Study on the Influence of Different Particle Sizes of Kaolin Blending with Zhundong Coal Combustion on the Adsorption of Alkali Metal Sodium and Ash Fusion Characteristics
Abstract
1. Introduction
2. Materials and Experimental Methods
2.1. Raw Material Preparation
2.2. Sodium Adsorption Characteristic Experiment
2.3. Calculation of Sodium Retention Rate
2.4. Experimental Methods
3. Results and Discussion
3.1. Morphology of Coal Ash and Variation in the Ash Formation Rate
3.2. Transformation Process of Coal Ash Minerals
3.3. Analysis of Coal Ash Fusion Characteristics
3.4. Sodium Retention Rate Analysis
4. Conclusions
- (1)
- As the particle size of the blended kaolin decreases, the molten agglomerated state in ZD coal ash transforms into a compact sintered particle structure, and the ash yield gradually increases.
- (2)
- The addition of kaolin promotes the decomposition of low-melting-point sulfates in coal ash and facilitates their transformation into silicates and aluminosilicates. As the particle size of blended kaolin decreases, the diffraction intensities of sulfates in the ash decrease, while the silicates and aluminosilicates increase accordingly.
- (3)
- With decreasing kaolin particle size, the ash fusion temperature shows a gradual increase. Blending kaolin with a particle size of 75–100 µm into the ZD coal, its DT and FT were 1137 °C and 1161 °C. However, the particle size was reduced to 20–63 µm, its DT and FT were 42 °C and 36 °C higher, respectively, than those of the larger particle size kaolin. The particle size of kaolin decreases, and the high-melting-point silicates and aluminosilicates increase, thereby raising the ash fusion temperature.
- (4)
- A reduction in kaolin particle size significantly improves the sodium retention efficiency. Without kaolin addition, the sodium retention rate is only 28.03%, but it increases to 43.49% when 75–100 µm kaolin is blended. However, as the particle size decreases, the increase in sodium retention rate weakens from 8.47% to 2.04%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xin, H.-H.; Wang, D.-M.; Dou, G.-L.; Qi, X.-Y.; Xu, T.; Qi, G.-S. The Infrared Characterization and Mechanism of Oxygen Adsorption in Coal. Spectrosc. Lett. 2014, 47, 664–675. [Google Scholar] [CrossRef]
- Wang, C.; Fu, Z.; Weng, Q.; Che, D. Effect of ashing temperature on physical-chemical features of high-sodium ashes of Zhundong coals. Energy Sources Part A Recover. Util. Environ. Eff. 2017, 39, 747–753. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, X.; Querol, X.; Font, O.; Moreno, N.; Zhou, J. Environmental geochemistry of the feed coals and their combustion by-products from two coal-fired power plants in Xinjiang Province, Northwest China. Fuel 2012, 95, 446–456. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, C.; Yuan, C.; Xu, H.; Ma, L.; Fang, Q.; Chen, G. Investigation on the influence of sulfur and chlorine on the initial deposition/fouling characteristics of a high-alkali coal. Fuel Process. Technol. 2020, 198, 106234. [Google Scholar] [CrossRef]
- Liu, J.; Ma, G.; Du, Y.; Wang, C.; Zhao, Y.; Wu, W.; Shi, L.; Zhao, L.; Che, D. Simulation study on mineral transformation behaviors and ash fusion characteristics during high-alkali coal combustion under deep peaking conditions. Fuel 2025, 399, 135662. [Google Scholar] [CrossRef]
- Yanmei, Y.; Hai, Z.; Yang, Z.; Yuxin, W.; Qing, L. Effect of Si/Al/Na/Ca on Ash Fusion Characteristics of Zhundong Coal. J. Eng. Thermophys. 2018, 39, 1858–1863. [Google Scholar]
- Guo, L.; Wang, H.F.; Li, X.; Wang, X.X.; Bie, N.X.; Yao, B.; Zhen, W.J.; Li, J.; Lou, C.; Yao, H.; et al. Investigation of Slagging Condition in a Zhundong Coal-Fired Boiler via In Situ Optical Measurement of Gaseous Sodium. Sensors 2024, 24, 488. [Google Scholar] [CrossRef]
- Li, G.; Li, S.; Huang, Q.; Yao, Q. Fine particulate formation and ash deposition during pulverized coal combustion of high-sodium lignite in a down-fired furnace. Fuel 2015, 143, 430–437. [Google Scholar] [CrossRef]
- Hu, S.; Ni, Y.; Yin, Q.; Wang, J.; Lv, L.; Cen, K.; Zhou, H. Research on element migration and ash deposition characteristics of high-alkali coal in horizontal liquid slagging cyclone furnace. Fuel 2022, 308, 121962. [Google Scholar] [CrossRef]
- Wang, C.; Xu, C.; Cao, Z.; Di, H. Investigation on minerals migration during co-firing of different straw/coal blending ratios. Energy Convers. Manag. 2013, 74, 279–285. [Google Scholar] [CrossRef]
- Bhattacharyya, K.G.; Gupta, S.S. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Adv. Colloid Interface Sci. 2008, 140, 114–131. [Google Scholar] [CrossRef] [PubMed]
- Ptáček, P.; Frajkorová, F.; Šoukal, F.; Opravil, T. Kinetics and mechanism of three stages of thermal transformation of kaolinite to metakaolinite. Powder Technol. 2014, 264, 439–445. [Google Scholar] [CrossRef]
- Mwabe, P.O.; Wendt, J.O. Mechanisms governing trace sodium capture by kaolinite in a downflow combustor. Symp. (Int.) Combust. 1996, 26, 2447–2453. [Google Scholar] [CrossRef]
- Gale, T.K.; Wendt, J.O.L. Mechanisms and Models Describing Sodium and Lead Scavenging by a Kaolinite Aerosol at High Temperatures. Aerosol Sci. Technol. 2003, 37, 865–876. [Google Scholar] [CrossRef]
- Folgueras, M.B.; Díaz, R.M.; Xiberta, J.; García, M.P.; Pis, J.J. Influence of Sewage Sludge Addition on Coal Ash Fusion Temperatures. Energy Fuels 2005, 19, 2562–2570. [Google Scholar] [CrossRef]
- Zhu, C.; Tu, H.; Bai, Y.; Ma, D.; Zhao, Y. Evaluation of slagging and fouling characteristics during Zhundong coal co-firing with a Si/Al dominated low rank coal. Fuel 2019, 254, 115730. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Xing, H.; Wang, G.; Deng, H.; Hu, H.; Li, X.; Yao, H. Correlations between the sodium adsorption capacity and the thermal behavior of modified kaolinite during the combustion of Zhundong coal. Fuel 2019, 237, 170–177. [Google Scholar] [CrossRef]
- Ghazidin, H.; Suyatno, S.; Prismantoko, A.; Karuana, F.; Sarjono; Prabowo; Setiyawan, A.; Darmawan, A.; Aziz, M.; Vuthaluru, H.; et al. Impact of additives in mitigating ash-related problems during co-combustion of solid recovered fuel and high-sulfur coal. Energy 1305. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, L.; Ji, J.; Wang, Q.; Fang, M. Ash deposition behavior of a high-alkali coal in circulating fluidized bed combustion at different bed temperatures and the effect of kaolin. RSC Adv. 2018, 8, 33817–33827. [Google Scholar] [CrossRef]
- Pu, Y.; Wang, H.; Guo, L.; Lou, C. Effect of Kaolin Addition on Combustion Behavior of Zhundong Coal Pellet Using Flame Emission Spectroscopy. Combust. Sci. Technol. 2023, 197, 1809–1828. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, J.; Liu, D.; Yang, H.; Li, S. Understanding Ash Deposition for the Combustion of Zhundong Coal: Focusing on Different Additives Effects. Energy Fuels 2018, 32, 7103–7111. [Google Scholar] [CrossRef]
- Fengli, L.; Bo, J.; Guoxi, C.; Yu, S.; Zheng, T. Structural and evolutionary characteristics of pores-microfractures and their influence on coalbed methane exploitation in high-rank brittle tectonically deformed coals of the Yangquan mining area, northeastern Qinshui basin, China. J. Pet. Sci. Eng. 2019, 174, 1290–1302. [Google Scholar] [CrossRef]
- Ikhsan, J.; Johnson, B.B.; Wells, J.D. A Comparative Study of the Adsorption of Transition Metals on Kaolinite. J. Colloid Interface Sci. 1999, 217, 403–410. [Google Scholar] [CrossRef]
- GB/T 212-2008; Proximate Analysis of Coal. National Standard PRC: Beijing, China, 2008. (In Chinese)
- GB/T 30733-2014; Determination of Total Carbon, Hydrogen and Nitrogen Content in Coal-Instrumental Method. National Standard PRC: Beijing, China, 2014. (In Chinese)
- GB/T 219-2008; Determination of Fusibility of Coal Ash. National Standard PRC: Beijing, China, 2008. (In Chinese)
- GB/T 1574-2007; Test Method for Analysis of Coal Ash. National Standard PRC: Beijing, China, 2007. (In Chinese)
- Liu, Y.; Cheng, L.; Zhao, Y.; Ji, J.; Wang, Q.; Luo, Z.; Bai, Y. Transformation behavior of alkali metals in high-alkali coals. Fuel Process. Technol. 2018, 169, 288–294. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Lv, Y.; Wan, K.; He, Y.; Xia, J.; Cen, K. Inhibition of sodium release from Zhundong coal via the addition of mineral additives: A combination of online multi-point LIBS and offline experimental measurements. Fuel 2018, 212, 498–505. [Google Scholar] [CrossRef]
- Chouia, F.; Belhouchet, H.; Sahnoune, F.; Bouzrara, F. Reaction sintering of kaolin-natural phosphate mixtures. Ceram. Int. 2015, 41, 8064–8069. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, Z.; Liu, H.; Tu, Y.; Yang, W.; Zeng, H.; Qiu, J. Decomposition and solid reactions of calcium sulfate doped with SiO2, Fe2O3 and Al2O3. J. Anal. Appl. Pyrolysis 2015, 113, 491–498. [Google Scholar] [CrossRef]
- Yu, K.; Tang, H.; Cai, T.; Chen, X.; Zan, H.; Ma, J.; Liang, C. Mechanism of kaolinite’s influence on sodium release characteristics of high-sodium coal under oxy-steam combustion conditions. Fuel 2021, 290, 119812. [Google Scholar] [CrossRef]
- Dai, B.-Q.; Wu, X.; De Girolamo, A.; Zhang, L. Inhibition of lignite ash slagging and fouling upon the use of a silica-based additive in an industrial pulverised coal-fired boiler. Part 1. Changes on the properties of ash deposits along the furnace. Fuel 2015, 139, 720–732. [Google Scholar] [CrossRef]
- Xiong, Q.-A.; Huang, Y.; Li, J.; Zhang, Y.; Zhang, W. Effect of CaO/Fe2O3 on ash fusibility during petroleum coke gasification and combustion. Fuel 2022, 331, 125667. [Google Scholar] [CrossRef]
- Li, F.; Li, M.; Fan, H.; Fang, Y. Understanding Ash Fusion and Viscosity Variation from Coal Blending Based on Mineral Interaction. Energy Fuels 2017, 32, 132–141. [Google Scholar] [CrossRef]
Proximate Analysis | Ultimate Analysis | |||||||
---|---|---|---|---|---|---|---|---|
Mar | Ad | Vdaf | FCad * | Cd | Hd | Od * | Nd | St,ad |
25.40 | 9.67 | 37.05 | 48.76 | 47.86 | 3.16 | 11.80 | 1.18 | 0.93 |
Ash Fusion Temperatures | ||||
---|---|---|---|---|
ZD coal | DT | ST | HT | FT |
Temperature/°C | 1149 | 1160 | 1172 | 1193 |
Sample | Oxide Composition | ||||||||
---|---|---|---|---|---|---|---|---|---|
Na2O | Fe2O3 | Al2O3 | SiO2 | CaO | MgO | SO3 | TiO2 | K2O | |
ZD coal | 3.20 | 9.10 | 18.69 | 28.44 | 14.06 | 5.33 | 20.16 | 0.78 | 0.25 |
kaolin | 1.11 | 2.83 | 22.99 | 68.17 | 0.30 | 0.64 | 0.14 | 1.20 | 2.35 |
Chemical Reaction Equations | Number |
---|---|
(2) | |
(3) | |
(4) | |
(5) | |
(6) | |
(7) | |
(8) | |
(9) | |
(10) |
Number | Molecular Formula | Number | Molecular Formula | Number | Molecular Formula |
---|---|---|---|---|---|
1 | CaSO4 | 6 | Na2Si2O5 | 11 | CaAl2Si2O8 (anorthite) |
2 | CaO | 7 | NaAlSiO4 (nepheline) | 12 | Al2(SiO4)O (kyanite) |
3 | Na2SO4 | 8 | Ca2SiO4 | 13 | Mg2SiO4 |
4 | Al2O3 | 9 | NaAlSi3O8 (albite) | 14 | MgAl2O4 (spinel) |
5 | SiO2 | 10 | Ca2Al2SiO7 gehlenite) | 15 | Mg1.86Fe0.14SiO4 (Iron magnesium olivine) |
Sample | Main Mineral Component | Ash Fusion Temperature (/°C) | |||
---|---|---|---|---|---|
DT | ST | FT | HT | ||
C-K1 | CaAl2Si2O8, Ca2SiO4, NaAlSi3O8 | 1137 | 1142 | 1156 | 1161 |
C-K2 | Ca2Al2SiO7 (increase), CaAl2Si2O8 (decrease), Ca2SiO4, NaAlSi3O8 | 1163 | 1173 | 1178 | 1185 |
C-K3 | Ca2Al2SiO7 (increase), CaAl2Si2O8(decrease), Ca2SiO4, NaAlSi3O8 | 1179 | 1186 | 1194 | 1197 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Xie, S.; Jia, B.; Huang, P.; An, Y.; Liang, Y.; Feng, J.; Wang, J.; Wei, B. Study on the Influence of Different Particle Sizes of Kaolin Blending with Zhundong Coal Combustion on the Adsorption of Alkali Metal Sodium and Ash Fusion Characteristics. Energies 2025, 18, 4665. https://doi.org/10.3390/en18174665
Liu Y, Xie S, Jia B, Huang P, An Y, Liang Y, Feng J, Wang J, Wei B. Study on the Influence of Different Particle Sizes of Kaolin Blending with Zhundong Coal Combustion on the Adsorption of Alkali Metal Sodium and Ash Fusion Characteristics. Energies. 2025; 18(17):4665. https://doi.org/10.3390/en18174665
Chicago/Turabian StyleLiu, Yin, Shengcheng Xie, Bo Jia, Peilong Huang, Yimin An, Yifan Liang, Jian Feng, Jianjiang Wang, and Bo Wei. 2025. "Study on the Influence of Different Particle Sizes of Kaolin Blending with Zhundong Coal Combustion on the Adsorption of Alkali Metal Sodium and Ash Fusion Characteristics" Energies 18, no. 17: 4665. https://doi.org/10.3390/en18174665
APA StyleLiu, Y., Xie, S., Jia, B., Huang, P., An, Y., Liang, Y., Feng, J., Wang, J., & Wei, B. (2025). Study on the Influence of Different Particle Sizes of Kaolin Blending with Zhundong Coal Combustion on the Adsorption of Alkali Metal Sodium and Ash Fusion Characteristics. Energies, 18(17), 4665. https://doi.org/10.3390/en18174665