Food Waste Bioconversion Features Depending on the Regime of Anaerobic Digestion
Abstract
1. Introduction
2. Methodology
2.1. Experimental Setup and Analytical Methods
2.2. Feedstock Used
3. Results
3.1. Parameters of the Substrate
3.2. The Dynamics of the Biogas Production
3.3. Changes in the pH, FOS/TAC, VFA, Alcohols, and Ammonia
3.4. Yield of Biogas per Mg of VS
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Voluntary Code of Conduct for Food Loss and Waste Reduction; FAO: Rome, Italy, 2022; ISBN 978-92-5-136030-9. [Google Scholar] [CrossRef]
- Food Waste and Food Waste Prevention—Estimates. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Food_waste_and_food_waste_prevention_-_estimates (accessed on 18 August 2025).
- FAO. World Food and Agriculture—Statistical Pocketbook 2024; FAO: Rome, Italy, 2024; ISBN 978-92-5-139256-0. [Google Scholar] [CrossRef]
- Eurostat Statistics 2020. Available online: https://ec.europa.eu/eurostat/databrowser/product/page/ENV_WASFW (accessed on 18 August 2025).
- KOWR Wykaz Surowców Zużytych Do Produkcji Biogazu Rolniczego w Latach 2011–2024. Available online: https://www.gov.pl/web/kowr/dane-dotyczace-dzialalnosci-wytworcow-biogazu-rolniczego (accessed on 18 August 2025).
- Baranowska, H.M.; Masewicz, Ł.; Kowalczewski, P.Ł.; Lewandowicz, G.; Piątek, M.; Kubiak, P. Water Properties in Pâtés Enriched with Potato Juice. Eur. Food Res. Technol. 2018, 244, 387–393. [Google Scholar] [CrossRef]
- Czekała, W. Concept of in-oil project based on bioconversion of by-products from food processing industry. J. Ecol. Eng. 2017, 18, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Kibler, K.M.; Reinhart, D.; Hawkins, C.; Motlagh, A.M.; Wright, J. Food Waste and the Food-Energy-Water Nexus: A Review of Food Waste Management Alternatives. Waste Manag. 2018, 74, 52–62. [Google Scholar] [CrossRef]
- Martin-Rios, C.; Demen-Meier, C.; Gössling, S.; Cornuz, C. Food Waste Management Innovations in the Foodservice Industry. Waste Manag. 2018, 79, 196–206. [Google Scholar] [CrossRef]
- Ravindran, R.; Jaiswal, A.K. Exploitation of Food Industry Waste for High-Value Products. Trends Biotechnol. 2016, 34, 58–69. [Google Scholar] [CrossRef]
- Pap, N.; Pongrácz, E.; Myllykoski, L.; Keiski, R.L. Waste Minimization and Utilization in the Food Industry: Valorization of Food Industry Wastes and Byproducts; CRC Press Taylor & Francis Group: Abingdon, UK, 2014; ISBN 978-1-4398-8071-5. [Google Scholar]
- Girotto, F.; Alibardi, L.; Cossu, R. Food Waste Generation and Industrial Uses: A Review. Waste Manag. 2015, 45, 32–41. [Google Scholar] [CrossRef]
- Hedlund, F.H.; Madsen, M. Incomplete Understanding of Biogas Chemical Hazards—Serious Gas Poisoning Accident While Unloading Food Waste at Biogas Plant. J. Chem. Health Saf. 2018, 25, 13–21. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Hsu, Y.-C.; Wang, C.-T. Effects of Storage Environment on the Moisture Content and Microbial Growth of Food Waste. J. Environ. Manag. 2018, 214, 192–196. [Google Scholar] [CrossRef]
- Cerda, A.; Artola, A.; Font, X.; Barrena, R.; Gea, T.; Sánchez, A. Composting of Food Wastes: Status and Challenges. Bioresour. Technol. 2018, 248, 57–67. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, M.; Wu, C.; Wang, Q.; Gao, M.; Huang, Q.; Liu, Y. A Comprehensive Review on Food Waste Anaerobic Digestion: Research Updates and Tendencies. Bioresour. Technol. 2018, 247, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Da Ros, C.; Cavinato, C.; Pavan, P.; Bolzonella, D. Mesophilic and Thermophilic Anaerobic Co-Digestion of Winery Wastewater Sludge and Wine Lees: An Integrated Approach for Sustainable Wine Production. J. Environ. Manag. 2017, 203, 745–752. [Google Scholar] [CrossRef]
- Masłoń, A.; Czarnota, J.; Szaja, A.; Szulżyk-Cieplak, J.; Łagód, G. The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland. Energies 2020, 13, 6056. [Google Scholar] [CrossRef]
- Abouee Mehrizi, E.; Ebrahimi, A.A.; Saadati, H.; Zahedi, A.; Ghorbanian, M.; Soltanizadeh, Z.; Salemi, K. Investigating the Effectiveness of Anaerobic Digestion in the Treatment of Sugarcane Industry Wastewater: A Systematic Review and Meta-Analysis. Case Stud. Chem. Environ. Eng. 2023, 8, 100414. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, Z.; Gu, R.; Liu, C.; Xu, N.; Sun, Z.; Jing, L.; Niu, X. Anaerobic Digestion of Municipal Sewage Sludge Integrated with Brewery Wastewater Treatment: Importance of Temperature and Mixing Ratio. Water 2023, 15, 2902. [Google Scholar] [CrossRef]
- Caporgno, M.P.; Trobajo, R.; Caiola, N.; Ibáñez, C.; Fabregat, A.; Bengoa, C. Biogas Production from Sewage Sludge and Microalgae Co-Digestion under Mesophilic and Thermophilic Conditions. Renew. Energy 2015, 75, 374–380. [Google Scholar] [CrossRef]
- Leite, W.R.M.; Gottardo, M.; Pavan, P.; Belli Filho, P.; Bolzonella, D. Performance and Energy Aspects of Single and Two Phase Thermophilic Anaerobic Digestion of Waste Activated Sludge. Renew. Energy 2016, 86, 1324–1331. [Google Scholar] [CrossRef]
- Lafratta, M.; Thorpe, R.B.; Ouki, S.K.; Shana, A.; Germain, E.; Willcocks, M.; Lee, J. Demand-Driven Biogas Production from Anaerobic Digestion of Sewage Sludge: Application in Demonstration Scale. Waste Biomass Valor. 2021, 12, 6767–6780. [Google Scholar] [CrossRef]
- Wu, L.-J.; Qin, Y.; Hojo, T.; Li, Y.-Y. Upgrading of Anaerobic Digestion of Waste Activated Sludge by Temperature-Phased Process with Recycle. Energy 2015, 87, 381–389. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, J.; Achinas, S.; Zhang, Z.; Krooneman, J.; Euverink, G.J.W. The Biomethanation of Cow Manure in a Continuous Anaerobic Digester Can Be Boosted via a Bioaugmentation Culture Containing Bathyarchaeota. Sci. Total Environ. 2020, 745, 141042. [Google Scholar] [CrossRef]
- Billen, P.; Costa, J.; Van der Aa, L.; Van Caneghem, J.; Vandecasteele, C. Electricity from Poultry Manure: A Cleaner Alternative to Direct Land Application. J. Clean. Prod. 2015, 96, 467–475. [Google Scholar] [CrossRef]
- Wang, F.; Hidaka, T.; Tsuno, H.; Tsubota, J. Co-Digestion of Polylactide and Kitchen Garbage in Hyperthermophilic and Thermophilic Continuous Anaerobic Process. Bioresour. Technol. 2012, 112, 67–74. [Google Scholar] [CrossRef]
- Brodeur, G.; Yau, E.; Badal, K.; Collier, J.; Ramachandran, K.B.; Ramakrishnan, S. Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: A Review. Enzym. Res. 2011, 2011, 787532. [Google Scholar] [CrossRef]
- Mazurkiewicz, J.; Marczuk, A.; Pochwatka, P.; Kujawa, S. Maize Straw as a Valuable Energetic Material for Biogas Plant Feeding. Materials 2019, 12, 3848. [Google Scholar] [CrossRef]
- Zhou, G.; Zhang, J.; Chen, L.; Zhang, C.; Yu, Z. Temperature and Straw Quality Regulate the Microbial Phospholipid Fatty Acid Composition Associated with Straw Decomposition. Pedosphere 2016, 26, 386–398. [Google Scholar] [CrossRef]
- Ameen, F.; Ranjitha, J.; Ahsan, N.; Shankar, V. Co-Digestion of Microbial Biomass with Animal Manure in Three-Stage Anaerobic Digestion. Fuel 2021, 306, 121746. [Google Scholar] [CrossRef]
- Di Maria, F.; Sordi, A.; Cirulli, G.; Micale, C. Amount of Energy Recoverable from an Existing Sludge Digester with the Co-Digestion with Fruit and Vegetable Waste at Reduced Retention Time. Appl. Energy 2015, 150, 9–14. [Google Scholar] [CrossRef]
- Imeni, S.M.; Puy, N.; Ovejero, J.; Busquets, A.M.; Bartroli, J.; Pelaz, L.; Ponsá, S.; Colón, J. Techno-Economic Assessment of Anaerobic Co-Digestion of Cattle Manure and Wheat Straw (Raw and Pre-Treated) at Small to Medium Dairy Cattle Farms. Waste Biomass Valor. 2020, 11, 4035–4051. [Google Scholar] [CrossRef]
- Malovanyy, M.; Voytovych, I.; Mukha, O.; Zhuk, V.; Tymchuk, I.; Soloviy, C. Potential of the Co-Digestion of the Sewage Sludge and Plant Biomass on the Example of Lviv WWTP. Ecol. Eng. Environ. Technol. 2022, 23, 107–112. [Google Scholar] [CrossRef]
- Montañés Alonso, R.; Solera del Río, R.; Pérez García, M. Thermophilic and Mesophilic Temperature Phase Anaerobic Co-Digestion (TPAcD) Compared with Single-Stage Co-Digestion of Sewage Sludge and Sugar Beet Pulp Lixiviation. Biomass Bioenergy 2016, 93, 107–115. [Google Scholar] [CrossRef]
- Jasińska, A.; Grosser, A.; Meers, E. Possibilities and Limitations of Anaerobic Co-Digestion of Animal Manure—A Critical Review. Energies 2023, 16, 3885. [Google Scholar] [CrossRef]
- Akturk, A.S.; Demirer, G.N. Improved Food Waste Stabilization and Valorization by Anaerobic Digestion Through Supplementation of Conductive Materials and Trace Elements. Sustainability 2020, 12, 5222. [Google Scholar] [CrossRef]
- Bai, X.; Grassino, M.; Jensen, P.D. Effect of Alkaline Pre-Treatment on Hydrolysis Rate and Methane Production during Anaerobic Digestion of Paunch Solid Waste. Waste Manag. 2023, 171, 303–312. [Google Scholar] [CrossRef]
- Karthikeyan, P.K.; Bandulasena, H.C.H.; Radu, T. A Comparative Analysis of Pre-Treatment Technologies for Enhanced Biogas Production from Anaerobic Digestion of Lignocellulosic Waste. Ind. Crops Prod. 2024, 215, 118591. [Google Scholar] [CrossRef]
- Sieborg, M.U.; Jønson, B.D.; Larsen, S.U.; Vazifehkhoran, A.H.; Triolo, J.M. Co-Ensiling of Wheat Straw as an Alternative Pre-Treatment to Chemical, Hydrothermal and Mechanical Methods for Methane Production. Energies 2020, 13, 4047. [Google Scholar] [CrossRef]
- Almeida Streitwieser, D. Comparison of the Anaerobic Digestion at the Mesophilic and Thermophilic Temperature Regime of Organic Wastes from the Agribusiness. Bioresour. Technol. 2017, 241, 985–992. [Google Scholar] [CrossRef]
- Xu, F.; Li, Y.; Ge, X.; Yang, L.; Li, Y. Anaerobic Digestion of Food Waste—Challenges and Opportunities. Bioresour. Technol. 2018, 247, 1047–1058. [Google Scholar] [CrossRef]
- Chavan, S.; Yadav, B.; Tyagi, R.D.; Wong, J.W.C.; Drogui, P. Comparative Study of Chemical and Enzymatic Pre-Treatments of Kitchen Waste (KW) to Generate Fermentable Sugars for the Production of Polyhydroxyalkanoates (PHA). Biochem. Eng. J. 2024, 204, 109240. [Google Scholar] [CrossRef]
- Ji, C.; Kong, C.-X.; Mei, Z.-L.; Li, J. A Review of the Anaerobic Digestion of Fruit and Vegetable Waste. Appl. Biochem. Biotechnol. 2017, 183, 906–922. [Google Scholar] [CrossRef]
- Banks, C.J.; Zhang, Y.; Jiang, Y.; Heaven, S. Trace Element Requirements for Stable Food Waste Digestion at Elevated Ammonia Concentrations. Bioresour. Technol. 2012, 104, 127–135. [Google Scholar] [CrossRef]
- Nagao, N.; Tajima, N.; Kawai, M.; Niwa, C.; Kurosawa, N.; Matsuyama, T.; Yusoff, F.M.; Toda, T. Maximum Organic Loading Rate for the Single-Stage Wet Anaerobic Digestion of Food Waste. Bioresour. Technol. 2012, 118, 210–218. [Google Scholar] [CrossRef]
- Zhang, C.; Xiao, G.; Peng, L.; Su, H.; Tan, T. The Anaerobic Co-Digestion of Food Waste and Cattle Manure. Bioresour. Technol. 2013, 129, 170–176. [Google Scholar] [CrossRef]
- Ruffino, B.; Cerutti, A.; Campo, G.; Scibilia, G.; Lorenzi, E.; Zanetti, M. Thermophilic vs. Mesophilic Anaerobic Digestion of Waste Activated Sludge: Modelling and Energy Balance for Its Applicability at a Full Scale WWTP. Renew. Energy 2020, 156, 235–248. [Google Scholar] [CrossRef]
- Appels, L.; Assche, A.V.; Willems, K.; Degrève, J.; Impe, J.V.; Dewil, R. Peracetic Acid Oxidation as an Alternative Pre-Treatment for the Anaerobic Digestion of Waste Activated Sludge. Bioresour. Technol. 2011, 102, 4124–4130. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, J.; Pérez, M.; Romero, L.I. Comparison of Mesophilic and Thermophilic Dry Anaerobic Digestion of OFMSW: Kinetic Analysis. Chem. Eng. J. 2013, 232, 59–64. [Google Scholar] [CrossRef]
- Sánchez, E.; Borja, R.; Weiland, P.; Travieso, L.; Martín, A. Effect of Substrate Concentration and Temperature on the Anaerobic Digestion of Piggery Waste in a Tropical Climate. Process Biochem. 2001, 37, 483–489. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Z.; Stiverson, J.A.; Yu, Z.; Li, Y. Reactor Performance and Microbial Community Dynamics during Solid-State Anaerobic Digestion of Corn Stover at Mesophilic and Thermophilic Conditions. Bioresour. Technol. 2013, 136, 574–581. [Google Scholar] [CrossRef]
- Kasinski, S. Mesophilic and Thermophilic Anaerobic Digestion of Organic Fraction Separated during Mechanical Heat Treatment of Municipal Waste. Appl. Sci. 2020, 10, 2412. [Google Scholar] [CrossRef]
- Guo, X.; Wang, C.; Sun, F.; Zhu, W.; Wu, W. A Comparison of Microbial Characteristics between the Thermophilic and Mesophilic Anaerobic Digesters Exposed to Elevated Food Waste Loadings. Bioresour. Technol. 2014, 152, 420–428. [Google Scholar] [CrossRef]
- Cieślik, M.; Dach, J.; Lewicki, A.; Smurzyńska, A.; Janczak, D.; Pawlicka-Kaczorowska, J.; Boniecki, P.; Cyplik, P.; Czekała, W.; Jóźwiakowski, K. Methane Fermentation of the Maize Straw Silage under Meso- and Thermophilic Conditions. Energy 2016, 115, 1495–1502. [Google Scholar] [CrossRef]
- Golkowska, K.; Greger, M. Anaerobic Digestion of Maize and Cellulose under Thermophilic and Mesophilic Conditions—A Comparative Study. Biomass Bioenergy 2013, 56, 545–554. [Google Scholar] [CrossRef]
- Bong, C.P.C.; Lim, L.Y.; Lee, C.T.; Klemeš, J.J.; Ho, C.S.; Ho, W.S. The Characterisation and Treatment of Food Waste for Improvement of Biogas Production during Anaerobic Digestion—A Review. J. Clean. Prod. 2018, 172, 1545–1558. [Google Scholar] [CrossRef]
- Zhang, C.; Su, H.; Baeyens, J.; Tan, T. Reviewing the Anaerobic Digestion of Food Waste for Biogas Production. Renew. Sustain. Energy Rev. 2014, 38, 383–392. [Google Scholar] [CrossRef]
- Suhartini, S.; Heaven, S.; Banks, C.J. Comparison of Mesophilic and Thermophilic Anaerobic Digestion of Sugar Beet Pulp: Performance, Dewaterability and Foam Control. Bioresour. Technol. 2014, 152, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Sun, S.; Yang, D.; Sheng, W.; Ma, Y.; He, W.; Li, G. Anaerobic Digestion: An Alternative Resource Treatment Option for Food Waste in China. Sci. Total Env. 2021, 779, 146397. [Google Scholar] [CrossRef] [PubMed]
- Waliszewska, B.; Waliszewska, H.; Grzelak, M.; Majchrzak, L.; Gaweł, E.; Murawski, M.; Sieradzka, A.; Vaskina, I.; Spek-Dźwigała, A. Evaluation of Changes in the Chemical Composition of Grasses as a Result of the Methane Fermentation Process and Biogas Production Efficiency. Energies 2024, 17, 4100. [Google Scholar] [CrossRef]
- Nordmann, W. Die Überwachung Der Schlammfaulung. KA-Informationen Für Das Betriebspersonal, Beilage Zur Korrespondenz. Abwasser 1977, 3, 77. [Google Scholar]
- Kozłowski, K.; Dach, J.; Lewicki, A.; Cieślik, M.; Czekała, W.; Janczak, D.; Brzoski, M. Laboratory Simulation of an Agricultural Biogas Plant Start-Up. Chem. Eng. Technol. 2018, 41, 711–716. [Google Scholar] [CrossRef]
- Li, Q.; Li, H.; Wang, G.; Wang, X. Effects of Loading Rate and Temperature on Anaerobic Co-Digestion of Food Waste and Waste Activated Sludge in a High Frequency Feeding System, Looking in Particular at Stability and Efficiency. Bioresour. Technol. 2017, 237, 231–239. [Google Scholar] [CrossRef]
- Maspolim, Y.; Zhou, Y.; Guo, C.; Xiao, K.; Ng, W.J. Comparison of Single-Stage and Two-Phase Anaerobic Sludge Digestion Systems—Performance and Microbial Community Dynamics. Chemosphere 2015, 140, 54–62. [Google Scholar] [CrossRef]
- Zhang, X.; Jiao, P.; Wang, Y.; Wu, P.; Li, Y.; Ma, L. Enhancing Methane Production in Anaerobic Co-Digestion of Sewage Sludge and Food Waste by Regulating Organic Loading Rate. Bioresour. Technol. 2022, 363, 127988. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, R.; El-Mashad, H.M.; Dong, R. Effect of Feed to Inoculum Ratios on Biogas Yields of Food and Green Wastes. Bioresour. Technol. 2009, 100, 5103–5108. [Google Scholar] [CrossRef]
- Zandvoort, M.H.; van Hullebusch, E.D.; Gieteling, J.; Lens, P.N.L. Granular Sludge in Full-Scale Anaerobic Bioreactors: Trace Element Content and Deficiencies. Enzym. Microb. Technol. 2006, 39, 337–346. [Google Scholar] [CrossRef]
- Park, J.; Lee, B.; Shi, P.; Kwon, H.; Jeong, S.M.; Jun, H. Methanol Metabolism and Archaeal Community Changes in a Bioelectrochemical Anaerobic Digestion Sequencing Batch Reactor with Copper-Coated Graphite Cathode. Bioresour. Technol. 2018, 259, 398–406. [Google Scholar] [CrossRef]
- Xu, F.; Shi, J.; Lv, W.; Yu, Z.; Li, Y. Comparison of Different Liquid Anaerobic Digestion Effluents as Inocula and Nitrogen Sources for Solid-State Batch Anaerobic Digestion of Corn Stover. Waste Manag. 2013, 33, 26–32. [Google Scholar] [CrossRef]
- Wang, L.; Shen, F.; Yuan, H.; Zou, D.; Liu, Y.; Zhu, B.; Li, X. Anaerobic Co-Digestion of Kitchen Waste and Fruit/Vegetable Waste: Lab-Scale and Pilot-Scale Studies. Waste Manag. 2014, 34, 2627–2633. [Google Scholar] [CrossRef]
- Bi, S.; Qiao, W.; Xiong, L.; Mahdy, A.; Wandera, S.M.; Yin, D.; Dong, R. Improved High Solid Anaerobic Digestion of Chicken Manure by Moderate in Situ Ammonia Stripping and Its Relation to Metabolic Pathway—ScienceDirect. Renew. Energy 2020, 146, 2380–2389. [Google Scholar] [CrossRef]
- Yue, Z.; Chen, R.; Yang, F.; MacLellan, J.; Marsh, T.; Liu, Y.; Liao, W. Effects of Dairy Manure and Corn Stover Co-Digestion on Anaerobic Microbes and Corresponding Digestion Performance. Bioresour. Technol. 2013, 128, 65–71. [Google Scholar] [CrossRef]
- Zhou, M.; Yan, B.; Wong, J.W.C.; Zhang, Y. Enhanced Volatile Fatty Acids Production from Anaerobic Fermentation of Food Waste: A Mini-Review Focusing on Acidogenic Metabolic Pathways. Bioresour. Technol. 2018, 248, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, H.; Vogt, D.; Garcia-Heras, J.L.; Gujer, W. Mathematical Model for Meso- and Thermophilic Anaerobic Sewage Sludge Digestion. Environ. Sci. Technol. 2002, 36, 1113–1123. [Google Scholar] [CrossRef] [PubMed]
- Regueiro, L.; Lema, J.M.; Carballa, M. Key Microbial Communities Steering the Functioning of Anaerobic Digesters during Hydraulic and Organic Overloading Shocks. Bioresour. Technol. 2015, 197, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Saady, N.M.C. Homoacetogenesis during Hydrogen Production by Mixed Cultures Dark Fermentation: Unresolved Challenge. Int. J. Hydrogen Energy 2013, 38, 13172–13191. [Google Scholar] [CrossRef]
- Tao, Y.; Ersahin, M.E.; Ghasimi, D.S.M.; Ozgun, H.; Wang, H.; Zhang, X.; Guo, M.; Yang, Y.; Stuckey, D.C.; van Lier, J.B. Biogas Productivity of Anaerobic Digestion Process Is Governed by a Core Bacterial Microbiota. Chem. Eng. J. 2020, 380, 122425. [Google Scholar] [CrossRef]
- Yirong, C. Thermophilic Anaerobic Digestion of Food Waste. Ph.D. Thesis, University of Southampton, Southampton, UK, 2014. [Google Scholar]
- Molino, A.; Nanna, F.; Ding, Y.; Bikson, B.; Braccio, G. Biomethane Production by Anaerobic Digestion of Organic Waste. Fuel 2013, 103, 1003–1009. [Google Scholar] [CrossRef]
- Ye, J.; Li, D.; Sun, Y.; Wang, G.; Yuan, Z.; Zhen, F.; Wang, Y. Improved Biogas Production from Rice Straw by Co-Digestion with Kitchen Waste and Pig Manure. Waste Manag. 2013, 33, 2653–2658. [Google Scholar] [CrossRef] [PubMed]
- Pontoni, L.; Panico, A.; Salzano, E.; Frunzo, L.; Iodice, P.; Pirozzi, F. Innovative Parameters to Control the Efficiency of Anaerobic Digestion Process. Chem. Eng. Trans. 2015, 43, 2089–2094. [Google Scholar] [CrossRef]
- Van Lier, J.B.; Grolle, K.C.F.; Frijters, C.T.M.; Stams, A.J.M.; Lettinga, G. Effects of Acetate, Propionate, and Butyrate on the Thermophilic Anaerobic Degradation of Propionate by Methanogenic Sludge and Defined Cultures | Applied and Environmental Microbiology. Appl. Environ. Microbiol. 1993, 59, 1003–1011. [Google Scholar] [CrossRef]
- Ahring, B.K.; Westermann, P. Product Inhibition of Butyrate Metabolism by Acetate and Hydrogen in a Thermophilic Coculture. Appl. Environ. Microbiol. 1988, 54, 2393–2397. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Lay, C.H. Carbon/Nitrogen-Ratio Effect on Fermentative Hydrogen Production by Mixed Microflora. Int. J. Hydrogen Energy 2004, 29, 41–45. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Liu, F.; Yan, H.; Li, J.; Zhang, X.; Jha, A.K. Specific Quorum Sensing Signal Molecules Inducing the Social Behaviors of Microbial Populations in Anaerobic Digestion. Bioresour. Technol. 2019, 273, 185–195. [Google Scholar] [CrossRef]
Component | Volume | Sources | Types |
---|---|---|---|
Carbohydrates | 15–30% | Fruit, vegetables, cereals, bread, pasta | Sugars, starches, cellulose |
Proteins | 5–10% | Meat, dairy products, legumes | Amino acids, peptides |
Fats | 5–15% | Oils, butter, dairy products, meat | Fatty acids, glycerol |
Fiber | 5–20% | Vegetables, fruits, whole grains | Lignin, cellulose, hemicellulose |
Water | 60–80% | All types of food waste | Microelements and other ingredients |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cieślik, M.Z.; Lewicki, A.J.; Czekała, W.; Vaskina, I. Food Waste Bioconversion Features Depending on the Regime of Anaerobic Digestion. Energies 2025, 18, 4567. https://doi.org/10.3390/en18174567
Cieślik MZ, Lewicki AJ, Czekała W, Vaskina I. Food Waste Bioconversion Features Depending on the Regime of Anaerobic Digestion. Energies. 2025; 18(17):4567. https://doi.org/10.3390/en18174567
Chicago/Turabian StyleCieślik, Marta Zofia, Andrzej Jan Lewicki, Wojciech Czekała, and Iryna Vaskina. 2025. "Food Waste Bioconversion Features Depending on the Regime of Anaerobic Digestion" Energies 18, no. 17: 4567. https://doi.org/10.3390/en18174567
APA StyleCieślik, M. Z., Lewicki, A. J., Czekała, W., & Vaskina, I. (2025). Food Waste Bioconversion Features Depending on the Regime of Anaerobic Digestion. Energies, 18(17), 4567. https://doi.org/10.3390/en18174567