Advanced Modeling of Fuel Efficiency in Light-Duty Vehicles Using Gamma Regression with Log-Link Under Real Driving Conditions at High Altitude: Quito, Ecuador Case Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Test Vehicles
2.3. Data Preprocessing
2.4. Calculation of Predictors
2.5. Predictor Selection
2.6. Model Selection and Justification
3. Results
3.1. Fuel Consumption Distribution by Speed and Zone
3.2. Speed–Acceleration Probability Distribution
3.3. Effect of Altitude on Fuel Efficiency
3.4. Gamma Regression Model with Logarithmic Link
- represents the intercept of the model.
- to are the coefficients of the standardized continuous variables.
- represents the effects by vehicle circulation zone.
- represents the effects by gear selection, where 1 corresponds to the first gear of the transmission.
4. Discussion
4.1. Model Interpretation and Coefficient Analysis
4.2. Model Performance Analysis and Literature Comparison
4.3. Practical Implications and Applications
4.4. Limitations and Future Research Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RMSE | Root Mean Square Error |
RRMSE | Relative Root Mean Square Error |
VA[95] | 95th percentile of positive acceleration multiplied by vehicle speed |
MAE | Mean Absolute Error |
Carbon Dioxide | |
LDV | Light Duty Vehicle |
CO | Carbon Monoxide |
INEC | National Institute of Statistics and Censuses |
DMQ | Metropolitan District of Quito |
AEADE | Association of Automotive Companies of Ecuador |
NTE | Normative Technical Ecuadorian |
SRI | Internal Revenue Service |
CAN | Controller Area Network |
MRAE | Mean Relative Absolute Error |
Nitrogen Oxides | |
VSP | Vehicle-Specific Power |
IVE | International Vehicle Emissions Model |
OBD | On-Board Diagnostics |
PID | Paramemeter Identifier Data |
VSS | Vehicle Speed |
ECT | Engine Coolant Temperature |
IAT | Air Intake Temperature |
MAP | Manifold Absolute Pressure |
ANOVA | Analysis of Variance |
IQR | Interquartile Range |
RPA | Relative Positive Aceleration |
A | Aceleration |
VIF | Variance Inflation Factor |
SAPD | Speed-Acceleration Probability Distribution |
Q-Q plot | Quantile-quantile plot |
PDP | Partial Dependency Plot |
SVM | Linear Support Vector Machine |
Appendix A
Variable | Estimate | SE | tStat | p-Value | Variable | Estimate | SE | tStat | p-Value |
---|---|---|---|---|---|---|---|---|---|
(Intercept) | −0.243 | 0.012 | −19.949 | VA | 0.330 | 0.008 | 43.273 | ≈0 | |
Aceleration | −0.085 | 0.003 | −27.559 | VSS | −0.533 | 0.009 | −57.133 | ≈0 | |
Slope | −0.044 | 0.002 | −21.784 | VSP | 0.001 | 0.004 | 0.176 | 0.860 | |
Zone 1 | 0.168 | 0.159 | 1.051 | 0.293 | Zone 2 | 0.345 | 0.025 | 13.603 | |
Zone 3 | 0.288 | 0.211 | 1.365 | 0.172 | Zone 4 | −0.086 | 0.028 | −3.054 | 0.002 |
Zone 5 | −1.369 | 0.018 | −74.184 | ≈0 | Zone 6 | −1.299 | 0.023 | −55.348 | ≈0 |
Zone 7 | −0.271 | 0.037 | −7.398 | Zone 8 | 0.364 | 0.244 | 1.497 | 0.135 | |
Zone 10 | 0.412 | 0.211 | 1.951 | 0.051 | Zone 11 | 0.676 | 0.078 | 8.717 | |
Zone 13 | 0.130 | 0.046 | 2.823 | 0.005 | Zone 14 | −0.055 | 0.014 | −3.892 | |
Zone 15 | 0.243 | 0.022 | 10.876 | Zone 16 | 0.250 | 0.017 | 14.719 | ||
Zone 17 | 0.232 | 0.057 | 4.059 | Zone 18 | 0.198 | 0.029 | 6.784 | ||
Zone 19 | −0.135 | 0.017 | −7.891 | Zone 20 | −0.265 | 0.020 | −13.392 | ||
Zone 21 | −0.173 | 0.018 | −9.635 | Zone 23 | −1.325 | 0.017 | −76.606 | ≈0 | |
Zone 24 | −0.443 | 0.014 | −32.633 | Zone 25 | 0.129 | 0.070 | 1.844 | 0.065 | |
Zone 26 | −0.314 | 0.031 | −10.132 | Zone 27 | 0.197 | 0.019 | 10.099 | ||
Zone 28 | −0.156 | 0.016 | −10.050 | Zone 29 | −0.231 | 0.012 | −19.619 | ||
Zone 30 | −0.016 | 0.064 | −0.258 | 0.796 | Zone 31 | −0.333 | 0.015 | −22.583 | |
Zone 32 | 0.293 | 0.050 | 5.829 | Zone 33 | −0.278 | 0.013 | −21.233 | ||
Zone 34 | −0.436 | 0.018 | −24.794 | Zone 35 | −0.004 | 0.016 | −0.260 | 0.795 | |
Gear 1 | 1.516 | 0.009 | 177.200 | ≈0 | Gear 2 | 2.271 | 0.010 | 222.250 | ≈0 |
Gear 3 | 2.796 | 0.014 | 198.970 | ≈0 | Gear 4 | 3.031 | 0.019 | 161.300 | ≈0 |
Gear 5 | 3.274 | 0.026 | 128.200 | ≈0 | Gear 6 | 3.285 | 0.045 | 73.718 | ≈0 |
References
- Páez, C.F.T.; Guayanlema, V.; Mera, A.G.C. Estimation of energy consumption due to the elimination of an environmental tax in Ecuador. Energy Sustain. Dev. 2022, 66, 92–100. [Google Scholar] [CrossRef]
- Yang, Z.; Bandivadekar, A. Light-Duty Vehicle Greenhouse Gas and Fuel Economy Standards; International Council on Clean Transportation: Washington, DC, USA, 2017; Available online: http://theicct.org/sites/default/files/publications/2017-Global-LDV-Standards-Update_ICCT-Report_23062017_vF.pdf (accessed on 7 July 2025).
- Buenaño, E.; Padilla, E.; Alcántara, V. Relevant sectors in CO2 emissions in Ecuador and implications for mitigation policies. Energy Policy 2021, 158, 112551. [Google Scholar] [CrossRef]
- Molina, P.; Parra, R.; Grijalva, F. Analysis of Driving Style and Its Influence on Fuel Consumption for the City of Quito, Ecuador: A Data-Driven Study. In Proceedings of the International Conference on Applied Technologies, Samborondon, Ecuador, 22–24 November 2023; Springer: Cham, Switzerland, 2023; pp. 247–261. [Google Scholar]
- Viteri, R.; Borge, R.; Paredes, M.; Pérez, M.A. A high resolution vehicular emissions inventory for Ecuador using the IVE modelling system. Chemosphere 2023, 315, 137634. [Google Scholar] [CrossRef] [PubMed]
- INEC. Anuario de Estadísticas de Transporte 2021; Instituto Nacional de Estadística y Censos (INEC): Abuja, Nigeria, 2021; Available online: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_Economicas/Estadistica%20de%20Transporte/ESTRA_2021/2021_ESTRA_PPT.pdf (accessed on 7 July 2025).
- AEADE. Anuario 2023 de Asociación de Empresas Automorices del Ecuador; Asociación Ecuatoriana Automotriz (AEADE): Quito, Ecuador, 2023; Available online: https://www.aeade.net/wp-content/uploads/2024/03/AEADE-2023.pdf (accessed on 7 July 2025).
- Guayanlema, V.; Espinoza, S.; Ramirez, A.; Núñez, A. Trends and mitigation options of greenhouse gas emissions from the road transport sector in ecuador. WIT Trans. Ecol. Environ. 2014, 191, 933–941. [Google Scholar] [CrossRef]
- Campoverde, P.M.; Benavides, K.; Montenegro, F.; Molina, J. Fuel Consumption Analysis of an MPI Engine by Varying Fuel Type, Fuel Filtering, and Air Filter Employing a Full-factor Analysis. In Proceedings of the 2023 IEEE Seventh Ecuador Technical Chapters Meeting (ECTM), Ambato, Ecuador, 10–13 October 2023; IEEE: New York, NY, USA, 2023; pp. 1–6. [Google Scholar]
- Chandi, G.M.; Muñoz, M.; Cárdenas, L.M.F.; Espín, M.R. Estudio de la variación del grado de octanaje mediante mezclas de gasolinas extra, súper y aditivo mejorador de octanaje en Ecuador. Eur. Public Soc. Innov. Rev. 2025, 10, 1–18. [Google Scholar] [CrossRef]
- Terneus Páez, C.F.; Cabrera Mera, A.G.; Grandes Villamarín, R.D. Impact Analysis of Migration from Súper Gasoline to Others of Lower Octane Number in Ecuador. In Proceedings of the International Conference on Intelligent Information Technology, Hanoi, Vietnam, 19–22 February 2020; Springer: Cham, Switzerland, 2020; pp. 95–108. [Google Scholar]
- INRIX. The 2022 Global Traffic Scorecard. 2022. Available online: https://inrix.com/scorecard/#form-download-the-full-report (accessed on 31 May 2023).
- Informe de Movilidad de Quito Cómo Vamos. 2022. Available online: https://quitocomovamos.org/wp-content/uploads/2022/12/07Factsheet_Movilidad2022.pdf (accessed on 28 February 2025).
- González-Rodríguez, M.S.; Clairand, J.M.; Soto-Espinosa, K.; Jaramillo-Fuelantala, J.; Escrivá-Escrivá, G. Urban traffic flow mapping of an andean capital: Quito, ecuador. IEEE Access 2020, 8, 195459–195471. [Google Scholar] [CrossRef]
- Patiño-Aroca, M.; Hernández-Paredes, T.; Panchana-López, C.; Borge, R. Source apportionment of ambient pollution levels in Guayaquil, Ecuador. Heliyon 2024, 10, e31613. [Google Scholar] [CrossRef]
- Feng, H.; Wang, X.; Jia, Q.; Zhu, M. A novel spatial disaggregation model of vehicle emission inventory. Urban Clim. 2024, 55, 101947. [Google Scholar] [CrossRef]
- Van Mierlo, J.; Maggetto, G.; Van de Burgwal, E.; Gense, R. Driving style and traffic measures-influence on vehicle emissions and fuel consumption. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2004, 218, 43–50. [Google Scholar] [CrossRef]
- Huang, C.; Lou, D.; Hu, Z.; Feng, Q.; Chen, Y.; Chen, C.; Tan, P.; Yao, D. A PEMS study of the emissions of gaseous pollutants and ultrafine particles from gasoline-and diesel-fueled vehicles. Atmos. Environ. 2013, 77, 703–710. [Google Scholar] [CrossRef]
- Gallus, J.; Kirchner, U.; Vogt, R.; Benter, T. Impact of driving style and road grade on gaseous exhaust emissions of passenger vehicles measured by a Portable Emission Measurement System (PEMS). Transp. Res. Part D Transp. Environ. 2017, 52, 215–226. [Google Scholar] [CrossRef]
- Park, J.; Seo, J.; Park, S. Development of vehicle emission rates based on vehicle-specific power and velocity. Sci. Total. Environ. 2023, 857, 159622. [Google Scholar] [CrossRef]
- Giraldo, M.; Huertas, J.I. Real emissions, driving patterns and fuel consumption of in-use diesel buses operating at high altitude. Transp. Res. Part D Transp. Environ. 2019, 77, 21–36. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, W.; Hao, L.; Ge, Y. Effects of altitude on light gasoline vehicles: Fuel consumption and Air pollution. Atmos. Pollut. Res. 2025, 2025, 102652. [Google Scholar] [CrossRef]
- Song, G.; Yu, L. Estimation of fuel efficiency of road traffic by characterization of vehicle-specific power and speed based on floating car data. Transp. Res. Rec. 2009, 2139, 11–20. [Google Scholar] [CrossRef]
- Hao, L.; Wang, C.; Yin, H.; Hao, C.; Wang, H.; Tan, J.; Wang, X.; Ge, Y. Model-based estimation of light-duty vehicle fuel economy at high altitude. Adv. Mech. Eng. 2019, 11, 1687814019886252. [Google Scholar] [CrossRef]
- Duarte, G.O.; Gonçalves, G.A.; Baptista, P.C.; Farias, T.L. Establishing bonds between vehicle certification data and real-world vehicle fuel consumption–a vehicle specific power approach. Energy Convers. Manag. 2015, 92, 251–265. [Google Scholar] [CrossRef]
- Wu, T.; Han, X.; Zheng, M.M.; Ou, X.; Sun, H.; Zhang, X. Impact factors of the real-world fuel consumption rate of light duty vehicles in China. Energy 2020, 190, 116388. [Google Scholar] [CrossRef]
- Rykała, M.; Grzelak, M.; Rykała, Ł.; Voicu, D.; Stoica, R.M. Modeling Vehicle Fuel Consumption Using a Low-Cost OBD-II Interface. Energies 2023, 16, 7266. [Google Scholar] [CrossRef]
- Sofwan, N.M.; Latif, M.T. Characteristics of the real-driving emissions from gasoline passenger vehicles in the Kuala Lumpur urban environment. Atmos. Pollut. Res. 2021, 12, 306–315. [Google Scholar] [CrossRef]
- Zhou, M.; Jin, H.; Wang, W. A review of vehicle fuel consumption models to evaluate eco-driving and eco-routing. Transp. Res. Part Transp. Environ. 2016, 49, 203–218. [Google Scholar] [CrossRef]
- Moradi, E.; Miranda-Moreno, L. Vehicular fuel consumption estimation using real-world measures through cascaded machine learning modeling. Transp. Res. Part Transp. Environ. 2020, 88, 102576. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, J.; Lv, W.; Li, D. Fuel consumption estimates based on driving pattern recognition. In Proceedings of the 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Beijing, China, 20–23 August 2013; IEEE: New York, NY, USA, 2013; pp. 496–503. [Google Scholar]
- Shahariar, G.H.; Bodisco, T.A.; Zare, A.; Sajjad, M.; Jahirul, M.I.; Van, T.C.; Bartlett, H.; Ristovski, Z.; Brown, R.J. Impact of driving style and traffic condition on emissions and fuel consumption during real-world transient operation. Fuel 2022, 319, 123874. [Google Scholar] [CrossRef]
- Rosero, F.; Rosero, C.X.; Segovia, C. Towards Simpler Approaches for Assessing Fuel Efficiency and CO2 Emissions of Vehicle Engines in Real Traffic Conditions Using On-Board Diagnostic Data. Energies 2024, 17, 4814. [Google Scholar] [CrossRef]
- Almachi, J.C.; Saguay, J.; Anrango, E.; Cando, E.; Reina, S. Clustering-Based Urban Driving Cycle Generation: A Data-Driven Approach for Traffic Analysis and Sustainable Mobility Applications in Ecuador. Sustainability 2025, 17, 3353. [Google Scholar] [CrossRef]
- Montúfar Paz, P.A.; Cuisano, J.C. Development and Validation of a Methodology for Predicting Fuel Consumption and Emissions Generated by Light Vehicles Based on Clustering of Instantaneous and Cumulative Vehicle Power. Vehicles 2025, 7, 16. [Google Scholar] [CrossRef]
- Romero, C.A.; Correa, P.; Ariza Echeverri, E.A.; Vergara, D. Strategies for reducing automobile fuel consumption. Appl. Sci. 2024, 14, 910. [Google Scholar] [CrossRef]
- Patil, M.; Moon, J.; Hanif, A.; Ahmed, Q. Fuel Consumption Estimation Using Spatio-Temporal Modeling and Traffic Flow Predictions: A Comparative Analysis. Technical Report, SAE Technical Paper. 2025. Available online: https://saemobilus.sae.org/papers/fuel-consumption-estimation-using-spatio-temporal-modeling-traffic-flow-predictions-a-comparative-analysis-2025-01-8101 (accessed on 7 July 2025).
- Bravo-Moncayo, L.; Chávez, M.; Puyana, V.; Lucio-Naranjo, J.; Garzón, C.; Pavón-García, I. A cost-effective approach to the evaluation of traffic noise exposure in the city of Quito, Ecuador. Case Stud. Transp. Policy 2019, 7, 128–137. [Google Scholar] [CrossRef]
- Valencia, V.H.; Levin, G.; Ketzel, M. Downscaling global anthropogenic emissions for high-resolution urban air quality studies. Atmos. Pollut. Res. 2022, 13, 101516. [Google Scholar] [CrossRef]
- Uvarov, K.; Ponomarev, A. Driver identification with OBD-II public data. In Proceedings of the 2021 28th Conference of Open Innovations Association (FRUCT), Moscow, Russia, 27–29 January 2021; IEEE: New York, NY, USA, 2021; pp. 495–501. [Google Scholar]
- Lattanzi, E.; Freschi, V. Machine learning techniques to identify unsafe driving behavior by means of in-vehicle sensor data. Expert Syst. Appl. 2021, 176, 114818. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Censos (INEC). Presentación de resultados de las Estadísticas de Transporte (ESTRA) correspondientes al año 2023. In Anuario de Estadísticas de Transporte 2023; Instituto Nacional de Estadística y Censos (INEC): Quito, Ecuador, 2024. [Google Scholar]
- Mera, Z.; Rosero, F.; Rosero, R.; Tapia, F.; Ibarra-Espinosa, S. Effect of idling and power demand on fuel consumption and CO2 emissions from taxis. Enfoque UTE 2025, 16, 1–9. [Google Scholar] [CrossRef]
- Instituto Ecuatoriano de Normalización (INEN). NTE INEN 2656: Clasificación Vehicular. Norma Técnica Ecuatoriana. 2016. Available online: https://www.normalizacion.gob.ec (accessed on 7 July 2025).
- Ibarra-Espinosa, S.; Mera, Z.; Rosero, R.; Díaz, M.V. Spatial and temporal characterization of vehicular emissions in Ecuador using VEIN. In Proceedings of the 2021 Congreso Colombiano y Conferencia Internacional de Calidad de Aire y Salud Pública (CASAP), Bogota, Colombia, 3–5 November 2021; IEEE: New York, NY, USA, 2021; pp. 1–5. [Google Scholar]
- Meseguer, J.E.; Calafate, C.T.; Cano, J.C.; Manzoni, P. Assessing the impact of driving behavior on instantaneous fuel consumption. In Proceedings of the 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2015; IEEE: New York, NY, USA, 2015; pp. 443–448. [Google Scholar]
- Andrade, P.; Silva, I.; Silva, M.; Flores, T.; Cassiano, J.; Costa, D.G. A tinyml soft-sensor approach for low-cost detection and monitoring of vehicular emissions. Sensors 2022, 22, 3838. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Signoretti, G.; Silva, I.; Ferrari, P. Performance evaluation of a vehicular edge device for customer feedback in Industry 4.0. ACTA IMEKO 2020, 9, 88. [Google Scholar] [CrossRef]
- Batallas, M.; Molina, P. Developing a Methodology to Reduce Fuel Consumption and Classify Driving Styles for a Fleet of Vehicles. In Proceedings of the International Conference on Science, Technology and Innovation for Society, Guayaquil, Ecuador, 18–19 July 2024; Springer: Cham, Switzerland, 2024; pp. 185–194. [Google Scholar]
- Wang, W.; Bie, J.; Yusuf, A.; Liu, Y.; Wang, X.; Wang, C.; Chen, G.Z.; Li, J.; Ji, D.; Xiao, H.; et al. A new vehicle specific power method based on internally observable variables: Application to CO2 emission assessment for a hybrid electric vehicle. Energy Convers. Manag. 2023, 286, 117050. [Google Scholar] [CrossRef]
- Jimenez-Palacios, J.L. Understanding and Quantifying Motor Vehicle Emissions with Vehicle Specific Power and TILDAS Remote Sensing. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1998. [Google Scholar]
- Ng, E.C.; Huang, Y.; Hong, G.; Zhou, J.L.; Surawski, N.C. Reducing vehicle fuel consumption and exhaust emissions from the application of a green-safety device under real driving. Sci. Total. Environ. 2021, 793, 148602. [Google Scholar] [CrossRef]
- International Sustainable Systems Research Center (ISSRC). IVE Model Users Manual Version 2.0; International Sustainable Systems Research Center: Los Angeles, CA, USA, 2008; Available online: http://issrc.org/ive/downloads/manuals/UsersManual.pdf (accessed on 7 July 2025).
- Zhao, H.; Mu, L.; Li, Y.; Qiu, J.; Sun, C.; Liu, X. Unregulated emissions from natural gas taxi based on IVE model. Atmosphere 2021, 12, 478. [Google Scholar] [CrossRef]
- Al-Wreikat, Y.; Serrano, C.; Sodré, J.R. Driving behaviour and trip condition effects on the energy consumption of an electric vehicle under real-world driving. Appl. Energy 2021, 297, 117096. [Google Scholar] [CrossRef]
- Tolouei, R.; Titheridge, H. Vehicle mass as a determinant of fuel consumption and secondary safety performance. Transp. Res. Part D Transp. Environ. 2009, 14, 385–399. [Google Scholar] [CrossRef]
- Perrotta, F.; Parry, T.; Neves, L.C. Application of machine learning for fuel consumption modelling of trucks. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; IEEE: New York, NY, USA, 2017; pp. 3810–3815. [Google Scholar]
- Hassan, M.A.; Salem, H.; Bailek, N.; Kisi, O. Random forest ensemble-based predictions of on-road vehicular emissions and fuel consumption in developing urban areas. Sustainability 2023, 15, 1503. [Google Scholar] [CrossRef]
- Huertas, J.I.; Giraldo, M.; Quirama, L.F.; Díaz, J. Driving cycles based on fuel consumption. Energies 2018, 11, 3064. [Google Scholar] [CrossRef]
- D’yachenko, A.T. Study of the Barometric Formula for the Earth’s Atmosphere. Int. J. Appl. Phys. 2025, 10, 10–13. [Google Scholar]
- Tang, G.; Liu, D.; Liu, J.; Deng, X. Research on the Correlation Mechanism Between Complex Slopes of Mountain City Roads and the Real Driving Emission of Heavy-Duty Diesel Vehicles. Sustainability 2025, 17, 554. [Google Scholar] [CrossRef]
- Zeng, I.Y.; Tan, S.; Xiong, J.; Ding, X.; Li, Y.; Wu, T. Estimation of real-world fuel consumption rate of light-duty vehicles based on the records reported by vehicle owners. Energies 2021, 14, 7915. [Google Scholar] [CrossRef]
- Ashqar, H.I.; Obaid, M.; Jaber, A.; Ashqar, R.; Khanfar, N.O.; Elhenawy, M. Incorporating driving behavior into vehicle fuel consumption prediction: Methodology development and testing. Discov. Sustain. 2024, 5, 344. [Google Scholar] [CrossRef]
- Díaz-Ramirez, J.; Giraldo-Peralta, N.; Flórez-Ceron, D.; Rangel, V.; Mejía-Argueta, C.; Huertas, J.I.; Bernal, M. Eco-driving key factors that influence fuel consumption in heavy-truck fleets: A Colombian case. Transp. Res. Part Transp. Environ. 2017, 56, 258–270. [Google Scholar] [CrossRef]
- Huertas, J.I.; Serrano-Guevara, O.; Díaz-Ramírez, J.; Prato, D.; Tabares, L. Real vehicle fuel consumption in logistic corridors. Appl. Energy 2022, 314, 118921. [Google Scholar] [CrossRef]
- Rondón, A.; Aliaga, R.; Cuisano, J. Fuel Consumption and Emissions Analysis of a Light Vehicle Fuelled with Two Ethanol–Gasoline Blends in Urban Driving Conditions of Lima Metropolitana. World Electr. Veh. J. 2021, 12, 99. [Google Scholar] [CrossRef]
- Mardoñez, V.; Pandolfi, M.; Borlaza, L.J.S.; Jaffrezo, J.L.; Alastuey, A.; Besombes, J.L.; Moreno R, I.; Perez, N.; Močnik, G.; Ginot, P.; et al. Source apportionment study on particulate air pollution in two high-altitude Bolivian cities: La Paz and El Alto. Atmos. Chem. Phys. Discuss. 2022, 23, 10325–10347. [Google Scholar] [CrossRef]
- Alshayeb, S.; Stevanovic, A.; Stevanovic, J.; Dobrota, N. Optimizing of traffic-signal timing based on the FCIC-PI—A surrogate measure for fuel consumption. Future Transp. 2023, 3, 663–683. [Google Scholar] [CrossRef]
- Ganji, M.; Rabet, R.; Sajadi, S.M. A new coordinating model for green supply chain and batch delivery scheduling with satisfaction customers. Environ. Dev. Sustain. 2022, 24, 4566–4601. [Google Scholar] [CrossRef]
- Gupta, S.; Deshpande, S.R.; Tufano, D.; Canova, M.; Rizzoni, G.; Aggoune, K.; Olin, P.; Kirwan, J. Estimation of Fuel Economy on Real-World Routes for Next-Generation Connected and Automated Hybrid Powertrains . Technical Report, SAE Technical Paper. 2020. Available online: https://www.sae.org/publications/technical-papers/content/2020-01-0593/ (accessed on 7 July 2025).
ID | Zone | ID | Zone | ID | Zone | ID | Zone |
---|---|---|---|---|---|---|---|
1 | Belisario Quevedo | 10 | Cotocollao | 19 | La Ferroviaria | 28 | Rumipamba |
2 | Carcelén | 11 | El Condado | 20 | La Libertad | 29 | San Bartolo |
3 | Centro Histórico | 12 | El Inca | 21 | La Mena | 30 | San Juan |
4 | Chillogallo | 13 | Guamaní | 22 | La Vicentina | 31 | Solanda |
5 | Chimbacalle | 14 | Iñaquito | 23 | Magdalena | 32 | Tumbaco |
6 | Chilibulo | 15 | Itchimbía | 24 | Mariscal Sucre | 33 | Turubamba |
7 | Cochapamba | 16 | Jipijapa | 25 | Ponceano | 34 | Zámbiza |
8 | Comité del Pueblo | 17 | Kennedy | 26 | Puengasí | 35 | Calderón |
9 | Conocoto | 18 | La Argelia | 27 | Quitumbe |
ID | Manufacurer | Vehicle | Displacement | Year | Emmision Standard |
---|---|---|---|---|---|
1 | Chevrolet | Aveo Family | 1498 | 2011 | EURO 3 |
2 | Kia | Rio | 1368 | 2019 | EURO 5 |
3 | JAC | JS3 | 1590 | 2023 | EURO 5 |
4 | Foton | Gratour V55 | 1498 | 2019 | EURO 5 |
5 | Hyundai | Getz | 1599 | 2009 | EURO 2 |
6 | Hyundai | Grand i10 | 1197 | 2015 | EURO 2 |
7 | Kia | Picanto | 998 | 2019 | EURO 5 |
8 | Kia | Rio | 1368 | 2018 | EURO 5 |
Variable | VIF |
---|---|
FE | 1.513 |
MAP | 1.497 |
TPS | 1.140 |
VSS | 4.103 |
Slope | 1.032 |
VSP | 1.460 |
RPA | 1.019 |
VA[95] | 3.866 |
Aceleration | 1.432 |
Variable | Estimate | SE | tStat | p-Value |
---|---|---|---|---|
(Intercept) | −0.243 | 0.012 | −19.949 | |
VSS | −0.533 | 0.009 | −57.133 | ≈0 |
VA[95] | 0.330 | 0.008 | 43.273 | ≈0 |
Acceleration | −0.085 | 0.003 | −27.559 | |
Slope | −0.044 | 0.002 | −21.784 | |
Zone 2 | 0.345 | 0.025 | 13.603 | |
Zone 5 | −1.369 | 0.018 | −74.184 | ≈0 |
Zone 23 | −1.325 | 0.017 | −76.606 | ≈0 |
Gear 3 | 2.796 | 0.014 | 198.970 | ≈0 |
Gear 4 | 3.031 | 0.019 | 161.300 | ≈0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina-Campoverde, P.A.; Molina-Campoverde, J.J.; Tipanluisa-Portilla, J. Advanced Modeling of Fuel Efficiency in Light-Duty Vehicles Using Gamma Regression with Log-Link Under Real Driving Conditions at High Altitude: Quito, Ecuador Case Study. Energies 2025, 18, 4399. https://doi.org/10.3390/en18164399
Molina-Campoverde PA, Molina-Campoverde JJ, Tipanluisa-Portilla J. Advanced Modeling of Fuel Efficiency in Light-Duty Vehicles Using Gamma Regression with Log-Link Under Real Driving Conditions at High Altitude: Quito, Ecuador Case Study. Energies. 2025; 18(16):4399. https://doi.org/10.3390/en18164399
Chicago/Turabian StyleMolina-Campoverde, Paúl Andrés, Juan José Molina-Campoverde, and Johan Tipanluisa-Portilla. 2025. "Advanced Modeling of Fuel Efficiency in Light-Duty Vehicles Using Gamma Regression with Log-Link Under Real Driving Conditions at High Altitude: Quito, Ecuador Case Study" Energies 18, no. 16: 4399. https://doi.org/10.3390/en18164399
APA StyleMolina-Campoverde, P. A., Molina-Campoverde, J. J., & Tipanluisa-Portilla, J. (2025). Advanced Modeling of Fuel Efficiency in Light-Duty Vehicles Using Gamma Regression with Log-Link Under Real Driving Conditions at High Altitude: Quito, Ecuador Case Study. Energies, 18(16), 4399. https://doi.org/10.3390/en18164399