From Recycled Polyethylene Terephthalate Waste to High-Value Chemicals and Materials: A Zero-Waste Technology Approach
Abstract
1. Introduction
- (i)
- Primary, used exclusively for the disposal of homogeneous post-industrial or pre-consumer waste [8];
- (ii)
- (iii)
- Tertiary, based on chemical recycling using polar solvents and reactions such as glycolysis, methanolysis, hydrolysis, aminolysis and ammonolysis [11,12,13]. We present a more detailed horizontal comparison of the indicated methods in Table S1, Supplementary Materials;
- (iv)
- Quaternary recycling related to the recovery of energy from plastics through their combustion or pyrolysis [14];
- (v)
- (i)
- The influence of both catalyst components through their mutual coactivation, consequently leading to an additive effect of enhancing the catalyst activity;
- (ii)
- In multi-stage reactions, catalysis of subsequent reaction stages through interaction (synergy) of two or more catalyst components, consequently leading to increased activity or selectivity of the reaction;
- (iii)
- In reactions conducted in a longer time window, the secondary catalyst component affects the primary one through a protective effect, contributing to limiting its degradation and better stabilization of the catalytic system;
- (iv)
- In red-ox reactions, catalysts can act as storage (e.g., oxygen or hydrogen) or carriers of reagents, supporting their release or binding.
2. Materials and Methods
2.1. Materials and Preparation of 1% Fe/SiO2 or 1% Cr/SiO2
2.2. Methods of Catalyst Characterization
2.3. Procedure of Synthesis of 1,3-Dioxolane Derivatives
2.4. Preparation of Standard Curves of Ethylene Glycol Solutions Dehydrated with Gelatine
2.5. Procedure of rPET Hydrolysis and Purification of Terephthalic Acid
2.6. Synthesis of 2,2-Dimethyl-1,3-Dioxolane from Liquid Fraction After rPET Hydrolysis
2.7. Procedure of Preparing Concrete Samples with Post-Production Additives
2.8. Compressive Strength Tests of Concrete Samples
2.9. 1,3-Dioxolanes Derivatives Tests in Polymers Solubility
3. Results and Discussion
4. Executive Summary and Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Report Future Market Insigns, Polyethylene Terephthalate Market Growth—Trends & Forecast 2025 to 2035. Available online: https://www.futuremarketinsights.com/reports/polyethylene-terephthalate-market (accessed on 7 July 2025).
- Tamburini, E.; Krozer, Y.; Castaldelli, G. How Much Are We Paying for Drinking Water in (PET) Bottles? A Global Assessment of the Hidden Costs and Potential Damage to the Environment. Environ. Chall. 2025, 18, 101083. [Google Scholar] [CrossRef]
- Sax, L. Polyethylene Terephthalate May Yield Endocrine Disruptors. Environ. Health Perspect. 2010, 118, 445–448. [Google Scholar] [CrossRef]
- Wagner, M.; Oehlmann, J. Endocrine Disruptors in Bottled Mineral Water: Total Estrogenic Burden and Migration from Plastic Bottles. Environ. Sci. Pollut. Res. 2009, 16, 278–286. [Google Scholar] [CrossRef]
- Cramer, A.; Benard, P.; Zarebanadkouki, M.; Kaestner, A.; Carminati, A. Microplastic Induces Soil Water Repellency and Limits Capillary Flow. Vadose Zone J. 2023, 22, e20215. [Google Scholar] [CrossRef]
- Chu, M.; Tu, W.; Zhang, Q.; Huang, W.; Chen, J.; Ma, D. Co-Recycling of Plastics and Other Waste Materials. Nat. Rev. Clean. Technol. 2025, 1, 320–332. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, N.; Umesh, M.; Janghu, P.; Sarojini, S.; Chakraborty, P.; Pasrija, R. Methods and Techniques to Fabricate PET Recycled Nanomaterials: A Review. J. Mater. Cycles Waste Manag. 2025, 27, 2076–2098. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Iacovidou, E. An Overview of the Challenges and Trade-Offs in Closing the Loop of Post-Consumer Plastic Waste (PCPW): Focus on Recycling. J. Hazard. Mater. 2019, 380, 120887. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Liu, R.; Li, C.; Song, Y.; Hu, C. Hydrolysis of Waste Polyethylene Terephthalate Catalyzed by Easily Recyclable Terephthalic Acid. Waste Manag. 2021, 135, 267–274. [Google Scholar] [CrossRef]
- Gallardo-Sánchez, M.A.; Chinchillas-Chinchillas, M.J.; Gaxiola, A.; Alvarado-Beltrán, C.G.; Hurtado-Macías, A.; Orozco-Carmona, V.M.; Almaral-Sánchez, J.L.; Sepúlveda-Guzmán, S.; Castro-Beltrán, A. The Use of Recycled PET for the Synthesis of New Mechanically Improved PVP Composite Nanofibers. Polymers 2022, 14, 2882. [Google Scholar] [CrossRef] [PubMed]
- Kotowicz, S.; Korzec, M.; Kapkowski, M.; Pająk, A.K. Photophysical Investigations of the Organic Compounds Synthesised from Waste Poly(Ethylene Terephthalate). Ecol. Chem. Eng. S 2024, 31, 253–266. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, J.; Wang, J. Chemical Degradation and Recycling of Polyethylene Terephthalate (PET): A Review. RSC Sustain. 2025, 3, 2111–2133. [Google Scholar] [CrossRef]
- Umdagas, L.; Orozco, R.; Heeley, K.; Thom, W.; Al-Duri, B. Advances in Chemical Recycling of Polyethylene Terephthalate (PET) via Hydrolysis: A Comprehensive Review. Polym. Degrad. Stab. 2025, 234, 111246. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Antelava, A.; Constantinou, A.; Manos, G.; Dutta, A. A Review on Thermal and Catalytic Pyrolysis of Plastic Solid Waste (PSW). J. Environ. Manag. 2017, 197, 177–198. [Google Scholar] [CrossRef]
- Shanker, R.; Khan, D.; Hossain, R.; Islam, M.T.; Locock, K.; Ghose, A.; Sahajwalla, V.; Schandl, H.; Dhodapkar, R. Plastic Waste Recycling: Existing Indian Scenario and Future Opportunities. Int. J. Environ. Sci. Technol. 2023, 20, 5895–5912. [Google Scholar] [CrossRef]
- Kawai, F. Emerging Strategies in Polyethylene Terephthalate Hydrolase Research for Biorecycling. ChemSusChem 2021, 14, 4115–4122. [Google Scholar] [CrossRef]
- Kotowicz, S. Charakterystyka Folii Otrzymanych z Recyklingowanego Poli(Tereftalanu Etylenu). Chem. Rev. 2025, 1, 68–72. [Google Scholar] [CrossRef]
- Bushra, R.; Khayal, A.; Ahmad, M.; Song, J.; Jin, Y.; Xiao, H. Catalytic Conversion of Polymer Waste into High-Value Products for Advancing Circular Economy and Eco-Sustainability. J. Anal. Appl. Pyrolysis 2025, 189, 107052. [Google Scholar] [CrossRef]
- Deng, L.; Guo, W.; Ngo, H.H.; Zhang, X.; Wei, D.; Wei, Q.; Deng, S. Novel Catalysts in Catalytic Upcycling of Common Polymer Wastes. Chem. Eng. J. 2023, 471, 144350. [Google Scholar] [CrossRef]
- Cho, S.-H.; Park, J.; Lee, D.; Cho, H.; Lee, J.; Kwon, E.E. Recovery of Gaseous Fuels through CO2-Mediated Pyrolysis of Thermosetting Polymer Waste. Chemosphere 2024, 363, 142892. [Google Scholar] [CrossRef] [PubMed]
- Baskar, S.; Padmanabhan, S.; Raman, A.; Venkatesan, M.; Ganesan, S.; Kumar, K.M.; Mahalingam, S. A Circular Economy Approach to Energy Recovery from Polymer Waste with Oxygenated Additives as a Sustainable Fuel. Results Eng. 2025, 25, 104516. [Google Scholar] [CrossRef]
- Ryou, H.; Byun, J.; Bae, J.; Kim, D.K.; Han, J. Energy-Efficient and Environmentally Friendly Upcycling of Waste Plastic into Fuels, Chemicals, and Polymer. Chem. Eng. J. 2025, 511, 162256. [Google Scholar] [CrossRef]
- Roldan Cuenya, B.; Behafarid, F. Nanocatalysis: Size- and Shape-Dependent Chemisorption and Catalytic Reactivity. Surf. Sci. Rep. 2015, 70, 135–187. [Google Scholar] [CrossRef]
- Scirè, S.; Liotta, L.F. Supported Gold Catalysts for the Total Oxidation of Volatile Organic Compounds. Appl. Catal. B Environ. 2012, 125, 222–246. [Google Scholar] [CrossRef]
- Shi, J. On the Synergetic Catalytic Effect in Heterogeneous Nanocomposite Catalysts. Chem. Rev. 2013, 113, 2139–2181. [Google Scholar] [CrossRef]
- Polanski, J.; Lach, D.; Kapkowski, M.; Bartczak, P.; Siudyga, T.; Smolinski, A. Ru and Ni—Privileged Metal Combination for Environmental Nanocatalysis. Catalysts 2020, 10, 992. [Google Scholar] [CrossRef]
- Zhang, W.; Hao, X.; Liu, X.; Chu, M.; Li, S.; Wang, X.; Jiang, F.; Wang, L.; Zhang, Q.; Chen, J.; et al. Photocatalytic Conversion of Polyester-Derived Alcohol into Value-Added Chemicals by Engineering Atomically Dispersed Pd Catalyst. Angew. Chem. Int. Ed. 2025, 64, e202500814. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, P.; Li, X.; Li, Q.; Li, S.; Han, H.; Chu, M.; Fu, J.; Cao, M.; Xu, P.; et al. Selective Recycling of Mixed Polyesters via Heterogeneous Photothermal Catalysis. Adv. Mater. 2025, 37, 2412740. [Google Scholar] [CrossRef] [PubMed]
- Kapkowski, M.; Lach, D.; Siudyga, T.; Kocot, K.; Kotowicz, S.; Korzec, M.; Bartczak, P.; Balin, K.; Zubko, M.; Dercz, G.; et al. Nano-Ru Deposited on Titanium Dioxide as Effective Photocatalyst for Synthesis of Cyclic Ketals for Application as Fuel Biocomponents. Appl. Catal. A: Gen. 2025, 691, 120066. [Google Scholar] [CrossRef]
- Deutsch, J.; Martin, A.; Lieske, H. Investigations on Heterogeneously Catalysed Condensations of Glycerol to Cyclic Acetals. J. Catal. 2007, 245, 428–435. [Google Scholar] [CrossRef]
- He, D.Y.; Li, Z.J.; Li, Z.J.; Liu, Y.Q.; Qiu, D.X.; Cai, M.S. Studies on Carbohydrates X. A New Method for the Preparation of Isopropylidene Saccharides. Synth. Commun. 1992, 22, 2653–2658. [Google Scholar] [CrossRef]
- Lin, C.-H.; Lin, S.D.; Lin, T.-P.; Huang, Y.-J. The Influence of Steric and Electronic Effects on the Preparation of Cyclic Acetals Catalyzed by Sulfated Metal Oxides. Appl. Catal. A: Gen. 2003, 240, 253–262. [Google Scholar] [CrossRef]
- He, J.; Qiang, Q.; Bai, L.; Su, W.; Yu, H.; Liu, S.; Li, C. Acetalization Strategy in Biomass Valorization: A Review. Ind. Chem. Mater. 2024, 2, 30–56. [Google Scholar] [CrossRef]
- Kapkowski, M.; Ambrożkiewicz, W.; Siudyga, T.; Sitko, R.; Szade, J.; Klimontko, J.; Balin, K.; Lelątko, J.; Polanski, J. Nano Silica and Molybdenum Supported Re, Rh, Ru or Ir Nanoparticles for Selective Solvent-Free Glycerol Conversion to Cyclic Acetals with Propanone and Butanone under Mild Conditions. Appl. Catal. B Environ. 2017, 202, 335–345. [Google Scholar] [CrossRef]
- Kapkowski, M.; Popiel, J.; Siudyga, T.; Dzida, M.; Zorębski, E.; Musiał, M.; Sitko, R.; Szade, J.; Balin, K.; Klimontko, J.; et al. Mono- and Bimetallic Nano-Re Systems Doped Os, Mo, Ru, Ir as Nanocatalytic Platforms for the Acetalization of Polyalcohols into Cyclic Acetals and Their Applications as Fuel Additives. Appl. Catal. B Environ. 2018, 239, 154–167. [Google Scholar] [CrossRef]
- Mallesham, B.; Sudarsanam, P.; Reddy, B.M. Eco-Friendly Synthesis of Bio-Additive Fuels from Renewable Glycerol Using Nanocrystalline SnO2-Based Solid Acids. Catal. Sci. Technol. 2014, 4, 803. [Google Scholar] [CrossRef]
- Kapkowski, M.; Siudyga, T.; Kocot, K.; Balin, K.; Fijałkowski, M.; Zubko, M.; Prusik, K.; Chojnowska, A.; Dercz, G.; Kujawski, W.; et al. Exploring Induction Heating Catalysis with Nano-Indium on Silica: From Room-Temperature to Thermal Synthesis of 1,3-Dioxolane as a New Sustainable Fertilizer Enhancer. Chem. Eng. Res. Des. 2025, 218, 867–885. [Google Scholar] [CrossRef]
- Tempio, E.; Ravez, A.; Lach, D.; Kapkowski, M.; Plevova, K.; Gilles, L.; Polanski, J.; Antoniotti, S. Iron(III) Chloride-Catalyzed Acetalisation of α,β-Unsaturated Carbonyl Compounds towards Odorant Ketals. Tetrahedron 2023, 149, 133734. [Google Scholar] [CrossRef]
- Krompiec, S.; Penkala, M.; Szczubiałka, K.; Kowalska, E. Transition Metal Compounds and Complexes as Catalysts in Synthesis of Acetals and Orthoesters: Theoretical, Mechanistic and Practical Aspects. Coord. Chem. Rev. 2012, 256, 2057–2095. [Google Scholar] [CrossRef]
- Smirnov, A.A.; Selishcheva, S.A.; Yakovlev, V.A. Acetalization Catalysts for Synthesis of Valuable Oxygenated Fuel Additives from Glycerol. Catalysts 2018, 8, 595. [Google Scholar] [CrossRef]
- Climent, M.J.; Corma, A.; Iborra, S. Conversion of Biomass Platform Molecules into Fuel Additives and Liquid Hydrocarbon Fuels. Green Chem. 2014, 16, 516. [Google Scholar] [CrossRef]
- Walsh, R.H. Dioxolanes and Thio Analogs, Derivatives Thereof and Lubricants and Fuels Containing Same 1988. Available online: https://patents.google.com/patent/US4906253A/en?oq=US4906253A (accessed on 7 July 2025).
- Mcdougall, P.J. Lubricating Composition Containing 1,3-Dioxolane-4-Methanol Compounds as Antiwear Additives. U.S. Patent 8,349,777, 8 January 2013. [Google Scholar]
- Szwajczak, E.; Sierka, E.; Ludynia, M. Potential Role of Low-Molecular-Weight Dioxolanes as Adjuvants for Glyphosate-Based Herbicides Using Photosystem II as an Early Post-Treatment Determinant. Cells 2023, 12, 777. [Google Scholar] [CrossRef]
- Kapkowski, M.; Ludynia, M.; Rudnicka, M.; Dzida, M.; Zorębski, E.; Musiał, M.; Doležal, M.; Polanski, J. Enhancing the CO2 Capturing Ability in Leaf via Xenobiotic Auxin Uptake. Sci. Total Environ. 2020, 745, 141032. [Google Scholar] [CrossRef]
- Moscoso, R.; Carbajo, J.; Squella, J.A. 1,3-Dioxolane: A Green Solvent for the Preparation of Carbon Nanotube-Modified Electrodes. Electrochem. Commun. 2014, 48, 69–72. [Google Scholar] [CrossRef]
- Albanelli, N.; Capodarca, F.; Zanoni, M.; Lacarbonara, G.; Focarete, M.L.; Gualandi, C.; Arbizzani, C. In Situ Polymerized Poly(1,3-Dioxolane) in Polyacrylonitrile Porous Scaffolds: A Novel Composite Polymer Electrolyte for Room Temperature Battery Application. J. Power Sources Adv. 2024, 26, 100140. [Google Scholar] [CrossRef]
- Wang, Z.-M.; Wang, D.; Dai, W.-K.; Jin, K.-R.; Yang, J.-Z.; Wang, Z.-D.; Tian, Z.-Y. Thermal Decomposition Study of 1,3-Dioxolane as a Representative of Battery Solvent. J. Anal. Appl. Pyrolysis 2024, 182, 106661. [Google Scholar] [CrossRef]
- Melchiorre, M.; Teoh, K.S.; Gómez Urbano, J.L.; Ruffo, F.; Balducci, A. A Lactic Acid Dioxolane as a Bio-Based Solvent for Lithium-Ion Batteries: Physicochemical and Electrochemical Investigations of Lithium Imide-Based Electrolytes. Green Chem. 2025, 27, 5040–5050. [Google Scholar] [CrossRef]
- Information Brochure, Intermediates—1,3-Dioxolane 2013. Available online: http://www.basf.com/performance-materials (accessed on 7 July 2025).
- Amran, M.; Fediuk, R.; Murali, G.; Vatin, N.; Karelina, M.; Ozbakkaloglu, T.; Krishna, R.S.; Sahoo, A.K.; Das, S.K.; Mishra, J. Rice Husk Ash-Based Concrete Composites: A Critical Review of Their Properties and Applications. Crystals 2021, 11, 168. [Google Scholar] [CrossRef]
- Asutkar, P.; Shinde, S.B.; Patel, R. Study on the Behaviour of Rubber Aggregates Concrete Beams Using Analytical Approach. Eng. Sci. Technol. Int. J. 2017, 20, 151–159. [Google Scholar] [CrossRef]
- Zamora-Castro, S.A.; Salgado-Estrada, R.; Sandoval-Herazo, L.C.; Melendez-Armenta, R.A.; Manzano-Huerta, E.; Yelmi-Carrillo, E.; Herrera-May, A.L. Sustainable Development of Concrete through Aggregates and Innovative Materials: A Review. Appl. Sci. 2021, 11, 629. [Google Scholar] [CrossRef]
- Cota, F.P.; Melo, C.C.D.; Panzera, T.H.; Araújo, A.G.; Borges, P.H.R.; Scarpa, F. Mechanical Properties and ASR Evaluation of Concrete Tiles with Waste Glass Aggregate. Sustain. Cities Soc. 2015, 16, 49–56. [Google Scholar] [CrossRef]
- Choi, Y.-W.; Moon, D.-J.; Chung, J.-S.; Cho, S.-K. Effects of Waste PET Bottles Aggregate on the Properties of Concrete. Cem. Concr. Res. 2005, 35, 776–781. [Google Scholar] [CrossRef]
- Coviello, C.G.; Sabbà, M.F.; Foti, D. Recycled Waste PET for Sustainable Cementitious Materials. In Comprehensive Green Materials; Elsevier: Amsterdam, The Netherlands, 2025; pp. 232–260. ISBN 978-0-443-15739-4. [Google Scholar]
- Bahmani, H.; Mostofinejad, D. Comparative Analysis of Environmental, Social, and Mechanical Aspects of High-Performance Concrete with Calcium Oxide-Activated Slag Reinforced with Basalt, and Recycled PET Fibers. Case Stud. Constr. Mater. 2024, 20, e02895. [Google Scholar] [CrossRef]
- Bahmani, H.; Mostofinejad, D.; Eftekhar, M.R. A Novel Eco-Friendly Thermal-Insulating High-Performance Geopolymer Concrete Containing Calcium Oxide-Activated Materials with Waste Tire and Waste Polyethylene Terephthalate. Dev. Built Environ. 2024, 18, 100473. [Google Scholar] [CrossRef]
- Dawood, A.O.; AL-Khazraji, H.; Falih, R.S. Physical and Mechanical Properties of Concrete Containing PET Wastes as a Partial Replacement for Fine Aggregates. Case Stud. Constr. Mater. 2021, 14, e00482. [Google Scholar] [CrossRef]
- Tustin, G.C.; Pell, T.M., Jr.; Jenkins, D.A.; Jernigan, M.T. Process for the Recovery of Terephthalic Acid and Ethylene Glycol from Poly(Ethylene Terephthalate). U.S. Patent 5,413,681, 9 May 1995. [Google Scholar]
- Porębski, T.; Ratajczak, W.; Tomzik, S.; Kokosiński, W.; Sieradzki, S.; Moderacki, R.; Marton, G.; Krysztofik, P.; Sęp, M.K.; Talma-Piwowar, M. Sposób przerobu zasolonych wód odpadowych z procesu syntezy tlenku etylenu i glikolu 2004. Patent PL186722B1. Available online: https://patents.google.com/patent/PL186722B1/en?q=(Method+of+processing+glycol-containing+saline+waste+waters+por%C4%99bski)&oq=Method+of+processing+glycol-containing+saline+waste+waters+por%C4%99bski (accessed on 7 July 2025).
- Alfonsetti, R.; De Simone, G.; Lozzi, L.; Passacantando, M.; Picozzi, P.; Santucci, S. SiOx Surface Stoichiometry by XPS: A Comparison of Various Methods. Surf. Interface Anal. 1994, 22, 89–92. [Google Scholar] [CrossRef]
- Gierada, M. Use of the Cr/SiO2 Catalysts and Structure of Their Surface Species Zastosowanie Oraz Struktura Form Powierzchniowych Układów Katalitycznych Cr/SiO2. Chem. Rev. 2015, 1, 74–79. [Google Scholar] [CrossRef]
- Askar, M.K.; Al-Kamaki, Y.S.S.; Hassan, A. Utilizing Polyethylene Terephthalate PET in Concrete: A Review. Polymers 2023, 15, 3320. [Google Scholar] [CrossRef] [PubMed]
- Meza, A.; Pujadas, P.; Meza, L.M.; Pardo-Bosch, F.; López-Carreño, R.D. Mechanical Optimization of Concrete with Recycled PET Fibres Based on a Statistical-Experimental Study. Materials 2021, 14, 240. [Google Scholar] [CrossRef] [PubMed]
- Hadj Mostefa, A.; Slimane, M. Study of Concretes Reinforced by Plastic Fibers Based on Local Materials. JERA 2019, 42, 100–108. [Google Scholar] [CrossRef]
- Polozov, M.A.; Zherebtsov, D.A.; Osipov, A.A.; Radzhakumar, K.; Naifert, S.A.; Spiridonova, D.V.; Zaguzin, A.S.; Vinnik, D.A. Structure of 2,3,5,6-Tetraiodo-1,4-Benzenedicarboxylic Acid and Features of the Thermolysis of Iodinated Terephthalic Acids. J. Struct. Chem. 2024, 65, 1346–1356. [Google Scholar] [CrossRef]
- Wu, J.; Chen, J.; Wang, L.; Zhu, H.; Liu, R.; Song, G.; Feng, C.; Li, Y. Brønsted Acid-Catalysed Aerobic Photo-Oxygenation of Benzylic C–H Bonds. Green Chem. 2023, 25, 940–945. [Google Scholar] [CrossRef]
- Javed, S.; Fisse, J.; Vogt, D. Optimization and Kinetic Evaluation for Glycolytic Depolymerization of Post-Consumer PET Waste with Sodium Methoxide. Polymers 2023, 15, 687. [Google Scholar] [CrossRef] [PubMed]
- Enache, A.-C.; Grecu, I.; Samoila, P. Polyethylene Terephthalate (PET) Recycled by Catalytic Glycolysis: A Bridge toward Circular Economy Principles. Materials 2024, 17, 2991. [Google Scholar] [CrossRef] [PubMed]
Entry | rPET Mass [g] | Water [mL] | Solid Residue [g] a | Liquid Residue [g] | Ethylene Glycol [%] b |
---|---|---|---|---|---|
1 | 10 | 40 | 8.45 | 30.00 | 2.5 |
2 | 30 | 40 | 28.78 | 19.20 | 6.5 |
3 | 40 | 40 | 47.80 | 5.31 | 12.0 |
Entry | B-20 [g] | Water [g] | rPET [g] | Terephthalic Acid [g] | Gelatine [g] | NH3/H2O [mL] |
---|---|---|---|---|---|---|
1 ref. | 400 | 62 | - | - | - | - |
2 | 388 | 62 | 12 * | - | - | - |
3 | 388 | 70 | 12 ** | - | - | - |
4 | 388 | 100 | - | 12 | - | - |
5 | 388 | 100 | - | 12 | - | 2.4/50 |
6 | 388 | 85 | - | 10.8 | 1.2 | 2.2/50 |
7 | 388 | 70 | 6 ** | 6 | - | - |
Entry | Catalyst | Chemical Element [wt%] | |||||
---|---|---|---|---|---|---|---|
Fe | Cr | P | Al | Cl | SiO2 | ||
1 | SiO2 | 43 * | - | 0.087 | 0.133 | 15 * | 99.434 |
2 | 1.0% Fe/SiO2 | 0.910 | - | 917.3 * | - | 0.268 | 98.688 |
3 | 1.0% Cr/SiO2 | 9.2 * | 0.983 | 878.4 * | 0.119 | - | 98.520 |
Entry | Catalyst a | Reagents | α b [%] | TON c | Selectivity [%] d | Yield [%] d | ||
---|---|---|---|---|---|---|---|---|
CK | OS | CK | OS | |||||
1 | Blank test | glycerol—acetone | 0 | 0 | 0 I | 0 | 0 I | 0 |
2 | SiO2 | 5.1 | 0 | 0 I | 100 | 0 I | 5.1 | |
3 | 1.0% Fe/SiO2 | 30.6 | 427 | 60.2 I | 39.8 | 18.4 I | 12.2 | |
4 | 1.0% Cr/SiO2 | 66.1 | 859 | 92.5 I | 7.5 | 61.1 I | 5.0 | |
5 | Blank test | propylene glycol—acetone | 1.8 | 0 | 0 II | 100 | 0 II | 1.8 |
6 | SiO2 | 2.0 | 0 | 0 II | 100 | 0 II | 2.0 | |
7 | 1.0% Fe/SiO2 | 28.7 | 401 | 96.7 II | 3.3 | 28 II | 0.9 | |
8 | 1.0% Cr/SiO2 | 52.3 | 680 | 100 II | 0 | 52.3 II | 0 | |
9 | Blank test | ethylene glycol—acetone | 1.3 | 0 | 0 III | 100 | 0 III | 1.3 |
10 | SiO2 | 1.3 | 0 | 0 III | 100 | 0 III | 1.3 | |
11 | 1.0% Fe/SiO2 | 31.2 | 436 | 94.7 III | 5.3 | 30 III | 1.7 | |
12 | 1.0% Cr/SiO2 | 43.3 | 563 | 95.6 III | 4.4 | 41.4 III | 1.9 |
Entry | Hydrolysis | Dehydration | Reactions Conditions | DMD Yield [%] | |||
---|---|---|---|---|---|---|---|
rPET [g] | Water [mL] | Sol. vol. [mL] | Gelatine [g] | Swelling Time [h] | |||
1 | 40 | 30 | 15 | 0.85 | 0.5 | 10 mg Amberlyst 15H, 20 mg 1% Cr/SiO2, sol.: AcMe ratio = 1.0 mL:14.0 mL, 35 °C, 30 min, 150 rpm | 6.2 I vs. 6.1 II |
2 | 40 | 30 | 15 | 0.85 | 0.5 | 10 mg Amberlyst 15H, 30 mg 1% Fe/SiO2, sol.: AcMe ratio = 0.6 mL:6.0 mL, 60 °C, 45 min, 400 rpm | 13.8 I vs. 9.6 II |
3 | 40 | 40 | 20 | 0.60 | 1.5 | 10 mg Amberlyst 15H, 50 mg 1% Cr/SiO2, sol.: AcMe ratio = 0.58 mL:5.76 mL, 40 °C, 90 min, 300 rpm | 16.0 I vs. 13.7 II |
4 | 40 | 40 | 20 | 0.60 | 1.5 | 10 mg Amberlyst 15H, 40 mg 1% Fe/SiO2, sol.: AcMe ratio = 1.0 mL:9.0 mL, 55 °C, 60 min, 200 rpm | 13.1 I vs. 9.5 II |
5 | 10 | 40 | 21 | 0.84 | 2.0 | 10 mg Amberlyst 15H, 10 mg 1% Cr/SiO2, sol.: AcMe ratio = 0.58 mL:4.06 mL, 50 °C, 180 min, 250 rpm | 9.6 I vs. 8.2 II |
6 | 10 | 40 | 21 | 0.84 | 2.0 | 10 mg Amberlyst 15H, 10 mg 1% Fe/SiO2, sol.: AcMe ratio = 1.0 mL:5.0 mL, 57 °C, 210 min, 300 rpm | 6.8 I vs. 6.1 II |
Polymer (Form)/Foam/Glue | TMD | DDM | DMD |
---|---|---|---|
rPET flakes 1 | -- 48h | -- 48h | -- 48h |
rPET in crushed form Fraction ≤ 1 mm | -- 48h light blue color of the solution 2min | -- 48h blue thick solution 2min | -- 48h light blue color of the solution 2min |
PMMA in powdered form 2 | Swell 2h cloudy solution1h +- 3h ++ 5h | Swell 1h cloudy solution 45min +- 5h ++ 24h | ++ 1h |
PEN in crushed form Fraction ≤ 1 mm | -- 48h light blue color of the solution 2min | -- 48h light blue color of the solution 2min | -- 48h light blue color of the solution 2min |
Polyurethane foam 3 | swell 2min after 2 min no visible solution | swell 5min after 5 min partial disappearance of solution after 30 min no visible solution | swell 2min after 2 min no visible solution |
Two-component epoxy glue 3 | cloudy solution 0min +- 15min ++ 1h milky color | cloudy solution 5min +- 30min milky color | cloudy solution 2min +- 15min ++ 1h milky color |
HDPE in crushed form Fraction ≤ 1 mm | -- 48h | -- 48h | -- 48h |
PP in crushed form Fraction ≤ 1 mm | -- 48h | -- 48h | -- 48h |
Entry | Avg. Mass [g]/Std. | Mass Red. [%] | Rc [MPa]/Std. |
---|---|---|---|
1 ref. | 367.708 ± 2.867 | 0 | 2.94 ± 0.50 |
2 | 350.442 ± 3.115 | 4.7 | 3.79 ± 0.69 |
3 | 352.284 ± 2.296 | 4.2 | 4.51 ± 0.81 |
4 | 326.078 ± 9.185 | 11.3 | 1.35 ± 0.53 |
5 | 315.774 ± 6.044 | 14.1 | 0.85 ± 0.24 |
6 | 281.796 ± 1.254 | 23.4 | 0.42 ± 0.06 |
7 | 318.034 ± 10.239 | 13.5 | 0.80 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapkowski, M.; Kotowicz, S.; Kocot, K.; Korzec, M.; Kubacki, J.; Zubko, M.; Aniołek, K.; Siudyga, U.; Siudyga, T.; Polanski, J. From Recycled Polyethylene Terephthalate Waste to High-Value Chemicals and Materials: A Zero-Waste Technology Approach. Energies 2025, 18, 4375. https://doi.org/10.3390/en18164375
Kapkowski M, Kotowicz S, Kocot K, Korzec M, Kubacki J, Zubko M, Aniołek K, Siudyga U, Siudyga T, Polanski J. From Recycled Polyethylene Terephthalate Waste to High-Value Chemicals and Materials: A Zero-Waste Technology Approach. Energies. 2025; 18(16):4375. https://doi.org/10.3390/en18164375
Chicago/Turabian StyleKapkowski, Maciej, Sonia Kotowicz, Karina Kocot, Mateusz Korzec, Jerzy Kubacki, Maciej Zubko, Krzysztof Aniołek, Urszula Siudyga, Tomasz Siudyga, and Jaroslaw Polanski. 2025. "From Recycled Polyethylene Terephthalate Waste to High-Value Chemicals and Materials: A Zero-Waste Technology Approach" Energies 18, no. 16: 4375. https://doi.org/10.3390/en18164375
APA StyleKapkowski, M., Kotowicz, S., Kocot, K., Korzec, M., Kubacki, J., Zubko, M., Aniołek, K., Siudyga, U., Siudyga, T., & Polanski, J. (2025). From Recycled Polyethylene Terephthalate Waste to High-Value Chemicals and Materials: A Zero-Waste Technology Approach. Energies, 18(16), 4375. https://doi.org/10.3390/en18164375