Decoding the Developmental Trajectory of the New Power System in China via Bibliometric and Visual Analysis
Abstract
1. Introduction
2. Methodology
2.1. Analysis Method
2.2. Natural Language Processing Model (NLP)
2.2.1. Jieba Word Segmentation Tool
2.2.2. Jieba Based on the TF-IDF Algorithm
2.2.3. Jieba Based on TextRank Algorithm
2.3. Bibliometric and Visual Analysis Model Based on Citespace
2.3.1. Data Source
2.3.2. Analysis Method Based on Citespace
3. Results and Discussion
3.1. Keyword Extraction
3.2. Analysis of Annual Publications
3.3. Analysis of Keyword Co-Occurrence
3.4. Analysis of Keyword Clusters
3.4.1. LSA-Based Keyword Clustering Results
Cluster Number | Size | Silhouette | Main Year | Main Keywords (LSA Primary) | Main Keywords (LSA Second) |
---|---|---|---|---|---|
0 | 34 | 0.845 | 2017 | renewable energy, CO2 emission, and renewable energy production | economic growth, nuclear energy, vector autoregression, and power market coupling |
1 | 31 | 0.945 | 2018 | renewable energy, energy storage, wind energy, and solar energy | power generation, renewable generation, and seasonal multi-energy demands |
2 | 29 | 0.933 | 2018 | renewable energy, surface water energy, solar PV energy, solar thermal energy, and waste heat energy | renewable energy sources, energy efficiency, electricity generation, data envelopment analysis, and non-renewable energy sources |
3 | 27 | 0.952 | 2017 | renewable energy, energy storage, power system operation, and sensitivity analysis | power generation, power generation planning, energy resources, and demand side management |
4 | 24 | 0.863 | 2020 | carbon capture and greenhouse gases | carbon neutrality, carbon dioxide, emission reduction, and carbon management |
5 | 24 | 0.907 | 2017 | renewable energy, Divisia index, energy intensity, risk assessment, and CO2 reduction | carbon capture, enhanced oil recovery, business model, economic evaluation, and risk assessment |
6 | 23 | 0.946 | 2021 | carbon capture, supersonic separation, climate change, and modal analysis | renewable energy, technological innovation, power generation, and crucial barriers |
7 | 23 | 0.924 | 2018 | energy storage system, electricity cost, and remote area electricity supply | deep learning, PV power forecasting, short-term memory, and hybrid renewable energy |
8 | 22 | 0.779 | 2020 | market power, market power prediction, market power detection, neuro-fuzzy systems, and bidding strategy | thermal energy storage, concentrated solar power, liquid metals, and solar tower |
9 | 21 | 0.970 | 2018 | renewable energy, green energy, and renewable energy law | energy management strategy, dynamic Pareto, and power distribution faults |
3.4.2. LLR-Based Keyword Clustering Results
Cluster Number | Size | Silhouette | Main Year | Main Keywords (LSA Primary) |
---|---|---|---|---|
0 | 34 | 0.845 | 2017 | economic growth (39.75, 1.0 × 10−4), renewable energy (23.36, 1.0 × 10−4), non-renewable energy (18.3, 1.0 × 10−4), and electricity generation (14.15, 0.001) |
1 | 31 | 0.945 | 2018 | pumped storage (20.82, 1.0 × 10−4), optimal design (14.54, 0.001), genetic algorithm (12.13, 0.001), biomass gasification (10.23, 0.005), and green hydrogen (10.23, 0.005) |
2 | 29 | 0.933 | 2018 | renewable energy (25, 1.0 × 10−4), renewable energy sources (15.79, 1.0 × 10−4), renewable energies (13.43, 0.001), energy transition (12.46, 0.001), and solar energy (12.46, 0.001) |
3 | 27 | 0.952 | 2017 | smart grid (11.96, 0.001), reinforcement learning (10.91, 0.001), integrated energy system (9.19, 0.005), and thermal inertia (7.23, 0.01) |
4 | 24 | 0.863 | 2020 | CCUS (46.34, 1.0 × 10−4), renewable energy (20.51, 1.0 × 10−4), capture (17.88, 1.0 × 10−4), carbon neutrality (13.56, 0.001), and mineral carbonation (11.37, 0.001) |
5 | 24 | 0.907 | 2017 | security of supply (16.2, 1.0 × 10−4), pricing (10.79, 0.005), energy security (8.3, 0.005), and distribution network (7.12, 0.01) |
6 | 23 | 0.946 | 2021 | carbon capture (42.52, 1.0 × 10−4), CCUS (16.61, 1.0 × 10−4), utilization (14.44, 0.001), and vibration (12.57, 0.001) |
7 | 23 | 0.924 | 2018 | deep learning (26.97, 1.0 × 10−4), energy storage system (13.78, 0.001), voltage control (9.71, 0.005), time series forecasting (9.71, 0.005), and energy storage applications (9.71, 0.005) |
8 | 22 | 0.779 | 2020 | market power (40.88, 1.0 × 10−4), system dynamics (12.27, 0.001), thermal energy storage (12.16, 0.001), regulation (10.6, 0.005), and carbon emission reduction (9.48, 0.005) |
9 | 21 | 0.970 | 2018 | distributed generation (13, 0.001), biomass (11.07, 0.001), energy management strategy (11.07, 0.001), demand response (6.71, 0.01), and sustainable development (6.68, 0.01) |
3.4.3. Comparative Analysis of Clustering Results
3.5. Emerging Trends of New Power System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, Q.; Li, F.; Luo, S.; Wu, W.; Zhang, N.; Kang, C. Research on the Planning Methodology Framework and Key Supporting Technologies for New-type Power Systems. Power Syst. Technol. 2025, 49, 2219–2231. [Google Scholar] [CrossRef]
- Zhang, A.H.; Şirin, S.M.; Fan, C.; Bu, M. An analysis of the factors driving utility-scale solar PV investments in China: How effective was the feed-in tariff policy? Energy Policy 2022, 167, 113044. [Google Scholar] [CrossRef]
- Østergaard, P.A.; Duić, N.; Noorollahi, Y.; Kalogirou, S.A. Advances in renewable energy for sustainable development. Renew. Energy 2023, 219, 119377. [Google Scholar] [CrossRef]
- Kataray, T.; Nitesh, B.; Yarram, B.; Sinha, S.; Cuce, E.; Shaik, S.; Vigneshwaran, P.; Roy, A. Integration of smart grid with renewable energy sources: Opportunities and challenges—A comprehensive review. Sustain. Energy Technol. 2023, 58, 103363. [Google Scholar] [CrossRef]
- Jia, S. The Development Trend and Measures of China’s Photovoltaic New Energy Industry. Highlights Bus. Econ. Manag. 2024, 45, 238–244. [Google Scholar] [CrossRef]
- TUP. The National Energy Administration organized the release of the “Blue Book on the Development of New Power Systems”. iEnergy 2023, 2, 87–88. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Kusoemo, D.; Gosno, R.A. Text mining-based construction site accident classification using hybrid supervised machine learning. Autom. Constr. 2020, 118, 103265. [Google Scholar] [CrossRef]
- de Groof, R.; Xu, H. Automatic topic discovery of online hospital reviews using an improved LDA with Variational Gibbs Sampling. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 4022–4029. [Google Scholar]
- Olusegun, R.; Oladunni, T.; Audu, H.; Houkpati, Y.; Bengesi, S. Text Mining and Emotion Classification on Monkeypox Twitter Dataset: A Deep Learning-Natural Language Processing (NLP) Approach. IEEE Access 2023, 11, 49882–49894. [Google Scholar] [CrossRef]
- Naithani, K.; Raiwani, Y.P. Realization of natural language processing and machine learning approaches for text-based sentiment analysis. Expert Syst. 2023, 40, e13114. [Google Scholar] [CrossRef]
- Yu, H.; Xiong, F.; Chen, Z. Text Classification Based on Natural Language Processing and Machine Learning in Multi-Label Corpus. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 2024, 23, 115. [Google Scholar] [CrossRef]
- Ennajari, H.; Bouguila, N.; Bentahar, J. Combining Knowledge Graph and Word Embeddings for Spherical Topic Modeling. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 3609–3623. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; McGranaghan, P.; Rubens, M.; Salami, J.; Tonse, R.; Lindeman, A.A.; Keller, M.S.; Lindeman, P.; Veledar, E. Natural language processing (NLP) and machine learning (ML) model for predicting CMS OP-35 categories among patients receiving chemotherapy. J. Clin. Oncol. 2021, 39, e13591. [Google Scholar] [CrossRef]
- Hao, L.; Xi, C.; Xiao, L. A Study of the Application of Weight Distributing Method Combining Sentiment Dictionary and TF-IDF for Text Sentiment Analysis. IEEE Access 2022, 10, 32280–32289. [Google Scholar] [CrossRef]
- Razzaq, S.; Malik, A.K.; Raza, B.; Khattak, H.A.; Zegarra, G.W.M.; Molina, J. Research Collaboration Influence Analysis Using Dynamic Co-authorship and Citation Networks. Int. J. Interact. Multimed. Artif. Intell. 2022, 7, 103. [Google Scholar] [CrossRef]
- Ruirui, L.; Peipei, D.; Chen, L. Hotspots and emerging trends in the research area of agricultural application of biochar: Visualization analysis based on bibliometrics. Sci. Technol. Soc. 2021, 21, 14440–14450. [Google Scholar]
- Fanfan, D.; Olorunlogbon, O.; Figueroa, Y.T.; Trent, J.C. Publication trends in sarcoma research: A bibliometric analysis. J. Clin. Oncol. 2023, 41, e23530. [Google Scholar] [CrossRef]
- Ahiase, G.; Umar, A.; Saeed, A.M.M.; Rasuman, M.A.; Suri, E.R.D.R. Research Trends in Digital Financial Inclusion: A Bibliometric Analysis using VOSviewer. Int. J. Inform. Inf. Syst. Comput. Eng. 2024, 5, 132–145. [Google Scholar]
- Goranin, N.; Hora, S.K.; Čenys, A. A Bibliometric Review of Intrusion Detection Research in IoT: Evolution, Collaboration, and Emerging Trends. Electronics 2024, 13, 3210. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, J.; Wang, W.; Zhu, X. Development trajectory of China’s virtual power plants Industry: Comprehensive quantitative evaluation using a novel dynamic multidimensional cloud model. J. Clean. Prod. 2025, 508, 145576. [Google Scholar] [CrossRef]
- Luo, Y.; Ahmadi, E.; McLellan, B.C.; Tezuka, T. A hybrid system dynamics model for power mix trajectory simulation in liberalized electricity markets considering carbon and capacity policy. Renew. Energy 2024, 233, 121164. [Google Scholar] [CrossRef]
- Liu, T. Data visualization-based paradigm trajectory exploration towards development and shifts for China’s wind power policy. Renew. Sustain. Energy Rev. 2025, 217, 115715. [Google Scholar] [CrossRef]
- Jones, K.S. A statistical interpretation of term specificity and its application in retrieval. J. Doc. 2004, 60, 493–502. [Google Scholar] [CrossRef]
- Jun, H.; Im, D.; Kim, H. An RDF Metadata-Based Weighted Semantic Pagerank Algorithm. Int. J. Web Semant. Technol. 2016, 7, 11–24. [Google Scholar] [CrossRef]
- Shi, R.; Wan, X. A bibliometric analysis of knowledge mapping in Chinese education digitalization research from 2012 to 2022. Humanit. Soc. Sci. Commun. 2024, 11, 505. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2005, 57, 359–377. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Y.; Horowitz, M.; Hou, H.; Liu, Z.; Pellegrino, D.A. Towards an explanatory and computational theory of scientific discovery. J. Informetr. 2009, 3, 191–209. [Google Scholar] [CrossRef]
- Losse, M.; Geissdoerfer, M. Mapping socially responsible investing: A bibliometric and citation network analysis. J. Clean. Prod. 2021, 296, 126376. [Google Scholar] [CrossRef]
- Wei, X.; Liu, Q.; Pu, A.; Wang, S.; Chen, F.; Zhang, L.; Zhang, Y.; Dong, Z.; Wan, X. Knowledge Mapping of bioeconomy: A bibliometric analysis. J. Clean. Prod. 2022, 373, 133824. [Google Scholar] [CrossRef]
- Rojas-Lamorena, Á.J.; García, S.D.B.; Pilar, J.M.A. A review of three decades of academic research on brand equity: A bibliometric approach using co-word analysis and bibliographic coupling. J. Bus. Res. 2022, 139, 1067–1083. [Google Scholar] [CrossRef]
- Fang, S.; Wei, Y.; Wang, S. 30 years of exchange rate analysis and forecasting: A bibliometric review. J. Econ. Surv. 2024, 38, 973–1007. [Google Scholar] [CrossRef]
- Chu, S.; Deng, T.; Cheng, H. The role of social media advertising in hospitality, tourism and travel: A literature review and research agenda. Int. J. Contemp. Hosp. Manag. 2020, 32, 3419–3438. [Google Scholar] [CrossRef]
- Fauzi, M.A. A bibliometric review on knowledge management in tourism and hospitality: Past, present and future trends. Int. J. Contemp. Hosp. Manag. 2022, 35, 2178–2201. [Google Scholar] [CrossRef]
- Fauzi, M.A.; Abdul Rahman, A.R.; Lee, C.K. A systematic bibliometric review of the United Nation’s SDGS: Which are the most related to higher education institutions? Int. J. Sustain. High. Educ. J. Sustain. High. Educ. 2022, 24, 637–659. [Google Scholar] [CrossRef]
- Hassani, A.; Iranmanesh, A.; Mansouri, N. Text mining using nonnegative matrix factorization and latent semantic analysis. Neural Comput. Appl. 2021, 33, 13745–13766. [Google Scholar] [CrossRef]
- Daghyani, M.; Zamzami, N.; Bouguila, N. Toward an Efficient Computation of Log-Likelihood Functions in Statistical Inference: Overdispersed Count Data Clustering. In Mixture Models and Applications; Bouguila, N., Fan, W., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 155–176. [Google Scholar]
- Shi, F.; Chen, L.; Han, J.; Childs, P. A Data-Driven Text Mining and Semantic Network Analysis for Design Information Retrieval. J. Mech. Des. Mech. Des. 2017, 139, 111402. [Google Scholar] [CrossRef]
- Kherwa, P.; Bansal, P. Latent Semantic Analysis: An Approach to Understand Semantic of Text. In Proceedings of the 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC), Mysuru, India, 8–9 September 2017; pp. 870–874. [Google Scholar]
- Cheng, Q.; Zhu, Y.; Song, J.; Zeng, H.; Wang, S.; Sun, K.; Zhang, J. Bert-Based Latent Semantic Analysis (Bert-LSA): A Case Study on Geospatial Data Technology and Application Trend Analysis. Appl. Sci. 2021, 11, 11897. [Google Scholar] [CrossRef]
- Lakshmi, A.; Latha, D. A Hybrid Model of Latent Semantic Analysis with Graph-Based Text Summarization on Telugu Text. In Intelligent System Design: Proceedings of INDIA 2022; Bhateja, V., Sunitha, K.V.N., Chen, Y., Zhang, Y., Eds.; Springer Nature Singapore: Singapore, 2023; pp. 179–186. [Google Scholar]
- Quan, C.; Liu, F.; Qi, L.; Tie, Y. LRT-CLUSTER: A New Clustering Algorithm Based on Likelihood Ratio Test to Identify Driving Genes. Interdiscip. Sci. Comput. Life Sci. 2023, 15, 217–230. [Google Scholar] [CrossRef]
- Xu, J.; Liu, T. Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development. Energy Policy 2020, 142, 111538. [Google Scholar] [CrossRef]
- Cavus, M. Advancing Power Systems with Renewable Energy and Intelligent Technologies: A Comprehensive Review on Grid Transformation and Integration. Electronics 2025, 14, 1159. [Google Scholar] [CrossRef]
- Erdiwansyah, F.; Mahidin, F.; Husin, H.; Nasaruddin, F.; Zaki, M.; Muhibbuddin, F. A critical review of the integration of renewable energy sources with various technologies. Prot. Control. Mod. Power Syst. 2021, 6, 3. [Google Scholar] [CrossRef]
- Diéguez-Santana, K.; González-Díaz, H. Machine learning in antibacterial discovery and development: A bibliometric and network analysis of research hotspots and trends. Comput. Biol. Med. 2023, 155, 106638. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, X.; Zhang, R.; Gu, W.; Cao, G. N-1 Evaluation of Integrated Electricity and Gas System Considering Cyber-Physical Interdependence. IEEE Trans. Smart Grid 2025, 16, 3728–3742. [Google Scholar] [CrossRef]
- Khatibi, M.; Bendtsen, J.D.; Stoustrup, J.; Mølbak, T. Exploiting Power-to-Heat Assets in District Heating Networks to Regulate Electric Power Network. IEEE Trans. Smart Grid 2021, 12, 2048–2059. [Google Scholar] [CrossRef]
- Tang, K.Y.; Chang, C.Y.; Hwang, G.J. Trends in artificial intelligence-supported e-learning: A systematic review and co-citation network analysis (1998–2019). Interact. Learn. Environ. 2021, 31, 2134–2152. [Google Scholar] [CrossRef]
- Xu, W.; Dai, T.; Shen, Z. Effect sizes and research directions of technology application in museum learning: Evidence obtained by integrating meta-analysis with co-citation network analysis. J. Comput. Assist. Learn. 2021, 38, 565–580. [Google Scholar] [CrossRef]
- Smojver, V.; Štorga, M.; Zovak, G. Exploring knowledge flow within a technology domain by conducting a dynamic analysis of a patent co-citation network. J. Knowl. Manag. 2020, 25, 433–453. [Google Scholar] [CrossRef]
- Wen, J.; Aishan, T.; Halik, Ü.; Wei, Z.; Wumaier, M. A Bibliometric and Visualized Analysis of Research Progress and Trends on Decay and Cavity Trees in Forest Ecosystem over 20 Years: An Application of the CiteSpace Software. Forests 2022, 13, 1437. [Google Scholar] [CrossRef]
- Rawat, K.S.; Sood, S.K. Knowledge mapping of computer applications in education using CiteSpace. Comput. Appl. Eng. Educ. 2021, 29, 1324–1339. [Google Scholar] [CrossRef]
- Agbejule, A.; Sempron-Namuag, P. A bibliometric analysis of carbon capture, utilization and storage (CCUS): Identifying barriers and drivers. Appl. Energy 2025, 400, 126604. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, X.; Zhang, H.; Cao, Y.; Terzija, V. Review on deep learning applications in frequency analysis and control of modern power system. Int. J. Electr. Power Energy Syst. 2022, 136, 107744. [Google Scholar] [CrossRef]
- Akhtar, S.; Adeel, M.; Iqbal, M.; Namoun, A.; Tufail, A.; Kim, K. Deep learning methods utilization in electric power systems. Energy Rep. 2023, 10, 2138–2151. [Google Scholar] [CrossRef]
Rank | Term | Term Frequency |
---|---|---|
1 | New energy | 65 |
2 | Source-Grid-Load-Storage | 34 |
3 | Power market | 23 |
4 | Renewable energy | 21 |
5 | Advanced energy storage | 18 |
6 | System safety | 15 |
7 | Pumped-storage hydroelectricity | 13 |
8 | Carbon capture, utilization, and storage (CCUS) | 13 |
9 | New energy generation | 13 |
10 | Power supply | 11 |
Rank | Term | Raw Count | TextRank Weight |
---|---|---|---|
1 | New power system | 12,294 | 0.4770 |
2 | Power system | 7594 | 0.4368 |
3 | Generation-Grid-Load-Storage | 3603 | 0.2029 |
4 | Distributed energy | 3250 | 0.1746 |
5 | Renewable energy | 2674 | 0.1575 |
6 | Electricity market | 2606 | 0.1491 |
Rank | Keywords | Frequency | Centrality |
---|---|---|---|
1 | Renewable energy | 247 | 0.06 |
2 | Model | 127 | 0.05 |
3 | Energy storage | 119 | 0.06 |
4 | Wind power | 73 | 0.05 |
5 | Performance | 73 | 0.05 |
6 | Storage | 69 | 0.08 |
7 | Power system | 63 | 0.05 |
8 | Electricity market | 57 | 0.01 |
9 | Operation | 56 | 0.04 |
10 | Integration | 56 | 0.05 |
Keywords | Year | Strength | Begin | End | 2015–2024 |
---|---|---|---|---|---|
Electricity market | 2015 | 7.96 | 2015 | 2018 | ---------- |
Wind power | 2015 | 7.93 | 2015 | 2018 | ---------- |
Energy policy | 2015 | 5.51 | 2015 | 2018 | ---------- |
Smart grid | 2015 | 3.32 | 2015 | 2019 | ---------- |
Demand-side management | 2016 | 3.45 | 2016 | 2020 | ---------- |
Flexibility | 2016 | 2.88 | 2016 | 2019 | ---------- |
Economic growth | 2016 | 2.92 | 2017 | 2021 | ---------- |
Cointegration | 2017 | 2.74 | 2017 | 2020 | ---------- |
Neural network | 2020 | 3.16 | 2020 | 2023 | ---------- |
Capture | 2021 | 3.19 | 2021 | 2024 | ---------- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chen, H.; Liu, M.; Zhou, M.; Liu, L.; Zhang, Y. Decoding the Developmental Trajectory of the New Power System in China via Bibliometric and Visual Analysis. Energies 2025, 18, 4809. https://doi.org/10.3390/en18184809
Wang Y, Chen H, Liu M, Zhou M, Liu L, Zhang Y. Decoding the Developmental Trajectory of the New Power System in China via Bibliometric and Visual Analysis. Energies. 2025; 18(18):4809. https://doi.org/10.3390/en18184809
Chicago/Turabian StyleWang, Yinan, Heng Chen, Minghong Liu, Mingyuan Zhou, Lingshuang Liu, and Yan Zhang. 2025. "Decoding the Developmental Trajectory of the New Power System in China via Bibliometric and Visual Analysis" Energies 18, no. 18: 4809. https://doi.org/10.3390/en18184809
APA StyleWang, Y., Chen, H., Liu, M., Zhou, M., Liu, L., & Zhang, Y. (2025). Decoding the Developmental Trajectory of the New Power System in China via Bibliometric and Visual Analysis. Energies, 18(18), 4809. https://doi.org/10.3390/en18184809