804632x + 0.93836887 | 0.00024135x2 − 0.01184702x + 0.11433901 | 0.00055313x − 0.04111274 |
a11 | −0.00685244x2 + 0.13726040x − 0.65793720 | −0.00014073x2 + 0.00601744x − 0.01473377 | −0.00081288x + 0.06394361 |
a13 | 0.00128762x2 − 0.02533188x + 0.11865067 | 0.00002036x2 − 0.00072455x − 0.00102191 | 0.00024061x − 0.01171574 |
x < 10 mm | Sample Width-x 10 mm ≤ x < 30 mm | x ≥ 30mm | |
---|---|---|---|
a1 | 0.01016331x2 − 0.22758058x + 1.63954634 | 0.00067168x2 − 0.03644296x + 0.67684692 | −0.00226978x + 0.25556552 |
a9 | 0.01231831x2 − 0.21019253x + 0.83897053 | −0.00016388x2 + 0.00701705x − 0.09634859 | −0.00005479x − 0.03493911 |
a11 | −0.00976185x2 + 0.16618097x − 0.65662005 | 0.00003194x2 − 0.00119065x + 0.04802653 | 0.00010525x + 0.04086413 |
a13 | 0.00188548x2 − 0.03194502x + 0.13110823 | 0.00000742x2 − 0.00036562x + 0.00092435 | −0.00002596x − 0.00322681 |
Data | M 1 | M 2 | M 3 | M 4 |
---|---|---|---|---|
Rated power [kW] | 45 | 300 | 1.4 | 0.20 |
Rated voltage [V] | 480 | 1140 | 230 | 230 |
Frequency [Hz] | 50 | 50 | 350 | 300 |
Rated current [A] | 71 | 180 | 5.82 | 1.56 |
Number of poles | 4 | 4 | 4 | 2 |
Rated power factor | 0.83 | 0.85 | 0.65 | 0.69 |
Rated efficiency [%] | 92.0 | 94.5 | 73.0 | 68.5 |
Outer diameter of stator core [mm] | 327 | 440 | 118 | 87.4 |
Shaft axis height [mm] | 200 | 250 | 71 | 56 |
Length of stator core [mm] | 234 | 550 | 120 | 32 |
Number of stator slots | 48 | 48 | 36 | 18 |
Number of rotor slots | 40 | 40 | 32 | 11 |
Number of series turns/phase | 62 | 46 | 114 | 96 |
Average stator tooth width [mm] | 7.07 | 9.15 | 3.25 | 3.86 |
Stator yoke height [mm] | 28.85 | 38.20 | 7.52 | 12.52 |
Average rotor tooth width | 8.16 | 12.87 | 3.06 | 5.61 |
Rotor yoke height [mm] | 30.58 | 41.94 | 12.62 | 4.7 |
Meas. | A | B | C | D | E | F | |
---|---|---|---|---|---|---|---|
Is [A] | 69.90 | 73.12 | 73.20 | 73.30 | 73.43 | 73.25 | 73.89 |
I0 [A] | 31.3 | 31.20 | 30.87 | 33.79 | 32.0 | 31.33 | 32.17 |
Bsd [T] | - | 1.617 | 1.606 | 1.604 | 1.602 | 1.602 | 1.597 |
Bsy [T] | - | 1.635 | 1.632 | 1.634 | 1.625 | 1.639 | 1.624 |
Brd [T] | - | 1.653 | 1.643 | 1.647 | 1.638 | 1.639 | 1.633 |
Bry [T] | - | 0.988 | 0.991 | 0.993 | 0.989 | 0.992 | 0.991 |
PFe [W] | 1518 | 776 | 1413 | 1614 | 731 | 1094 | 1383 |
Pd [W] | 218 | 210 | 181 | 193 | 204 | 216 | 196 |
Pws [W] | 1526 | 1670 | 1671 | 1672 | 1683 | 1674 | 1704 |
Pwr [W] | 1055 | 1063 | 1036 | 1054 | 1055 | 1040 | 1050 |
∑P [W] | 4423 | 3825 | 4407 | 4639 | 3779 | 4130 | 4439 |
η [%] | 91.09 | 92.20 | 91.12 | 90.69 | 92.28 | 91.62 | 91.06 |
cos φ [-] | 0.816 | 0.816 | 0.818 | 0.808 | 0.810 | 0.815 | 0.813 |
Meas. | A | B | C | D | E | F | |
---|---|---|---|---|---|---|---|
Is [A] | 185.1 | 189.4 | 187.7 | 188.9 | 190.5 | 187.7 | 188.8 |
I0 [A] | 59.4 | 56.3 | 53.01 | 54.24 | 58.37 | 53.94 | 55.19 |
Bsd [T] | - | 1.701 | 1.696 | 1.701 | 1.692 | 1.690 | 1.686 |
Bsy [T] | - | 1.702 | 1.701 | 1.704 | 1.695 | 1.697 | 1.693 |
Brd [T] | - | 1.640 | 1.638 | 1.639 | 1.629 | 1.631 | 1.627 |
Bry [T] | - | 0.904 | 0.908 | 0.907 | 0.904 | 0.908 | 0.908 |
PFe [W] | 4200 | 4059 | 4111 | 4800 | 3816 | 3021 | 3966 |
Pd [W] | 1535 | 1601 | 1452 | 1108 | 1254 | 1338 | 1429 |
Pws [W] | 5613 | 5877 | 5772 | 5849 | 5846 | 5769 | 5839 |
Pwr [W] | 6853 | 6852 | 6795 | 6823 | 6865 | 6824 | 6870 |
∑P [W] | 19,521 | 19,709 | 19,650 | 19,900 | 19,101 | 18,272 | 19,424 |
η [%] | 93.90 | 93.84 | 93.91 | 93.78 | 94.01 | 94.26 | 93.92 |
cos φ [-] | 0.876 | 0.856 | 0.863 | 0.868 | 0.851 | 0.861 | 0.859 |
Die Cut | Laser Cut | |||||
---|---|---|---|---|---|---|
Measured | Toroidal | Rectangular | Measured | Toroidal | Rectangular | |
Pout [kW] | 1.375 | 1.375 | 1.375 | 1.063 | 1.063 | 1.063 |
Us [V] | 221.4 | 221.4 Y | 221.4 | 219.9 | 219.9 Y | 219.9 |
Is [A] | 5.59 | 5.55 | 5.60 | 4.94 | 4.63 | 4.90 |
I0 [A] | - | 0.561 | 0.577 | - | 0.624 | 0.776 |
Bsd [T] | - | 0.329 | 0.327 | - | 0.331 | 0.329 |
Bsy [T] | - | 0.420 | 0.421 | - | 0.675 | 0.421 |
Brd [T] | - | 0.375 | 0.363 | - | 0.389 | 0.371 |
Bry [T] | - | 0.182 | 0.155 | - | 0.186 | 0.159 |
PFe +Pd | 170.9 | 147.7 | 164.0 | 347.7 | 154.0 | 342.4 |
Pws [W] | 88.5 | 87.2 | 92.0 | 66.9 | 58.8 | 65.8 |
Pwr [W] | 56.9 | 59.5 | 59.9 | 37.1 | 32.2 | 40.1 |
Pm [W] | 81.4 | 81.4 | 81.4 | 82.2 | 82.2 | 82.2 |
∑P [W] | 397.7 | 375.8 | 397.3 | 533.9 | 327.2 | 530.5 |
η [%] | 77.57 | 78.53 | 77.58 | 66.56 | 76.46 | 66.70 |
cos φ [-] | 0.841 | 0.849 | 0.824 | 0.863 | 0.872 | 0.868 |
M470-50A | M270-35A | |||||
---|---|---|---|---|---|---|
Measured | Toroidal | Rectangular | Measured | Toroidal | Rectangular | |
Pout [kW] | 0.184 | 0.184 | 0.184 | 0.184 | 0.184 | 0.184 |
Us [V] | 221.9 | 221.9 Y | 221.9 | 226.0 | 226.0 Y | 226.0 |
Is [A] | 1.01 | 1.00 | 1.01 | 0.99 | 0.98 | 0.99 |
I0 [A] | - | 0.738 | 0.696 | - | 0.743 | 0.702 |
Bsd [T] | - | 0.856 | 0.852 | - | 0.872 | 0.868 |
Bsy [T] | - | 0.764 | 0.762 | - | 0.778 | 0.777 |
Brd [T] | - | 0.979 | 0.975 | - | 0.997 | 0.994 |
Bry [T] | - | 0.826 | 0.856 | - | 0.828 | 0.873 |
PFe +Pd | 18.21 | 15.22 | 18.58 | 15.13 | 12.68 | 14.61 |
Pws [W] | 8.36 | 8.32 | 8.26 | 7.96 | 7.72 | 8.09 |
Pwr [W] | 4.72 | 4.58 | 4.58 | 4.06 | 3.57 | 4.72 |
Pm [W] | 18.68 | 18.68 | 18.68 | 16.74 | 16.74 | 16.74 |
∑P [W] | 49.96 | 46.73 | 50.10 | 43.89 | 40.71 | 44.16 |
η [%] | 78.66 | 79.76 | 78.62 | 80.76 | 81.91 | 80.67 |
cos φ [-] | 0.520 | 0.546 | 0.554 | 0.597 | 0.581 | 0.591 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dems, M.; Komeza, K. Practical Verification of the Approximation Method of the Influence of Guillotine and Laser Cutting and Core Dimensions on Losses and Magnetization of Induction Motor Cores. Energies 2025, 18, 4862. https://doi.org/10.3390/en18184862
Dems M, Komeza K. Practical Verification of the Approximation Method of the Influence of Guillotine and Laser Cutting and Core Dimensions on Losses and Magnetization of Induction Motor Cores. Energies. 2025; 18(18):4862. https://doi.org/10.3390/en18184862
Chicago/Turabian StyleDems, Maria, and Krzysztof Komeza. 2025. "Practical Verification of the Approximation Method of the Influence of Guillotine and Laser Cutting and Core Dimensions on Losses and Magnetization of Induction Motor Cores" Energies 18, no. 18: 4862. https://doi.org/10.3390/en18184862
APA StyleDems, M., & Komeza, K. (2025). Practical Verification of the Approximation Method of the Influence of Guillotine and Laser Cutting and Core Dimensions on Losses and Magnetization of Induction Motor Cores. Energies, 18(18), 4862. https://doi.org/10.3390/en18184862