Life Cycle Assessment and Circular Economy Evaluation of Extraction Techniques: Energy Analysis of Antioxidant Recovery from Wine Residues
Abstract
1. Introduction
- Investigating the current state of research on the extraction of antioxidant molecules from winemaking by-products, focusing on both traditional and innovative techniques.
- Selecting studies that provide comprehensive data and detailed process descriptions to enable a robust, also if preliminary, environmental assessment.
- Conducting a preliminary life cycle assessment (LCA) aimed at identifying the critical environmental impact categories associated with these valorisation processes.
- Pinpointing the most energy-intensive and environmentally sensitive stages of the extraction process that require targeted improvements, especially when scaling up to industrial applications.
- Emphasizing the importance of integrating environmental considerations—particularly energy consumption—early in the selection of extraction methods to foster circular economy principles within the wine industry, thereby contributing to waste reduction and resource efficiency throughout the supply chain.
2. Materials and Methods
2.1. Literature Review and Paper Selection
2.2. LCA
2.3. Raw Material
2.4. Pretreatments
2.5. Extractions
2.6. LCI
2.7. Sensitivity Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GM | Grape marc |
GS | Grape stalk |
EGM | Exhausted grape marc |
SWE | Subcritical water extraction |
MAE | Microwave-assisted extraction |
UAE | Ultrasound-assisted extraction |
SLE | Solid–liquid extraction |
EtOH | Ethanol |
2MTHF | 2-Methyltetrahydrofuran |
LCA | Life cycle assessment |
TPC | Total phenolic content |
LCI | Life cycle inventory |
FU | Functional unit |
APOS | Allocation at point of substitution |
GAE | Gallic acid equivalent |
Cp,w | Heat capacity of liquid water |
Cp,i | Heat capacity of ice |
ΔHfus | Latent heat of fusion for ice |
ΔHsub | Sublimation heat for ice |
ΔHmel | Melting enthalpy for ice |
ΔHvap | Evaporation enthalpy for water |
Eff | Drying efficiency |
CC | Climate change |
CE | Circular economy |
CEM | Current Italian energy mix |
REM | Renewable Italian energy mix |
References
- International Organisation of Vine. Wine State of the World Vine and Wine Sector in 2024; International Organisation of Vine: Dijon, France, 2025. [Google Scholar]
- de Freitas, P.A.V.; Meyer, S.; Hernández-García, E.; Rebaque, D.; Vilaplana, F.; Chiralt, A. Antioxidant and Antimicrobial Extracts from Grape Stalks Obtained with Subcritical Water. Potential Use in Active Food Packaging Development. Food Chem. 2024, 451, 139526. [Google Scholar] [CrossRef]
- Contreras, M.d.M.; Romero-García, J.M.; López-Linares, J.C.; Romero, I.; Castro, E. Residues from Grapevine and Wine Production as Feedstock for a Biorefinery. Food Bioprod. Process. 2022, 134, 56–79. [Google Scholar] [CrossRef]
- Iuga, M.; Mironeasa, S. Potential of Grape Byproducts as Functional Ingredients in Baked Goods and Pasta. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2473–2505. [Google Scholar] [CrossRef]
- Baptista, S.L.; Romaní, A.; Cunha, J.T.; Domingues, L. Multi-Feedstock Biorefinery Concept: Valorization of Winery Wastes by Engineered Yeast. J. Environ. Manag. 2023, 326, 116623. [Google Scholar] [CrossRef]
- Ahmad, B.; Yadav, V.; Yadav, A.; Rahman, M.U.; Yuan, W.Z.; Li, Z.; Wang, X. Integrated Biorefinery Approach to Valorize Winery Waste: A Review from Waste to Energy Perspectives. Sci. Total Environ. 2020, 719, 137315. [Google Scholar] [CrossRef]
- Ruberto, G.; Renda, A.; Amico, V.; Tringali, C. Volatile Components of Grape Pomaces from Different Cultivars of Sicilian Vitis vinifera L. Bioresour. Technol. 2008, 99, 260–268. [Google Scholar] [CrossRef]
- Bordiga, M.; Travaglia, F.; Locatelli, M. Valorisation of Grape Pomace: An Approach That Is Increasingly Reaching Its Maturity—A Review. Int. J. Food Sci. Technol. 2019, 54, 933–942. [Google Scholar] [CrossRef]
- Graça, A.; Corbet-Milward, J.; Schultz, H.R.; Ozer, C.; de La Fuente, M. Managing By-Products of Vitivinicultural Origin; OIV–International Organization of Vine and Wine: Paris, France, 2018. [Google Scholar]
- Romero-Díez, R.; Rodríguez-Rojo, S.; Cocero, M.J.; Duarte, C.M.M.; Matias, A.A.; Bronze, M.R. Phenolic Characterization of Aging Wine Lees: Correlation with Antioxidant Activities. Food Chem. 2018, 259, 188–195. [Google Scholar] [CrossRef] [PubMed]
- De Iseppi, A.; Marangon, M.; Lomolino, G.; Crapisi, A.; Curioni, A. Red and White Wine Lees as a Novel Source of Emulsifiers and Foaming Agents. LWT 2021, 152, 112273. [Google Scholar] [CrossRef]
- Bulos, R.B.d.A.; Paz, F.d.G.; Machado, C.G.; Tavares, P.P.L.G.; de Souza, C.O.; Umsza-Guez, M.A. Scientific and Technological Research on the Use of Wine Lees. Food Prod. Process. Nutr. 2023, 5, 25. [Google Scholar] [CrossRef]
- López-Fernández-Sobrino, R.; Margalef, M.; Torres-Fuentes, C.; Ávila-Román, J.; Aragonès, G.; Muguerza, B.; Bravo, F.I. Enzyme-Assisted Extraction to Obtain Phenolic-Enriched Wine Lees with Enhanced Bioactivity in Hypertensive Rats. Antioxidants 2021, 10, 517. [Google Scholar] [CrossRef]
- Salehi, B.; Vlaisavljevic, S.; Adetunji, C.O.; Adetunji, J.B.; Kregiel, D.; Antolak, H.; Pawlikowska, E.; Uprety, Y.; Mileski, K.S.; Devkota, H.P.; et al. Plants of the Genus Vitis: Phenolic Compounds, Anticancer Properties and Clinical Relevance. Trends Food Sci. Technol. 2019, 91, 362–379. [Google Scholar] [CrossRef]
- Krasteva, D.; Ivanov, Y.; Chengolova, Z.; Godjevargova, T. Antimicrobial Potential, Antioxidant Activity, and Phenolic Content of Grape Seed Extracts from Four Grape Varieties. Microorganisms 2023, 11, 395. [Google Scholar] [CrossRef]
- Cañadas, R.; Díaz, I.; Sánchez-Monedero, A.; González, E.J.; González-Miquel, M. Green Extraction of Natural Antioxidants from White Grape Waste Using Bio-Renewable Solvents and Ultrasonic Process Intensification. Chem. Eng. Process.-Process Intensif. 2024, 196, 109644. [Google Scholar] [CrossRef]
- Pedras, B.M.; Regalin, G.; Sá-Nogueira, I.; Simões, P.; Paiva, A.; Barreiros, S. Fractionation of Red Wine Grape Pomace by Subcritical Water Extraction/Hydrolysis. J. Supercrit. Fluids 2020, 160, 104793. [Google Scholar] [CrossRef]
- Freitas, L.C.; dos Santos, R.W.S.; Reis, F.R.; Haminiuk, C.W.I.; Corazza, M.L.; Masson, M.L. Green Extraction Technologies: A Path to the Amazon Bioeconomy Development. Trends Food Sci. Technol. 2024, 147, 104462. [Google Scholar] [CrossRef]
- Cannavacciuolo, C.; Pagliari, S.; Celano, R.; Campone, L.; Rastrelli, L. Critical Analysis of Green Extraction Techniques Used for Botanicals: Trends, Priorities, and Optimization Strategies-A Review. TrAC Trends Anal. Chem. 2024, 173, 117627. [Google Scholar] [CrossRef]
- Croxatto Vega, G.; Sohn, J.; Voogt, J.; Birkved, M.; Olsen, S.I.; Nilsson, A.E. Insights from Combining Techno-Economic and Life Cycle Assessment—A Case Study of Polyphenol Extraction from Red Wine Pomace. Resour. Conserv. Recycl. 2021, 167, 105318. [Google Scholar] [CrossRef]
- Ye, L.; El-Mesery, H.S.; Ashfaq, M.M.; Shi, Y.; Zicheng, H.; Alshaer, W.G. Analysis of Energy and Specific Energy Requirements in Various Drying Process of Mint Leaves. Case Stud. Therm. Eng. 2021, 26, 101113. [Google Scholar] [CrossRef]
- Kuppan, N.; Padman, M.; Mahadeva, M.; Srinivasan, S.; Devarajan, R. A Comprehensive Review of Sustainable Bioremediation Techniques: Eco Friendly Solutions for Waste and Pollution Management. Waste Manag. Bull. 2024, 2, 154–171. [Google Scholar] [CrossRef]
- Milinčić, D.D.; Stanisavljević, N.S.; Kostić, A.; Bajić, S.S.; Kojić, M.O.; Gašić, U.M.; Barać, M.B.; Stanojević, S.P.; Tešić, Ž.L.; Pešić, M.B. Phenolic Compounds and Biopotential of Grape Pomace Extracts from Prokupac Red Grape Variety. LWT 2021, 138, 110739. [Google Scholar] [CrossRef]
- Daniela, T.-R.; del Socorro, L.-C.M.; Fortunata, S.-T.; Patricia, R.-M.; Felipe, G.-O.; Teresa, H.-B.M.; de la Paz, S.-C.M. Optimization of the Extraction of Bioactive Compounds from Cabernet Sauvignon Grape Pomace from Querétaro, Mexico, Using MSPD. Separations 2023, 11, 13. [Google Scholar] [CrossRef]
- Bao, Y.; Reddivari, L.; Huang, J.Y. Enhancement of Phenolic Compounds Extraction from Grape Pomace by High Voltage Atmospheric Cold Plasma. LWT 2020, 133, 109970. [Google Scholar] [CrossRef]
- Garcia-Castello, E.M.; Conidi, C.; Cassano, A. A Membrane-Assisted Green Strategy for Purifying Bioactive Compounds from Extracted White Wine Lees. Sep. Purif. Technol. 2024, 336, 126183. [Google Scholar] [CrossRef]
- Chen, J.; Wang, N.; Zhang, Z.; Zhang, L.; Fei, Q.; Ma, Y. New Insights into Wine Waste Management: Zero Waste Discharge-Driven Full Energy/Resource Recovery Strategy. Results Eng. 2022, 15, 100606. [Google Scholar] [CrossRef]
- Montagner, G.E.; Wingert, N.R.; Stein, C.d.S.; Moresco, R.N.; Fogaça, A.d.O.; Gomes, P. Optimization of the Extraction of Antioxidant Compounds from Grape Seed from Winemaking Waste. Sustain. Chem. Pharm. 2022, 30, 100856. [Google Scholar] [CrossRef]
- Ivanov, Y. Optimization of the Extraction Procedure of Polyphenols from Red Pinot Noir Grape Seeds. BIO Web Conf. 2024, 102, 02002. [Google Scholar] [CrossRef]
- Moutinho, J.; Gouvinhas, I.; Domínguez-Perles, R.; Barros, A. Optimization of the Extraction Methodology of Grape Pomace Polyphenols for Food Applications. Molecules 2023, 28, 3885. [Google Scholar] [CrossRef]
- Huamán-Castilla, N.L.; Gajardo-Parra, N.; Pérez-Correa, J.R.; Canales, R.I.; Martínez-Cifuentes, M.; Contreras-Contreras, G.; Mariotti-Celis, M.S. Enhanced Polyphenols Recovery from Grape Pomace: A Comparison of Pressurized and Atmospheric Extractions with Deep Eutectic Solvent Aqueous Mixtures. Antioxidants 2023, 12, 1446. [Google Scholar] [CrossRef]
- Salgado-Ramos, M.; Huertas-Alonso, A.J.; Martí-Quijal, F.J.; Barba, F.J.; Sánchez-Verdú, M.P.; Moreno, A.; Cabañas, B. Sustainable Management of Wine-Derived Leftovers: Enhanced Extraction of Antioxidants and Production of Levulinic Acid by Microwave-Assisted Processing. J. Environ. Chem. Eng. 2024, 12, 112411. [Google Scholar] [CrossRef]
- ISO14040; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Damiani, M.; Ferrara, N.; Ardente, F. Understanding Product Environmental Footprint and Organisation Environmental Footprint Methods; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Castillo, A.; Celeiro, M.; Rubio, L.; Bañobre, A.; Otero-Otero, M.; Garcia-Jares, C.; Lores, M. Optimization of Bioactives Extraction from Grape Marc via a Medium Scale Ambient Temperature System and Stability Study. Front. Nutr. 2022, 9, 1008457. [Google Scholar] [CrossRef]
- Blackford, M.; Comby, M.; Zeng, L.; Dienes-Nagy, Á.; Bourdin, G.; Lorenzini, F.; Bach, B. A Review on Stems Composition and Their Impact on Wine Quality. Molecules 2021, 26, 1240. [Google Scholar] [CrossRef] [PubMed]
- Baeghbali, V.; Niakousari, M.; Farahnaky, A. Refractance Window Drying of Pomegranate Juice: Quality Retention and Energy Efficiency. LWT—Food Sci. Technol. 2016, 66, 34–40. [Google Scholar] [CrossRef]
- Fraterrigo Garofalo, S.; Demichelis, F.; Peletti, V.; Picco, L.; Tommasi, T.; Fino, D. Comparative Study of Polyphenol Extraction Using Physical Techniques and Water as a Solvent: A Sustainable Approach for the Valorization of Apple Pomace. Environ. Sci. Pollut. Res. 2024. [Google Scholar] [CrossRef]
- Matei, P.M.; Iacomi, B.M.; Nieves, M.B.T.; Alvarez, F.L.; Barbulescu, I.D.; Teodorescu, R.I.; Banita, D.C.; Grosu, A.C.; Nitu, M. The Composting Potential of the By-Product Marc Resulting from the White and Red Winemaking Process. BIO Web Conf. 2023, 68, 01041. [Google Scholar] [CrossRef]
- Barjoveanu, G.; Pătrăuțanu, O.-A.; Teodosiu, C.; Volf, I. Life Cycle Assessment of Polyphenols Extraction Processes from Waste Biomass. Sci. Rep. 2020, 10, 13632. [Google Scholar] [CrossRef]
- Gargiulo, A.; Carvalho, M.L.; Girardi, P. Life Cycle Assessment of Italian Electricity Scenarios to 2030. Energies 2020, 13, 3852. [Google Scholar] [CrossRef]
- Statista. Distribution of the Total Energy Supply in Italy in 2023, by Energy Source. Available online: https://www.statista.com/statistics/873552/energy-mix-in-italy/#:~:text=In (accessed on 25 July 2025).
- Statista. Gross Imports of Natural Gas in Italy in 2023, by Country of Origin. Available online: https://www.statista.com/statistics/787720/natural-gas-imports-by-country-of-origin-in-italy/#:~:text=In (accessed on 25 July 2025).
- Carà, C.; Marocco, P.; Novo, R.; Koivisto, M.; Santarelli, M.; Mattiazzo, G. Modeling the Long-Term Evolution of the Italian Power Sector: The Role of Renewable Resources and Energy Storage Facilities. Int. J. Hydrogen Energy 2024, 59, 1183–1195. [Google Scholar] [CrossRef]
- Uzoma, S.; Nwakuba, N.; Anyaoha, K. Performance of Hybrid Photovoltaic/Thermal Crop Dryer in Hot Humid Nigerian Region. Poljopr. Teh. 2019, 44, 56–75. [Google Scholar] [CrossRef]
- Skendi, A.; Bouloumpasi, E.; Chatzopoulou, P.; Biliaderis, C.C.; Irakli, M. Comparison of Drying Methods for the Retention of Phenolic Antioxidants in Post-Distillation Solid Residues of Aromatic Plants. LWT 2023, 189, 115463. [Google Scholar] [CrossRef]
- Soto, B.; Gatica, M.; Uribe, E.A.; Rozas, A.; Cabezas, R.; Pino, L.; Román, J. Evaluation of Antioxidant Activity and Polyphenol Preservation in Rosehip (Rosa spp.) during Storage and Convective Drying. LWT 2025, 228, 118089. [Google Scholar] [CrossRef]
- Roshanak, S.; Rahimmalek, M.; Goli, S.A.H. Evaluation of Seven Different Drying Treatments in Respect to Total Flavonoid, Phenolic, Vitamin C Content, Chlorophyll, Antioxidant Activity and Color of Green Tea (Camellia sinensis or C. Assamica) Leaves. J. Food Sci. Technol. 2016, 53, 721–729. [Google Scholar] [CrossRef]
- Frikha, K.; Limousy, L.; Arif, M.B.; Thevenin, N.; Ruidavets, L.; Zbair, M.; Bennici, S. Exhausted Grape Marc Derived Biochars: Effect of Pyrolysis Temperature on the Yield and Quality of Biochar for Soil Amendment. Sustainability 2021, 13, 11187. [Google Scholar] [CrossRef]
- Zhang, N.; Hoadley, A.; Patel, J.; Lim, S.; Li, C. Sustainable Options for the Utilization of Solid Residues from Wine Production. Waste Manag. 2017, 60, 173–183. [Google Scholar] [CrossRef] [PubMed]
Year | Technique | Solvent | Residue | Pretreatment | Conditions | Yield | Ref. |
---|---|---|---|---|---|---|---|
2024 | SWE | Distilled water | White and red grape stalks | Vacuum drying (60 °C, 0.6 mbar, 16 h) Milling (2 cycles, 60 s) | 10:1 residue solvent ratio Subcritical Extraction 1 (160 °C, 6.5 bar, 150 rpm, 30 min) Subcritical Extraction 2 (180 °C, 11.5 bar, 150 rpm, 30 min) | 1.33–2.22 g GAE/100 g | [2] |
2024 | MAE | Ethanol 50% in distilled water | Grape stalk, grape marc, and exhausted grape marc (type of grape not specified) | Freeze drying | 1:10 residue solvent ratioMicrowave extraction (100 °C, 120 min) | 0.21–3.99 g GAE/100 g | [32] |
2024 | UAE | Ethanol and 2-methyltetrahydrofuran | White grape skin and seeds | Oven drying (40 °C, 24 h) | 1:10 residue solvent ratio Ultrasound Extraction (40 °C, 37 kHz, 1 h) | 0.80–1.03 g GAE/100 g | [16] |
2024 | SLE | Ethanol and 2-methyltetrahydrofuran | White grape skin and seeds | Oven drying (40 °C, 24 h) | 1:10 residue solvent ratioConventional Extraction (40 °C, 900 rpm, 6 h) | 0.72–0.94 g GAE/100 g | [16] |
2020 | SWE | Distilled water | Red wine grape marc | Liquid nitrogen + freeze drying + milling + defatting | 10:1 residue solvent ratio Subcritical Extraction 1 (100 °C, 100 bar, 10 mL/min, 400 min) | 10.04 g GAE/100 g | [17] |
2021 | SLE | 80% Methanol + 20% 0.1% HCl water solution | Red wine grape marc | Freeze drying | Residue solvent ratio not specified (20 °C, 1 h) | 1.28 g GAE/100 g | [23] |
2020 | SLE + Plasma | Ethanol 50% in distilled water | White wine grape marc | Freeze drying + milling + plasma | 1:25 solvent ratio Conventional Extraction (20 °C, 150 rpm, 2 h) | 0.98 g GAE/100 g | [25] |
2021 | Enzyme | Flavourzyme® | Red wine lees | Unspecified | Residue solvent ratio not specified (20 °C, 2 h, pH 4, 250 rpm) | 0.036 g GAE/100 g | [13] |
2023 | Maceration | Ethanol 58% + water 41% + HCl 1% | Red wine grape marc | Oven drying (60 °C, 72 h) + blender | Residue solvent ratio not specified (24 h) | 0.83 g GAE/100 g | [24] |
2024 | Membrane SLE | Ethanol 25% in distilled water | White wine lees | Oven drying (50 °C, 48 h) + milling | 1:10 solvent ratio Conventional Extraction (30 °C, 30 min) | 0.041 g GAE/100 g | [26] |
2022 | SLE | Ethanol 40% in distilled water | Red wine grape seeds | Oven drying (105 °C, time not specified) + milling | 1:4 solvent ratio Conventional Extraction (50 °C, pH 8, 2 h) | 2.00 g GAE/100 g | [27] |
2023 | HPLE | DES | Red wine grape marc | Grinding | 1:10 solvent ratio Pressurised chamber (90 °C, 10 MPa, 1 h) | 1.71–2.04 g GAE/100 g | [31] |
2022 | SLE | Ethanol 35% in distilled water | Red wine grape seeds | Grinding | Residue solvent ratio not specified (15 min) | 2.02 g GAE/mL | [28] |
2024 | SLE | Ethanol 70% in distilled water | Red wine grape seeds | Oven drying (40 °C, 14 h) + grinding | 1:5 residue solvent ratioMagnetic stirrer (500 rpm, 20 °C 3 h) | 0.093 g GAE/100 g | [29] |
2023 | SLE | Ethanol 70% in HCl 3.5% | Red wine grape marc | Freeze drying | 1:40 residue solvent ratio(60 °C, 30 min) | 1.49 g GAE/100 g | [30] |
Process | Unit | MAE_GM | MAE_GS | MAE_EGM | |
---|---|---|---|---|---|
Pretreatment | |||||
Input | Raw material a | g | 1.25 × 102 | 2.51 × 101 | 4.74 × 102 |
Freeze drying a,c | kWh | 1.86 × 100 | 4.19 × 10−1 | 1.71 × 100 | |
Milling a | kWh | 2.29 × 10−3 | 4.60 × 10−4 | 8.69 × 10−3 | |
Output | Dry sample | g | 4.14 × 101 | 5.93 × 100 | 4.37 × 102 |
MAE | |||||
Input | Dry sample a | g | 4.14 × 101 | 5.93 × 100 | 4.37 × 102 |
H2O/EtOH 1:1 a | mL | 4.14 × 102 | 5.93 × 101 | 4.37 × 103 | |
Microwave a | kWh | 4.97 × 100 | 7.12 × 10−1 | 5.25 × 101 | |
Centrifuge b | kWh | 6.74 × 10−2 | 9.64 × 10−3 | 7.11 × 10−1 | |
Output | TPC | g | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 |
Solid waste | g | 4.04 × 101 | 4.93 × 100 | 4.36 × 102 |
Process | Unit | UAE_EtOH | UAE_2MTHF | |
---|---|---|---|---|
Pretreatment | ||||
Input | Raw material a | g | 9.69 × 101 | 1.25 × 102 |
Oven drying a,c | kWh | 1.63 × 100 | 2.09 × 100 | |
Milling b | kWh | 1.78 × 10−3 | 2.29 × 10−3 | |
Output | Dry sample | g | 3.36 × 101 | 4.32 × 101 |
UAE | ||||
Input | Dry sample b | g | 3.36 × 101 | 4.32 × 101 |
Solvent a | mL | 3.36 × 102 | 4.32 × 102 | |
Ultrasound bath a | kWh | 3.54 × 10−1 | 4.56 × 10−1 | |
Centrifuge b | kWh | 7.57 × 10−2 | 9.75 × 10−2 | |
Output | TPC | g | 1.00 × 100 | 1.00 × 100 |
Solid waste | g | 3.26 × 101 | 4.22 × 101 |
Process | Unit | SLE_EtOH | SLE_2MTHF | |
---|---|---|---|---|
Pretreatment | ||||
Input | Raw material a | g | 1.06 × 102 | 1.38 × 102 |
Oven drying a,c | kWh | 1.78 × 100 | 2.32 × 100 | |
Milling b | kWh | 1.94 × 10−3 | 2.54 × 10−3 | |
Output | Dry sample | g | 3.67 × 101 | 4.79 × 101 |
SLE | ||||
Input | Dry sample b | g | 3.67 × 101 | 4.79 × 101 |
Solvent a | mL | 3.67 × 102 | 4.79 × 102 | |
Orbital shaker a | kWh | 1.26 × 101 | 1.64 × 101 | |
Centrifuge b | kWh | 8.29 × 10−2 | 1.08 × 10−1 | |
Output | TPC | g | 1.00 × 100 | 1.00 × 100 |
Solid waste | g | 3.57 × 101 | 4.69 × 101 |
Process | Unit | SWE_R160 | SWE_W160 | SWE_R180 | SWE_W180 | |
---|---|---|---|---|---|---|
Pretreatment | ||||||
Input | Raw material a | g | 5.05 × 101 | 7.54 × 101 | 4.50 × 101 | 6.17 × 101 |
Vacuum drying a,c | kWh | 1.96 × 10−1 | 2.93 × 10−1 | 1.75 × 10−1 | 2.40 × 10−1 | |
Milling a | kWh | 5.05 × 10−3 | 7.54 × 10−3 | 4.50 × 10−3 | 6.17 × 10−3 | |
Output | Dry sample | g | 2.02 × 101 | 2.40 × 101 | 2.04 × 101 | 2.49 × 101 |
SWE | ||||||
Input | Dry sample b | g | 2.02 × 101 | 2.40 × 101 | 2.04 × 101 | 2.49 × 101 |
Distilled water a | mL | 2.02 × 100 | 2.40 × 100 | 2.04 × 100 | 2.49 × 100 | |
Reactor a | kWh | 1.94 × 10−2 | 2.31 × 10−2 | 1.96 × 10−2 | 2.39 × 10−2 | |
Output | TPC | g | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 |
Solid waste | g | 1.92 × 101 | 2.30 × 101 | 1.94 × 101 | 2.39 × 101 |
Impact Category | Unit | MAE_GM | MAE_GS | MAE_EGM | SWE_R160 | SWE_R180 | SWE_W160 | SWE_W180 | UAE_EtOH | UAE_THF | SLE_EtOH | SLE_THF |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CC | kg CO2eq | 3.06 × 100 | 4.97 × 10−1 | 2.53 × 101 | 8.56 × 10−2 | 7.72 × 10−2 | 1.25 × 10−1 | 1.05 × 10−1 | 6.84 × 10−1 | 9.38 × 10−1 | 8.74 × 10−1 | 1.16 × 100 |
OD | kg CFC11 eq | 8.58 × 10−8 | 1.38 × 10−8 | 7.30 × 10−7 | 2.16 × 10−9 | 1.95 × 10−9 | 3.16 × 10−9 | 2.64 × 10−9 | 1.76 × 10−8 | 2.3 × 10−8 | 2.24 × 10−8 | 2.86 × 10−8 |
IR | kBq U-235 eq | 3.92 × 10−1 | 6.45 × 10−2 | 3.16 × 100 | 1.21 × 10−2 | 1.09 × 10−2 | 1.77 × 10−2 | 1.48 × 10−2 | 9.46 × 10−2 | 1.27 × 10−1 | 1.21 × 10−1 | 1.58 × 10−1 |
POF | kg NMVOC eq | 9.48 × 10−3 | 1.51 × 10−3 | 8.19 × 10−2 | 2.23 × 10−4 | 2.01 × 10−4 | 3.27 × 10−4 | 2.73 × 10−4 | 1.86 × 10−3 | 2.51 × 10−3 | 2.35 × 10−3 | 3.09 × 10−3 |
PM | disease inc. | 4.39 × 10−8 | 7.0 × 10−9 | 3.73 × 10−7 | 1.11 × 10−9 | 1.01 × 10−9 | 1.63 × 10−9 | 1.36 × 10−9 | 9.10 × 10−9 | 1.65 × 10−8 | 1.16 × 10−8 | 1.87 × 10−8 |
HTNC | CTUh | 1.38 × 10−8 | 2.22 × 10−9 | 1.16 × 10−7 | 3.57 × 10−10 | 3.22 × 10−10 | 5.24 × 10−10 | 4.37 × 10−10 | 2.91 × 10−9 | 4.14 × 10−9 | 3.68 × 10−9 | 5.06 × 10−9 |
HTC | CTUh | 4.48 × 10−10 | 7.23 × 10−11 | 3.76 × 10−9 | 1.19 × 10−11 | 1.07 × 10−11 | 1.74 × 10−11 | 1.45 × 10−11 | 9.60 × 10−11 | 1.60 × 10−10 | 1.22 × 10−10 | 1.90 × 10−10 |
AC | mol H+ eq | 9.98 × 10−3 | 1.62 × 10−3 | 8.23 × 10−2 | 2.82 × 10−4 | 2.54 × 10−4 | 4.13 × 10−4 | 3.45 × 10−4 | 2.25 × 10−3 | 3.17 × 10−3 | 2.87 × 10−3 | 3.90 × 10−3 |
EF | kg P eq | 8.78 × 10−4 | 1.42 × 10−4 | 7.37 × 10−3 | 2.33 × 10−5 | 2.10 × 10−5 | 3.42 × 10−5 | 2.85 × 10−5 | 1.88 × 10−4 | 2.58 × 10−4 | 2.40 × 10−4 | 3.18 × 10−4 |
EM | kg N eq | 2.06 × 10−3 | 3.34 × 10−4 | 1.70 × 10−2 | 5.79 × 10−5 | 5.22 × 10−5 | 8.48 × 10−5 | 7.08 × 10−5 | 4.62 × 10−4 | 6.44 × 10−4 | 5.90 × 10−4 | 7.95 × 10−4 |
ET | mol N eq | 2.04 × 10−2 | 3.31 × 10−3 | 1.69 × 10−1 | 5.69 × 10−4 | 5.14 × 10−4 | 8.35 × 10−4 | 6.97 × 10−4 | 4.55 × 10−3 | 6.37 × 10−3 | 5.82 × 10−3 | 7.84 × 10−3 |
ETF | CTUe | 5.72 × 100 | 9.22 × 10−1 | 4.81 × 101 | 1.51 × 10−1 | 1.36 × 10−1 | 2.21 × 10−1 | 1.84 × 10−1 | 1.22 × 100 | 2.02 × 100 | 1.55 × 100 | 2.41 × 100 |
LU | Pt | 9.79 × 100 | 1.59 × 100 | 8.05 × 101 | 2.80 × 10−1 | 2.53 × 10−1 | 4.11 × 10−1 | 3.43 × 10−1 | 2.23 × 100 | 3.0 × 100 | 2.85 × 100 | 3.78 × 100 |
WU | m3 depriv. | 2.19 × 100 | 3.75 × 10−1 | 1.79 × 101 | 6.40 × 10−2 | 5.78 × 10−2 | 9.39 × 10−2 | 7.83 × 10−2 | 5.06 × 10−1 | 7.91 × 10−1 | 6.49 × 10−1 | 9.57 × 10−1 |
RUF | MJ | 5.61 × 101 | 9.00 × 100 | 4.76 × 102 | 1.42 × 100 | 1.28 × 100 | 2.07 × 100 | 1.73 × 100 | 1.16 × 101 | 1.55 × 101 | 1.47 × 101 | 1.91 × 101 |
RUM | kg Sb eq | 7.03 × 10−6 | 1.10 × 10−6 | 6.28 × 10−5 | 1.40 × 10−7 | 1.27 × 10−7 | 2.06 × 10−7 | 1.72 × 10−7 | 1.22 × 10−6 | 1.83 × 10−6 | 1.15 × 10−6 | 2.20 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voccia, D.; Milvanni, G.; Leni, G.; Lamastra, L. Life Cycle Assessment and Circular Economy Evaluation of Extraction Techniques: Energy Analysis of Antioxidant Recovery from Wine Residues. Energies 2025, 18, 4851. https://doi.org/10.3390/en18184851
Voccia D, Milvanni G, Leni G, Lamastra L. Life Cycle Assessment and Circular Economy Evaluation of Extraction Techniques: Energy Analysis of Antioxidant Recovery from Wine Residues. Energies. 2025; 18(18):4851. https://doi.org/10.3390/en18184851
Chicago/Turabian StyleVoccia, Diego, Giuseppe Milvanni, Giulia Leni, and Lucrezia Lamastra. 2025. "Life Cycle Assessment and Circular Economy Evaluation of Extraction Techniques: Energy Analysis of Antioxidant Recovery from Wine Residues" Energies 18, no. 18: 4851. https://doi.org/10.3390/en18184851
APA StyleVoccia, D., Milvanni, G., Leni, G., & Lamastra, L. (2025). Life Cycle Assessment and Circular Economy Evaluation of Extraction Techniques: Energy Analysis of Antioxidant Recovery from Wine Residues. Energies, 18(18), 4851. https://doi.org/10.3390/en18184851