Criticality Assessment of Wind Turbine Defects via Multispectral UAV Fusion and Fuzzy Logic
Abstract
1. Introduction
- A robust multispectral detection framework, built on an ensemble of YOLOv8n models, that achieves a state-of-the-art mean Average Precision (mAP@.5) of 92.8% on the combined public AQUADA-GO and Thermal WTB Inspection datasets. In this context, ‘multispectral’ refers to the combined use of the visible Red–Green-Blue (RGB) and long-wave infrared (thermal) spectra.
- A novel 27-rule ‘glass-box’ FIS for severity scoring, whose knowledge base is explicitly derived from the engineering principles of the IEC 61400-5 standard. The system demonstrates exceptional fidelity to expert assessments, achieving a mean absolute error of 0.14 and a Pearson correlation of 0.97.
- A comprehensive and reproducible validation of the entire framework, featuring (i) ablation studies that quantify the critical impact of each component, (ii) a formal protocol for establishing expert-derived ground truth validated by a high inter-rater reliability (Fleiss’s = 0.85), and (iii) a global sensitivity analysis confirming the FIS’s robustness to ±20% parameter variations.
2. Related Work
3. Materials and Methods
3.1. Input Data and Defect Localization
3.2. Block 1: Data-Driven Detection and Measurement
3.2.1. Data Synchronization, Normalization, and Feature Extraction
3.2.2. Region of Interest (ROI) Extraction and Preprocessing
3.2.3. Contrast Enhancement and Adaptive Binarization
3.2.4. Morphological Filtering and Geometric Feature Extraction
3.2.5. Photogrammetric Scaling and Calibration
3.2.6. Thermal Analysis
3.3. Block 2: Formalization of Expert Criticality Functions
3.4. Block 3: Fuzzy Logic Integration for Final Criticality Assessment
3.4.1. Fuzzification of Data-Driven and Expert-Driven Inputs
3.4.2. Weighted Aggregation of Fuzzy Sets
3.4.3. Defuzzification for a Final Criticality Score
3.5. Experimental Setup
3.5.1. Dataset Curation and Preprocessing
3.5.2. Defect Detection and Fusion Pipeline
3.5.3. Hardware and Software Environment
3.5.4. Evaluation Protocol
3.5.5. Ethical Considerations
4. Results
4.1. Defect Detection Performance and Computational Profile
4.2. Ablation Studies
4.3. Validation of the Fuzzy Criticality Assessment
4.4. Reliability and Calibration of Criticality Scores
4.5. Comparative Analysis and Field Case Study
5. Discussion
5.1. Interpretation of Principal Findings
5.2. Practical Implications for Condition-Based Maintenance
5.3. Limitations and Threats to Validity
5.4. Future Research Directions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AUC | Area Under the Curve |
BCa | Bias-Corrected and accelerated |
CBM | Condition-Based Maintenance |
CLAHE | Contrast Limited Adaptive Histogram Equalization |
DWT | Discrete Wavelet Transform |
ECE | Expected Calibration Error |
EPRI | Electric Power Research Institute |
FIS | Fuzzy Inference System |
FPPI | False Positives per Image |
GNSS | Global Navigation Satellite System |
IEC | International Electrotechnical Commission |
LWIR | Long-Wave Infrared |
MAE | Mean Absolute Error |
mAP | Mean Average Precision |
MCE | Maximum Calibration Error |
MSX | Multi-Spectral Dynamic Imaging |
O&M | Operations and Maintenance |
RGB | Red–Green–Blue |
ROC | Receiver Operating Characteristic |
ROI | Region of Interest |
RTK | Real-Time Kinematic |
t-SNE | t-Distributed Stochastic Neighbor Embedding |
UAV | Unmanned Aerial Vehicle |
WTB | Wind Turbine Blade |
YOLO | You Only Look Once |
Appendix A. Fuzzy Inference System Details
IF Defect Size Is | AND Location Is | AND Thermal Signature Is | THEN Criticality Is |
---|---|---|---|
Large | Blade Root | High | Severe |
Medium | Severe | ||
Low | Severe | ||
Mid-span | High | Severe | |
Medium | High | ||
Low | High | ||
Blade Tip | High | High | |
Medium | Medium | ||
Low | Medium | ||
Medium | Blade Root | High | Severe |
Medium | High | ||
Low | High | ||
Mid-span | High | High | |
Medium | Medium | ||
Low | Low | ||
Blade Tip | High | Medium | |
Medium | Low | ||
Low | Low | ||
Small | Blade Root | High | High |
Medium | Medium | ||
Low | Low | ||
Mid-span | High | Medium | |
Medium | Low | ||
Low | Negligible | ||
Blade Tip | High | Low | |
Medium | Negligible | ||
Low | Negligible |
Input Variable | Linguistic Term | a | b | c | d |
---|---|---|---|---|---|
Defect Size () | Small | 0 | 0 | 50 | 100 |
Medium | 50 | 100 | 400 | 500 | |
Large | 400 | 500 | 1000 | 1000 | |
Thermal Signature ( in °C) | Low | 0 | 0 | 2 | 4 |
Medium | 3 | 5 | 8 | 10 | |
High | 9 | 12 | 25 | 25 |
Rule ID | Fuzzy Rule Summary | Corresponding IEC 61400 Principle/Rationale |
---|---|---|
1, 2, 3 | A large defect at the blade root is always ‘Severe,’ regardless of its Thermal Signature. | Aligns with IEC 61400-5 [11] requirements for fatigue life analysis and damage tolerance. The blade root is the area of maximum bending moment and stress concentration. Any significant structural flaw in this region has the highest probability of catastrophic propagation. |
4, 10, 19 | Any defect with a High Thermal Signature at the blade root is at least ‘High’ or ‘Severe.’ | Relates to IEC 61400-23 [60] (full-scale structural testing). A significant thermal anomaly indicates a potential subsurface failure (e.g., delamination, adhesive disbond). When located in the highest stress region, this combination represents a critical risk of structural failure from within. |
9, 18, 27 | A defect at the blade tip with a low Thermal Signature is rated as ‘Medium’ or ‘Low.’ | The blade tip experiences the lowest structural loads but the highest aerodynamic velocities. Defects here are less critical from a structural failure perspective but can impact aerodynamic efficiency and noise. The criticality is therefore downgraded compared with the root. |
24, 27 | A small non-thermal defect away from the root is considered ‘Negligible.’ | Reflects practical maintenance triage. Small superficial flaws in low-stress areas do not compromise the blade’s integrity and typically only require monitoring during the next inspection cycle, rather than immediate intervention. |
References
- Sun, S.; Wang, T.; Chu, F. In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures. Renew. Sustain. Energy Rev. 2022, 160, 112326. [Google Scholar] [CrossRef]
- Kong, K.; Dyer, K.; Payne, C.; Hamerton, I.; Weaver, P.M. Progress and trends in damage detection methods, maintenance, and data-driven monitoring of wind turbine blades—A review. Renew. Energy Focus 2023, 44, 390–412. [Google Scholar] [CrossRef]
- Aminzadeh, A.; Dimitrova, M.; Meiabadi, S.M.; Sattarpanah Karganroudi, S.; Taheri, H.; Ibrahim, H.; Wen, Y. Non-contact inspection methods for wind turbine blade maintenance: Techno-economic review of techniques for integration with industry 4.0. J. Nondestruct. Eval. 2023, 42, 54. [Google Scholar] [CrossRef]
- Zhang, S.; He, Y.; Gu, Y.; He, Y.; Wang, H.; Wang, H.; Yang, R.; Chady, T.; Zhou, B. UAV based defect detection and fault diagnosis for static and rotating wind turbine blade: A review. Nondestruct. Test. Eval. 2024, 40, 1691–1729. [Google Scholar] [CrossRef]
- Banafaa, M.K.; Pepeoğlu, Ö.; Shayea, I.; Alhammadi, A.; Shamsan, Z.A.; Razaz, M.A.; Alsagabi, M.; Al-Sowayan, S. A comprehensive survey on 5G-and-beyond networks with UAVs: Applications, emerging technologies, regulatory aspects, research trends and challenges. IEEE Access 2024, 12, 7786–7826. [Google Scholar] [CrossRef]
- Yan, X.; Wu, G.; Zuo, Y. YOLOV4-based wind turbine blade crack defect detection. In Proceedings of the IncoME-VI and TEPEN 2021, Tianjin, China, 20–23 October 2021; Springer International Publishing: Cham, Switzerland, 2022; pp. 293–305. [Google Scholar] [CrossRef]
- Dai, Z. Image acquisition technology for unmanned aerial vehicles based on YOLO—Illustrated by the case of wind turbine blade inspection. Syst. Soft Comput. 2024, 6, 200126. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, S.; Yu, D.; Zhao, J. Automatic image detection of multi-type surface defects on wind turbine blades based on cascade deep learning network. Intell. Data Anal. 2021, 25, 463–482. [Google Scholar] [CrossRef]
- Sun, T.; Yu, G.; Gao, M.; Zhao, L.; Bai, C.; Yang, W. Fault diagnosis methods based on machine learning and its applications for wind turbines: A review. IEEE Access 2021, 9, 147481–147511. [Google Scholar] [CrossRef]
- Ogaili, A.A.F.; Jaber, A.A.; Hamzah, M.N. A methodological approach for detecting multiple faults in wind turbine blades based on vibration signals and machine learning. Curved Layer. Struct. 2023, 10, 20220214. [Google Scholar] [CrossRef]
- Technical Report IEC 61400-5:2020; Wind Energy Generation Systems—Part 5: Wind Turbine Blades. International Electrotechnical Commission: Geneva, Switzerland, 2020. Available online: https://webstore.iec.ch/publication/33236 (accessed on 15 August 2025).
- Electric Power Research Institute. A White Paper on Wind Turbine Blade Defect and Damage Categorization: Current State of the Industry. Technical Report 3002019669, Electric Power Research Institute. 2020. Available online: https://www.epri.com/research/products/000000003002019669 (accessed on 15 August 2025).
- Chen, X.; Jia, X. Dataset for AI-based optical-thermal video data fusion for near real-time blade segmentation in normal wind turbine operation. Eng. Appl. Artif. Intell. 2024, 127, 107325. [Google Scholar] [CrossRef]
- Memari, M.; Shekaramiz, M.; Masoum, M.A.S.; Seibi, A.C. Data fusion and ensemble learning for advanced anomaly detection using multi-spectral RGB and thermal imaging of small wind turbine blades. Energies 2024, 17, 673. [Google Scholar] [CrossRef]
- Svystun, S.; Scislo, L.; Pawlik, M.; Melnychenko, O.; Radiuk, P.; Savenko, O.; Sachenko, A. DyTAM: Accelerating wind turbine inspections with dynamic UAV trajectory adaptation. Energies 2025, 18, 1823. [Google Scholar] [CrossRef]
- Yang, C.; Liu, X.; Zhou, H.; Ke, Y.; See, J. Towards accurate image stitching for drone-based wind turbine blade inspection. Renew. Energy 2023, 203, 267–279. [Google Scholar] [CrossRef]
- Svystun, S.; Melnychenko, O.; Radiuk, P.; Savenko, O.; Sachenko, A.; Lysyi, A. Thermal and RGB images work better together in wind turbine damage detection. Int. J. Comput. 2024, 23, 526–535. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Z.; Zhang, M.; Wang, L. Wind turbine actual defects detection based on visible and infrared image fusion. IEEE Trans. Instrum. Meas. 2023, 72, 3509208. [Google Scholar] [CrossRef]
- Rizk, P.; Rizk, F.; Sattarpanah Karganroudi, S.; Ilinca, A.; Younes, R.; Khoder, J. Advanced wind turbine blade inspection with hyperspectral imaging and 3D convolutional neural networks for damage detection. Energy AI 2024, 16, 100366. [Google Scholar] [CrossRef]
- Chen, X.; Sheiati, S.; Shihavuddin, A. AQUADA PLUS: Automated damage inspection of cyclic-loaded large-scale composite structures using thermal imagery and computer vision. Compos. Struct. 2023, 318, 117085. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, H.; Tian, X.; Jiang, J.; Ma, J. Image fusion meets deep learning: A survey and perspective. Inf. Fusion 2021, 76, 323–336. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, R.; Chen, S.; Duan, Y.; Wang, Z.; Li, Q. Enhanced infrared defect detection for UAVs using wavelet-based image processing and channel attention-integrated SSD model. IEEE Access 2024, 12, 188787–188796. [Google Scholar] [CrossRef]
- Jia, X.; Chen, X. AI-based optical-thermal video data fusion for near real-time blade segmentation in normal wind turbine operation. Eng. Appl. Artif. Intell. 2024, 127, 107325. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Sun, P.; Yan, H.; Zhao, X.; Zhang, L. IFCNN: A general image fusion framework based on convolutional neural network. Inf. Fusion 2020, 54, 99–118. [Google Scholar] [CrossRef]
- Quan, T.M.; Hildebrand, D.G.C.; Jeong, W.K. FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics. Front. Comput. Sci. 2021, 3, 613981. [Google Scholar] [CrossRef]
- Pan, Y.; Hong, R.; Chen, J.; Singh, J.; Jia, X. Performance degradation assessment of a wind turbine gearbox based on multi-sensor data fusion. Mech. Mach. Theory 2019, 137, 509–526. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE Inc.: New York, NY, USA, 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving into high quality object detection. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; IEEE Inc.: New York, NY, USA, 2018; pp. 6154–6162. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Honolulu, HI, USA, 21–26 July 2017; IEEE Inc.: New York, NY, USA, 2017; pp. 2980–2988. [Google Scholar] [CrossRef]
- Diaz, P.M.; Tittus, P. Fast detection of wind turbine blade damage using Cascade Mask R-DSCNN-aided drone inspection analysis. Signal Image Video Process. 2023, 17, 2333–2341. [Google Scholar] [CrossRef]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and efficient object detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; IEEE Inc.: New York, NY, USA, 2020; pp. 10778–10787. [Google Scholar] [CrossRef]
- Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics YOLOv8. 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 31 May 2025).
- He, Y.; Niu, X.; Hao, C.; Li, Y.; Kang, L.; Wang, Y. An adaptive detection approach for multi-scale defects on wind turbine blade surface. Mech. Syst. Signal Process. 2024, 219, 111592. [Google Scholar] [CrossRef]
- Liu, C.; An, C.; Yang, Y. Wind turbine surface defect detection method based on YOLOv5s-L. NDT 2023, 1, 46–57. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, T. Enhancing wind turbine blade damage detection with YOLO-Wind. Sci. Rep. 2025, 15, 18667. [Google Scholar] [CrossRef]
- Dietterich, T.G. Ensemble methods in machine learning. In Multiple Classifier Systems; Kittler, J., Roli, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–15. [Google Scholar] [CrossRef]
- Zhou, Z.H. Ensemble Methods: Foundations and Algorithms, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2025. [Google Scholar] [CrossRef]
- Al-Agha, O.; Al-Natsheh, A.; Al-Sari, I.; Al-Zoubi, E.; Bani-Hani, D. Artificial intelligence in wind turbine fault detection and diagnosis: A comprehensive review and future directions. Energies 2025, 18, 1680. [Google Scholar] [CrossRef]
- Carmona-Troyo, J.A.; Trujillo, L.; Enríquez-Zárate, J.; Hernandez, D.E.; Cárdenas-Florido, L.A. Classification of damage on wind turbine blades using automatic machine learning and pressure coefficient. Expert Syst. 2025, 42, e70024. [Google Scholar] [CrossRef]
- Svystun, S.; Melnychenko, O.; Radiuk, P.; Lysyi, A.; Sachenko, A. Determining the criticality assessment of defects on wind turbine blades using fuzzy logic. In Proceedings of the 6th International Workshop on Intelligent Information Technologies & Systems of Information Security (IntelITSIS 2025), Khmelnytskyi, Ukraine, 4 April 2025; Hovorushchenko, T., Savenko, O., Popov, P.T., Lysenko, S., Eds.; CEUR-WS: Aachen, Germany, 2024; Volume 3963, pp. 351–362. Available online: https://ceur-ws.org/Vol-3963/paper28.pdf (accessed on 15 August 2025).
- Dubchak, L.; Sachenko, A.; Bodyanskiy, Y.; Wolff, C.; Vasylkiv, N.; Brukhanskyi, R.; Kochan, V. Adaptive neuro-fuzzy system for detection of wind turbine blade defects. Energies 2024, 17, 6456. [Google Scholar] [CrossRef]
- Vladov, S.; Scislo, L.; Sokurenko, V.; Muzychuk, O.; Vysotska, V.; Sachenko, A.; Yurko, A. Helicopter turboshaft engines’ gas generator rotor R.P.M. neuro-fuzzy on-board controller development. Energies 2024, 17, 4033. [Google Scholar] [CrossRef]
- Kozlov, O. Information technology for designing rule bases of fuzzy systems using ant colony optimization. Int. J. Comput. 2021, 20, 471–486. [Google Scholar] [CrossRef]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
- TorchVision Maintainers and Contributors. TorchVision: PyTorch’s Computer Vision Library. 2016. Available online: https://github.com/pytorch/vision (accessed on 15 August 2025).
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8024–8035. [Google Scholar]
- ZFTurbo. Weighted-Boxes-Fusion. 2022. Available online: https://github.com/ZFTurbo/Weighted-Boxes-Fusion (accessed on 15 August 2025).
- Bradski, G. The OpenCV library. Dr. Dobb’s J. Softw. Tools Prof. Program. 2000, 25, 120–125. [Google Scholar]
- Lee, G.R.; Gommers, R.; Waselewski, F.; Wohlfahrt, K.; O’Leary, A. PyWavelets: A Python package for wavelet analysis. J. Open Source Softw. 2019, 4, 1237. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- McKinney, W. Data structures for statistical computing in Python. In Proceedings of the 9th Python in Science Conference (SciPy 2010), Austin, TX, USA, 28 June–3 July 2010; pp. 51–56. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Warner, J.; Sexauer, J.; Van den Broeck, W.; Kinoshita, B.P.; Balinski, J.; Scikit-Fuzzy; Clauss, C.; Twmeggs; Alexsavio; Unnikrishnan, A.; et al. JDWarner/scikit-fuzzy: Scikit-Fuzzy 0.5.0 (Version 0.5.0) [Software]; Zenodo: Geneva, Switzerland, 2024. [Google Scholar] [CrossRef]
- Sun, B.; Saenko, K. Deep CORAL: Correlation alignment for deep domain adaptation. In Proceedings of the Computer Vision—ECCV 2016 Workshops, Amsterdam, The Netherlands, 8–10 and 15–16 October 2016; Hua, G., Jégou, H., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 443–450. [Google Scholar] [CrossRef]
- Zhou, K.; Yang, Y.; Qiao, Y.; Xiang, T. MixStyle neural networks for domain generalization and adaptation. Int. J. Comput. Vis. 2023, 132, 822–836. [Google Scholar] [CrossRef]
- Lysyi, A.; Sachenko, A.; Radiuk, P.; Lysyi, M.; Melnychenko, O.; Ishchuk, O.; Savenko, O. Enhanced fire hazard detection in solar power plants: An integrated UAV, AI, and SCADA-based approach. Radioelectron. Comput. Syst. 2025, 2025, 99–117. [Google Scholar] [CrossRef]
- Technical Report IEC 61400-23:2014; Wind Turbines—Part 23: Full-Scale Structural Testing of Rotor Blades. International Electrotechnical Commission: Geneva, Switzerland, 2014. Available online: https://webstore.iec.ch/publication/5436 (accessed on 15 August 2025).
Dataset | Images | Blades | Cracks | Erosion | Hotspots |
---|---|---|---|---|---|
AQUADA-GO (RGB) | 15,420 | 24 | 850 | 1230 | – |
Thermal WTB (RGB-T) | 3850 | 12 | 320 | 450 | 210 |
Total Combined | 19,270 | 36 | 1170 | 1680 | 210 |
Model Configuration | Precision (%) | Recall (%) | -Score (%) | mAP@.5 (%) | Precision@FPPI ≤ 0.05 (%) |
---|---|---|---|---|---|
Single YOLOv8 (RGB Only) | 82.5 ± 1.8 | 79.1 ± 2.0 | 80.8 ± 1.9 | 81.7 ± 1.7 | 78.4 |
Single YOLOv8 (Multispectral) | 89.1 ± 1.4 | 87.3 ± 1.5 | 88.2 ± 1.4 | 88.9 ± 1.3 | 89.5 |
Proposed Ensemble (Multispectral) | 93.2 ± 1.0 | 91.5 ± 1.1 | 92.3 ± 1.0 | 92.8 ± 0.9 | 93.5 |
Training Dataset | Test Dataset | mAP@.5 (%) | -Score (%) |
---|---|---|---|
AQUADA-GO (RGB) | Thermal WTB | 76.4 | 74.1 |
Thermal WTB (RGB–T) | AQUADA-GO | 84.2 | 81.8 |
Ablation Scenario | Affected Module | Primary Metric | Baseline | Ablated | Impact Analysis ( and % Change) |
---|---|---|---|---|---|
Thermal Channel Removed (RGB only) | Criticality Assessment | Criticality MAE | 0.14 | 0.35 | (%): Loss of thermal data catastrophically degrades severity assessment. |
Defect Detection | -score (%) | 92.3 | 82.2 | pts: Confirms thermal data are crucial for robust detection of multiple defect types. | |
Ensemble Learning Removed (Single Model) | Defect Detection | -score (%) | 92.3 | 88.2 | pts: Demonstrates that ensembling provides a significant boost in accuracy and robustness. |
Fuzzy Rule Count Reduced (27 → 15 rules) | Criticality Assessment | Criticality MAE | 0.14 | 0.29 | (%): A comprehensive nuanced rule base is essential to accurately model expert logic. |
Simulated Thermal Drift ( °C) | Criticality Assessment | Criticality MAE | 0.14 | 0.18 | (%): System shows high resilience due to its reliance on relative, not absolute, temperature. |
Method | Data Modality | Precision (%) | Recall (%) | -Score (%) |
---|---|---|---|---|
Liu et al. [35] | RGB | 81.2 | 78.5 | 79.8 |
He et al. [34] | RGB | 84.5 | 82.1 | 83.3 |
Zhou et al. [18] | Fused RGB-T | 89.3 | 85.4 | 87.3 |
Zhao et al. [22] | Fused RGB-T | 91.8 | 89.2 | 90.5 |
Zhao et al. [36] | RGB | 88.6 | 86.9 | 87.7 |
Proposed Framework | Fused RGB-T Ensemble | 93.2 | 91.5 | 92.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radiuk, P.; Rusyn, B.; Melnychenko, O.; Perzynski, T.; Sachenko, A.; Svystun, S.; Savenko, O. Criticality Assessment of Wind Turbine Defects via Multispectral UAV Fusion and Fuzzy Logic. Energies 2025, 18, 4523. https://doi.org/10.3390/en18174523
Radiuk P, Rusyn B, Melnychenko O, Perzynski T, Sachenko A, Svystun S, Savenko O. Criticality Assessment of Wind Turbine Defects via Multispectral UAV Fusion and Fuzzy Logic. Energies. 2025; 18(17):4523. https://doi.org/10.3390/en18174523
Chicago/Turabian StyleRadiuk, Pavlo, Bohdan Rusyn, Oleksandr Melnychenko, Tomasz Perzynski, Anatoliy Sachenko, Serhii Svystun, and Oleg Savenko. 2025. "Criticality Assessment of Wind Turbine Defects via Multispectral UAV Fusion and Fuzzy Logic" Energies 18, no. 17: 4523. https://doi.org/10.3390/en18174523
APA StyleRadiuk, P., Rusyn, B., Melnychenko, O., Perzynski, T., Sachenko, A., Svystun, S., & Savenko, O. (2025). Criticality Assessment of Wind Turbine Defects via Multispectral UAV Fusion and Fuzzy Logic. Energies, 18(17), 4523. https://doi.org/10.3390/en18174523