Dynamic Temperature-Responsive MW Pulsing for Uniform and Energy-Efficient Plant-Based Food Drying
Abstract
1. Introduction
2. Problem Formulation and Simulation Approach
- Initial temperature and moisture content within the apple slices are uniform;
- The water vapor pressure is equal to the equilibrium vapor pressure according to the sorption data of the product;
- The thermo-physical and dielectric properties varied with the moisture content of the sample;
- Uniform electric field distribution exists around the sample, and the electric field is normal to the surface;
- The water flux is caused only by diffusion, considered by an effective diffusion constant.
2.1. Model Development
2.2. Governing Equations
2.3. Input Parameters and Boundary Conditions
Thermo-Physical and Dielectric Properties of the Sample
2.4. Energy Consumption and Heating Uniformity Calculations
2.4.1. MW Energy Consumption
2.4.2. Coefficient of Variance (COV)
2.5. Sample Description
2.6. Simulation Strategy
3. Results and Discussions
3.1. Drying Kinetics Drying
3.1.1. Temperature Controlled Intermittency (MW ON and OFF) Pattern
3.1.2. Moisture Distribution
3.1.3. Temperature Distribution and Evolution
3.2. Effect of MW Power Variation
3.2.1. Temperature Evolution and Thermal Uniformity
3.2.2. Drying Kinetics
3.2.3. MW Energy and PR Feasibility
3.2.4. Implications for Drying Uniformity and Process Optimization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol/Abbreviation | Description | Unit |
CD | Convective drying | - |
CMCD | Continuous microwave convective drying | - |
IMCD | Intermittent microwave convective drying | – |
MC (db) | Moisture content (dry basis) | g/g |
Equilibrium moisture content | g/g | |
Initial moisture content | g/g | |
E | Energy consumption | kJ/kg |
T | Temperature | °C |
Effective moisture diffusivity | ||
PR | Pulse ratio | - |
Maximum temperature | °C | |
Average temperature | °C | |
ΔT | Temperature gradient | °C |
References
- Joardder, M.U.H.; Karim, M.A. Drying kinetics and properties evolution of apple slices under convective and intermittent-MW drying. Therm. Sci. Eng. Prog. 2022, 30, 101279. [Google Scholar] [CrossRef]
- Deng, A.; Li, X.; Qiu, W.; Li, L.; Tao, N.; Jin, Y. Geometry optimization of microwavable food to improve heating uniformity. J. Food Eng. 2024, 369, 111945. [Google Scholar] [CrossRef]
- Shen, L.; Gao, M.; Feng, S.; Ma, W.; Zhang, Y.; Liu, C.; Liu, C.; Zheng, X. Analysis of heating uniformity considering microwave transmission in stacked bulk of granular materials on a turntable in microwave ovens. J. Food Eng. 2022, 319, 110903. [Google Scholar] [CrossRef]
- Joardder, M.U.H.; Kumar, C.; Karim, M.A. Multiphase transfer model for intermittent microwave-convective drying of food: Considering shrinkage and pore evolution. Int. J. Multiph. Flow 2017, 95, 101–119. [Google Scholar] [CrossRef]
- Ye, J.; Hong, T.; Wu, Y.; Wu, L.; Liao, Y.; Zhu, H.; Yang, Y.; Huang, K. Model stirrer based on a multi-material turntable for microwave processing materials. Materials 2017, 10, 95. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Ando, Y. Evaluation of heating uniformity and quality attributes during vacuum microwave thawing of frozen apples. Lwt 2021, 150, 111997. [Google Scholar] [CrossRef]
- Shah, S.M.A.; Shen, Y.J.; Salema, A.A.; Lee, Y.-Y.; Balan, P.; Hassan, N.S.M.; Siran, Y.M.; Rejab, S.A.M. Enhanced productivity, quality and heating uniformity by stacking oil palm fruits under microwave irradiation. Int. J. Therm. Sci. 2022, 179, 107634. [Google Scholar] [CrossRef]
- Botha, G.E.; Oliveira, J.C.; Ahrné, L. Microwave assisted air drying of osmotically treated pineapple with variable power programmes. J. Food Eng. 2012, 108, 304–311. [Google Scholar] [CrossRef]
- Schössler, K.; Jäger, H.; Knorr, D. Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. J. Food Eng. 2012, 108, 103–110. [Google Scholar] [CrossRef]
- An, N.-N.; Li, D.; Wang, L.-J.; Wang, Y. Factors affecting energy efficiency of microwave drying of foods: An updated understanding. Crit. Rev. Food Sci. Nutr. 2024, 64, 2618–2633. [Google Scholar] [CrossRef]
- Ho, Q.T.; Carmeliet, J.; Datta, A.K.; Defraeye, T.; Delele, M.A.; Herremans, E.; Opara, L.; Ramon, H.; Tijskens, E.; van der Sman, R.; et al. Multiscale modeling in food engineering. J. Food Eng. 2013, 114, 279–291. [Google Scholar] [CrossRef]
- Pereira, N.B.; Tuly, S.S.; Hassan, A.; Joardder, M.U.; Karim, A. Investigation of uniformity in multi-tray heat pump-hybrid air dryer system: Numerical modeling and experimental analysis. Appl. Therm. Eng. 2025, 272, 126311. [Google Scholar] [CrossRef]
- Bian, J.; Kang, M.; Xi, Y.; Wang, Y.; Zi, W. A Review of the Measurement and Control Technologies for the Critical Parameters of Microwave Drying Processes: Temperature and Humidity. Food Bioprocess Technol. 2024, 18, 3124–3147. [Google Scholar] [CrossRef]
- Kandasamy, P.; Sarkar, S. Recent developments in microwave drying technology for food preservation. Jetir 2019, 6, 474–488. [Google Scholar]
- Soysal, Y.; Ayhan, Z.; Eştürk, O.; Arıkan, M.F. Intermittent microwave–convective drying of red pepper: Drying kinetics, physical (colour and texture) and sensory quality. Biosyst. Eng. 2009, 103, 455–463. [Google Scholar] [CrossRef]
- Li, M.; Wang, B.; Wang, Y.; Liu, J.; Zhang, M. Evaluation of the uniformity, quality and energy cost of four types of vegetables and fruits after pilot-scale pulse-spouted bed microwave (915 MHz) freeze-drying. Dry. Technol. 2023, 41, 290–307. [Google Scholar] [CrossRef]
- Kalinke, I.; Kubbutat, P.; Taghian Dinani, S.; Ambros, S.; Ozcelik, M.; Kulozik, U. Critical assessment of methods for measurement of temperature profiles and heat load history in microwave heating processes—A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2118–2148. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Zhang, N.; Liu, P.; Liu, Z.; Fu, W.; Li, Z.; Song, C. Heating uniformity improvement of the intermittent microwave drying for carrot with simulations and experiments. J. Food Process Eng. 2024, 47, e14581. [Google Scholar] [CrossRef]
- Khan, M.I.H.; Welsh, Z.; Gu, Y.; Karim, M.; Bhandari, B. Modelling of simultaneous heat and mass transfer considering the spatial distribution of air velocity during intermittent microwave convective drying. Int. J. Heat Mass Transf. 2020, 153, 119668. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, M.; Qian, H.; Mujumdar, A.S. Drying based on temperature-detection-assisted control in microwave-assisted pulse-spouted vacuum drying. J. Sci. Food Agric. 2017, 97, 2307–2315. [Google Scholar] [CrossRef]
- Su, T.; Zhang, W.; Zhang, Z.; Wang, X.; Zhang, S. Energy utilization and heating uniformity of multiple specimens heated in a domestic microwave oven. Food Bioprod. Process. 2022, 132, 35–51. [Google Scholar] [CrossRef]
- Chen, J.; Pitchai, K.; Birla, S.; Negahban, M.; Jones, D.; Subbiah, J. Heat and Mass Transport during Microwave Heating of Mashed Potato in Domestic Oven—Model Development, Validation, and Sensitivity Analysis. J. Food Sci. 2014, 79, E1991–E2004. [Google Scholar] [CrossRef]
- Parvej, A.M.; Rahman, M.A.; Dey, P.; Siddique, A.B.; Joardder, M.U.H. Evaluation of mechanical properties of dried fish from convective, and pulsed microwave convective drying: A comparison study. Meas. Food 2024, 14, 100172. [Google Scholar] [CrossRef]
- Welsh, Z.G.; Khan, M.I.H.; Karim, M.A. Multiscale modeling for food drying: A homogenized diffusion approach. J. Food Eng. 2021, 292, 110252. [Google Scholar] [CrossRef]
- Çengel, Y.A.; Boles, M.A. Thermodynamics: An Engineering Approach; McGraw-Hill Higher Education: New York, NY, USA, 2006. [Google Scholar]
- Datta, A.K. Porous media approaches to studying simultaneous heat and mass transfer in food processes. II: Property data and representative results. J. Food Eng. 2007, 80, 96–110. [Google Scholar] [CrossRef]
- Ratti, C.; Crapiste, G.H.; Rotstein, E. A New Water Sorption Equilibrium Expression for Solid Foods based on Thermodynamic Considerations. J. Food Sci. 1989, 54, 738–742. [Google Scholar] [CrossRef]
- Vega-Mercado, H.; Marcela Góngora-Nieto, M.; Barbosa-Cánovas, G.V. Advances in dehydration of foods. J. Food Eng. 2001, 49, 271–289. [Google Scholar] [CrossRef]
- Martín-Esparza, M.E.; Martínez-Navarrete, N.; Chiralt, A.; Fito, P. Dielectric behavior of apple (var. Granny Smith) at different moisture contents. J. Food Eng. 2006, 77, 51–56. [Google Scholar] [CrossRef]
- Kalinke, I.; Kulozik, U. Enhancing microwave freeze drying: Exploring maximum drying temperature and power input for improved energy efficiency and uniformity. Food Bioprocess Technol. 2024, 17, 5357–5371. [Google Scholar] [CrossRef]
- Joardder, M.U.; Karim, A. Pore evolution in cell walls of food tissue during microwave-assisted drying: An in-depth investigation. Foods 2023, 12, 2497. [Google Scholar] [CrossRef]
- Man, Y.; Tong, J.; Wang, T.; Wang, S.; Xu, H. Study on intermittent microwave convective drying characteristics and flow field of porous media food. Energies 2022, 16, 441. [Google Scholar] [CrossRef]
- Bedjaoui, M.; Azzouz, S.; Azzouz, S.; Benchadli, D.; Jomaa, W. Numerical analysis of heat and mass transfers during intermittent microwave drying of Eucalyptus globulus wood. Dry. Technol. 2025, 43, 1301–1317. [Google Scholar] [CrossRef]
- Yin, S. Effect of metal slots on the heating uniformity of multisource cavity microwave. Front. Energy Res. 2023, 10, 1007566. [Google Scholar] [CrossRef]
- Ye, J.; Lan, J.; Xia, Y.; Yang, Y.; Zhu, H.; Huang, K. An approach for simulating the microwave heating process with a slow-rotating sample and a fast-rotating mode stirrer. Int. J. Heat Mass Transf. 2019, 140, 440–452. [Google Scholar] [CrossRef]
- Wang, J.; Yao, B.; Zheng, Q.; Liu, Y.; Xiang, T.; Zhong, R. Improvement of microwave heating efficiency and uniformity by controllable rotary columns array. IEEE Trans. Microw. Theory Tech. 2023, 71, 3517–3529. [Google Scholar] [CrossRef]
- Seo, J.; Han, G.; Hwang, H. Uniform temperature distribution in microwave heating achieved via rotating electric field. Sci. Rep. 2025, 15, 17960. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value | Reference |
---|---|---|
Sample diameter, Dias | 40 mm | This work |
Sample thickness, Ths | 10 mm | This work |
Initial temperature, T0 | 30 °C | Room temperature |
Moisture content, wet basis | 0.87 | Calculated |
Drying air temperature, T | 333 K | This work |
Universal gas constant, R | 8.314 J mol−1 K−1 | |
Molecular weight of water, | 18.016 g mol−1 | [25] |
Latent heat of evaporation, | 2.26 × 106 J kg−1 | [25] |
Binary diffusivity, Dva | 2.6 × 10−6 m2/s | [26] |
Ambient vapor pressure, pv,air | 2992 Pa | Calculated |
Heat transfer coefficient, hT | 16.746 W/(m2 K) | Calculated |
Mass transfer coefficient, hm | 0.017904 m/s | Calculated |
MW power, P | 100–1000 W | This study |
Shape | Magnetron Power (W) | Moisture Content at 1000 s | Total MW ON Time (s) | Total MW Absorption (J) | MW Energy Efficiency (%) | No of Cycle | Avg. ON Time (s) | Avg. OFF Time (s) | PR |
---|---|---|---|---|---|---|---|---|---|
Temperature Controlled PR | 200 | 5.7931 | 518.26 | 42,182 | 0.4070 | 11 | 47 | 44 | 2 |
400 | 5.7604 | 274.01 | 44,608 | 0.4070 | 17 | 16 | 43 | 4 | |
600 | 5.7501 | 189.15 | 46,186 | 0.4070 | 20 | 9 | 41 | 5 | |
800 | 5.7466 | 141.85 | 46,185 | 0.4070 | 21 | 7 | 41 | 7 | |
1000 | 5.7442 | 112.38 | 45,741 | 0.4070 | 22 | 5 | 40 | 9 | |
Time-Based PR | 200 | 6.0733 | 250 | 18,146 | 0.3629 | 7 | 30 | 120 | 5 |
400 | 5.8787 | 250 | 36,271 | 0.3627 | 7 | 30 | 120 | 5 | |
600 | 5.6768 | 250 | 54,366 | 0.3624 | 7 | 30 | 120 | 5 | |
800 | 5.4731 | 250 | 72,427 | 0.3621 | 7 | 30 | 120 | 5 | |
1000 | 5.2664 | 250 | 90,444 | 0.3618 | 7 | 30 | 120 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joardder, M.U.H.; Karim, A. Dynamic Temperature-Responsive MW Pulsing for Uniform and Energy-Efficient Plant-Based Food Drying. Energies 2025, 18, 4391. https://doi.org/10.3390/en18164391
Joardder MUH, Karim A. Dynamic Temperature-Responsive MW Pulsing for Uniform and Energy-Efficient Plant-Based Food Drying. Energies. 2025; 18(16):4391. https://doi.org/10.3390/en18164391
Chicago/Turabian StyleJoardder, Mohammad U. H., and Azharul Karim. 2025. "Dynamic Temperature-Responsive MW Pulsing for Uniform and Energy-Efficient Plant-Based Food Drying" Energies 18, no. 16: 4391. https://doi.org/10.3390/en18164391
APA StyleJoardder, M. U. H., & Karim, A. (2025). Dynamic Temperature-Responsive MW Pulsing for Uniform and Energy-Efficient Plant-Based Food Drying. Energies, 18(16), 4391. https://doi.org/10.3390/en18164391