New Advances in Oil, Gas and Geothermal Reservoirs: 2nd Edition
Conflicts of Interest
References
- Guo, S.; Zhu, D. Mini-Review of Black Nanosheets for Enhanced Oil Recovery Used in Low-Permeability/Ultra-Low-Permeability Reservoirs. Energy Fuels 2025, 39, 16768–16793. [Google Scholar] [CrossRef]
- Yang, P.; Ren, Z.-L.; Fu, J.-H.; Bao, H.-P.; Xiao, H.; Shi, Z.; Wang, K.; Zhang, Y.-Y.; Liu, W.-H.; Li, W.-H. A tectono-thermal perspective on the petroleum generation, accumulation and preservation in the southern Ordos Basin, North China. Pet. Sci. 2024, 21, 1459–1473. [Google Scholar] [CrossRef]
- Davoodi, S.; Thanh, H.V.; Wood, D.A.; Mehrad, M.; Muravyov, S.V.; Rukavishnikov, V.S. Carbon dioxide storage and cumulative oil production predictions in unconventional reservoirs applying optimized machine-learning models. Pet. Sci. 2025, 22, 296–323. [Google Scholar] [CrossRef]
- Zhang, H.-C.; Tang, Y.; He, Y.-W.; Qin, Y.; Luo, J.-H.; Sun, Y.; Wang, N.; Wang, D.-Q. Hydrocarbon gas huff-n-puff optimization of multiple horizontal wells with complex fracture networks in the M unconventional reservoir. Pet. Sci. 2024, 21, 1018–1031. [Google Scholar] [CrossRef]
- Zhu, Y.-J.; Wan, Y.-Y.; Tian, Y.; Mu, H.-M.; Zhang, T.-G. Biomass thermal decomposition induced hydrogen sulfide blooming in thermal recovery reservoirs. Pet. Sci. 2025, 22, 1802–1810. [Google Scholar] [CrossRef]
- Tan, Q.-Z.; Liu, S.-Y.; Wang, Y.-J.; Li, H.-Y.; Liu, J.-R.; Sun, W.-Y. A dual-model dual-grid upscaling method for solid-based thermal-reactive-compositional flow simulations in fractured oil shale reservoirs. Pet. Sci. 2025, 22, 2478–2492. [Google Scholar] [CrossRef]
- Guo, S.; Cheng, H.-B.; Tan, H.-G.; Li, H.-Y.; Zhang, J.; Gao, Y.-Q.; Zhu, D.-Y. Huff-n-puff recovery performance and mechanism analysis of black nanosheets in low-permeability reservoirs based on NMR technology. Pet. Sci. 2025, 22, 2992–3004. [Google Scholar] [CrossRef]
- Zhu, D.; Guo, S.; Lu, J.; Yang, Y.; Zhang, T.; Zhang, J.; Gao, Y.; Tan, H.; Cheng, H.; Li, H. Influence of Injection Parameters of Black Nanosheets on Enhancing Oil Recovery Performance in Low-Permeability Reservoirs. Energy Fuels 2025, 39, 6241–6250. [Google Scholar] [CrossRef]
- Ali, A.B.; Hamza, A.; Almakimi, A.A.; Saad, M.; Hussein, I.A.; Bai, B. Carboxymethyl cellulose-based preformed particle gels for water management in oil and gas reservoirs. Geoenergy Sci. Eng. 2024, 241, 213164. [Google Scholar] [CrossRef]
- Elaf, R.; Hamza, A.; Nimir, H.; Saad, M.; Hussein, I.A.; Bai, B. Development of inorganically cross-linked Sulfonated Polyacrylamide Preformed particle gels for Conformance Control: Impact of anionic groups. Energy Fuels 2024, 38, 2883–2897. [Google Scholar] [CrossRef]
- Alotibi, A.; Song, T.; Bai, B.; Schuman, T. Transport and Plugging Performance Evaluation of a Novel Recrosslinkable Microgel Used for Conformance Control in Mature Oil Fields with Superpermeable Channels. SPE J. 2025, 30, 823–835. [Google Scholar] [CrossRef]
- Wu, J.-X.; Li, S.-F.; Li, Q.-F.; Yan, F.; Zhou, Q.-L.; Ma, S.; Zhang, Y.-H.; Zhao, S.-Q.; Shi, Q. Characterization of chemical composition of high viscosity heavy oils: Macroscopic properties, and semi-quantitative analysis of molecular composition using high-resolution mass spectrometry. Pet. Sci. 2024, 21, 3612–3620. [Google Scholar] [CrossRef]
- Lei, X.-T.; Ahmadi, M.; Chen, Z. Molecular insights into oil detachment from hydrophobic quartz surfaces in clay-hosted nanopores during steam–surfactant co-injection. Pet. Sci. 2024, 21, 2457–2468. [Google Scholar]
- BinDahbag, M.; Atta, D.; Bagherzadeh, H.; Nath, D.; Ateeq, M.; Kheirollahi, S.; Bamzad, S.; Turkman, S.; Kamal, B.; Hassanzadeh, H. Effectiveness of Natural Gas Condensate as a Viable Solvent in ES-SAGD Processes: An Experimental Investigation Using a 3-D Physical Model. Energy Fuels 2024, 38, 16036–16048. [Google Scholar] [CrossRef]
- Yang, S.; Huang, S.; Jiang, Q.; Jiang, G.; Zhou, X.; Yu, C. An innovative in situ solvent generation enhanced SAGD technique: Mechanism analysis based on numerical simulation. Fuel 2024, 364, 131020. [Google Scholar] [CrossRef]
- Atta, D.; BinDahbag, M.; Bagherzadeh, H.; Nath, D.; Shah Bukhari, S.S.U.; Turkman, S.; El-Shazly, A.; Hassanzadeh, H. A 3-D Physical Model Experimental Study of the ES-SAGD Process Utilizing Dimethyl Ether (DME) as a Solvent. Energy Fuels 2025, 39, 15672–15688. [Google Scholar] [CrossRef]
- Halari, D.; Yadav, S.; Kesarwani, H.; Saxena, A.; Sharma, S. Nanoparticle and surfactant stabilized carbonated water induced in-situ CO2 foam: An improved oil recovery approach. Energy Fuels 2024, 38, 3622–3634. [Google Scholar] [CrossRef]
- Geng, W.; Dong, B.; Zhang, Y.; Li, C.z.; Yang, N.; Si, Y.; Dai, C.; Zhao, G.; Cheng, H. A Temperature-Salinity Responsive MCPs System for Water Shutoff in Tight Gas Reservoirs. Energy Fuels 2025, 39, 16830–16843. [Google Scholar] [CrossRef]
- Song, T.; Bai, B.; Huang, R.; Zhang, S.; Liu, P.; Eriyagama, Y.; Tian, X.; Ahdaya, M.; Schuman, T. Development and evaluation of lysine-crosslinked re-crosslinkable particle gel for water control in high-temperature reservoirs. J. Mol. Liq. 2024, 407, 125133. [Google Scholar] [CrossRef]
- Ben Ali, A.; Elaf, R.; Almakimi, A.A.; Saad, M.; Hussein, I.A.; Bai, B. Development of agar-based preformed particle gel for water control in high-salinity reservoirs. Ind. Eng. Chem. Res. 2024, 63, 8524–8541. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, H.-L.; Fu, J.-H.; Su, Y.; Li, Q.-F.; Yue, T.-Q. A novel drilling parameter optimization method based on big data of drilling. Pet. Sci. 2025, 22, 1596–1610. [Google Scholar] [CrossRef]
- Kang, M.-L.; Zhou, J.; Zhang, J.; Xiao, L.-Z.; Liao, G.-Z.; Shao, R.-B.; Luo, G. An integrated method of data-driven and mechanism models for formation evaluation with logs. Pet. Sci. 2025, 22, 1110–1124. [Google Scholar] [CrossRef]
- Mkono, C.N.; Chuanbo, S.; Mulashani, A.K.; Abelly, E.N.; Kasala, E.E.; Shanghvi, E.R.; Emmanuely, B.L.; Mokobodi, T. Improved Reservoir Porosity Estimation Using an Enhanced Group Method of Data Handling with Differential Evolution Model and Explainable Artificial Intelligence. SPE J. 2025, 30, 1922–1940. [Google Scholar] [CrossRef]
- Meng, H.; Lin, B.; Jin, Y. Stop Using Black-Box Models: Application of Explainable Artificial Intelligence for Rate of Penetration Prediction. SPE J. 2024, 29, 6640–6654. [Google Scholar] [CrossRef]
- Zhu, D.; Zhao, Q.; Chen, P.; Lu, J.; Yang, Y.; Guo, S.; Zhang, T. Laboratory Evaluation of Antileakage Performance against CO2 of Alkali-Activated Gel-Reinforced Cement for Carbon Capture, Utilization, and Storage. SPE J. 2025, 30, 3776–3791. [Google Scholar] [CrossRef]
- Su, D.; Mao, T.; Huang, S.; Li, Z.; Zhou, C. Novel Prediction Method for the Service Life of the Cement Sheath in Gas Storage Wells. SPE J. 2025, 30, 3437–3455. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, Y.; Pang, H.; Lin, B. Upscaling for Full-Physics Models of CO2 Injection Into Saline Aquifers. SPE J. 2025, 30, 3065–3082. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, M.; Chen, W.; Zhang, S.; Wang, S. A Microscopic Experimental Study on the Dominant Flow Channels of Water Flooding in Ultra-High Water Cut Reservoirs. Energies 2024, 17, 5756. [Google Scholar] [CrossRef]
- Tian, J.; Huang, S.; Dong, M.; Yan, W.; Qi, Z. A Study on the Thermal Physical Property Changes in Formation Rocks during Rapid Preheating of SAGD. Energies 2024, 17, 3834. [Google Scholar] [CrossRef]
- Fu, Q.; Tian, J.; Liu, Y.; Qi, Z.; Jiao, H.; Yang, S. Comparison of the Reaction Characteristics of Different Fuels in the Supercritical Multicomponent Thermal Fluid Generation Process. Energies 2024, 17, 5376. [Google Scholar] [CrossRef]
- Yang, S.; Qi, Z.; Tian, J.; Dong, M.; Zhang, W.; Yan, W. Composition and Injection Rate Co-Optimization Method of Supercritical Multicomponent Thermal Fluid Used for Offshore Heavy Oil Thermal Recovery. Energies 2024, 17, 5239. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, Z.; Tian, J.; Xu, F.; Kong, D.; Dong, M.; Yang, S.; Yan, W. Influence of Reaction Conditions on the Yield of Supercritical Multicomponent Thermal Fluids. Energies 2024, 17, 5012. [Google Scholar] [CrossRef]
- Zhang, H.; Pu, J.; Zhang, L.; Deng, H.; Yu, J.; Xie, Y.; Tong, X.; Man, X.; Liu, Z. Gas Production Prediction Model of Volcanic Reservoir Based on Data-Driven Method. Energies 2024, 17, 5461. [Google Scholar] [CrossRef]
- Zhang, A.; Zhao, Y.; Li, X.; Fan, X.; Ren, X.; Li, Q.; Yue, L. Development of a Hybrid AI Model for Fault Prediction in Rod Pumping System for Petroleum Well Production. Energies 2024, 17, 5422. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, L.; Jia, Q.; Xie, X.; Zhu, W.; Wang, P. Research on the Liquid Helium Insulation Characteristics of an Experimental System. Energies 2025, 18, 1349. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, D. New Advances in Oil, Gas and Geothermal Reservoirs: 2nd Edition. Energies 2025, 18, 4789. https://doi.org/10.3390/en18184789
Zhu D. New Advances in Oil, Gas and Geothermal Reservoirs: 2nd Edition. Energies. 2025; 18(18):4789. https://doi.org/10.3390/en18184789
Chicago/Turabian StyleZhu, Daoyi. 2025. "New Advances in Oil, Gas and Geothermal Reservoirs: 2nd Edition" Energies 18, no. 18: 4789. https://doi.org/10.3390/en18184789
APA StyleZhu, D. (2025). New Advances in Oil, Gas and Geothermal Reservoirs: 2nd Edition. Energies, 18(18), 4789. https://doi.org/10.3390/en18184789