Improved Energy Management in the Hotel Industry, Energy Key Performance Indicators, Benchmarking, and Taxonomy Methodology
Abstract
1. Introduction
2. Materials and Methods
2.1. Fundamentals of Taxonomic Analysis of the Final Use of Energy
2.2. Requirements for the Taxonomic Analysis of the Final Use of Energy in Hotels
2.3. Methodology for the Taxonomic Analysis of the Final Use of Energy in Hotels
3. Results
Application of the Taxonomic Analysis Methodology to the Energy Review in a Hotel
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Air conditioning |
CDD | Cooling degree days—an index to estimate the energy demand for cooling |
DHW | Domestic hot water |
DX Cooling | Direct expansion cooling—a type of air conditioning system |
EnPI | Energy performance indicator—a measurable value used to quantify energy performance |
EUI | Energy use intensity—typically measured in kWh/m2/year |
GDP | Gross domestic product |
GHG | Greenhouse gas |
HVAC | Heating, ventilation, and air conditioning |
ISO | International organization for standardization |
KPI | Key performance indicator |
kWh | Kilowatt-hour—a unit of energy |
MWh | Megawatt-hour—1000 kWh |
TCF | Tons of conventional fuel—used to quantify different energy types on a common scale |
TCO2/year | Tons of CO2 emitted per year—indicates carbon footprint |
VSD | Variable speed drive—an energy-efficiency technology for motors and pumps |
References
- Erol, I.; Neuhofer, I.O.; Dogru, T.; Oztel, A.; Searcy, C.; Yorulmaz, A.C. Improving sustainability in the tourism industry through blockchain technology: Challenges and opportunities. Tour. Manag. 2022, 93, 104628. [Google Scholar] [CrossRef]
- Statista Global. Tourism Industry-Tatistics & Facts. 2022. Available online: https://www.statista.com/topics/962/global-tourism/#topicOverview (accessed on 31 July 2025).
- Xu, A.; Wang, C.; Tang, D.; Ye, W. Tourism circular economy: Identification and measurement of tourism industry ecologization. Ecol. Indic. 2022, 144, 109476. [Google Scholar] [CrossRef]
- Filimonau, V.; De Coteau, D.A. Food waste management in hospitality operations: A critical review. Tour. Manag. 2019, 71, 234–245. [Google Scholar] [CrossRef]
- Ben, A.; Ben, Y.; Zeqiri, A. Hospitality industry 4.0 and climate change. Circ. Econ. Sustain. 2022, 2, 1043–1063. [Google Scholar] [CrossRef]
- Amin, S.B.; Atique, M.A. The nexus among tourism, urbanisation and CO2 emissions in South Asia: A panel analysis. Tour. Hosp. Manag. 2021, 27, 63–82. [Google Scholar] [CrossRef]
- Kneifel, J. Life-cycle carbon and cost analysis of energy efficiency measures in new commercial buildings. Energy Build. 2010, 42, 333–340. [Google Scholar] [CrossRef]
- Castillo Alvarez, Y.; Jiménez Borges, R.; Monteagudo Yanes, J.P.; Rodríguez Pérez, B.; Patiño Vidal, C.D.; Pfuyo Muñoz, R. Mathematical model to improve energy efficiency in hammer mills and its use in the feed industry: Analysis and validation in a case study in Cuba. Processes 2025, 13, 1523. [Google Scholar] [CrossRef]
- Lesme Jaén, R.; Peña Pupo, L.; Silva Lora, E.E.; Cabello Eras, J.J.; Sagastume Gutiérrez, A. Assessing biomass production and electricity generation potential in current and future decarbonization scenarios in Cuba until 2050. Energy Convers. Manag. 2025, 332, 119698. [Google Scholar] [CrossRef]
- Domínguez, J.; Bellini, C.; Martín, A.M.; Zarzalejo, L.F. Optimizing solar potential analysis in Cuba: A methodology for high-resolution regional mapping. Sustainability 2024, 16, 7899. [Google Scholar] [CrossRef]
- De la Paz Pérez, G.A.; Couret, D.G.; Rodríguez-Algeciras, J.A.; De la Paz Vento, G. Influence of the urban context on solar protection of the vertical envelope and the cooling energy demand of buildings in Cuba. J. Build. Eng. 2023, 76, 107224. [Google Scholar] [CrossRef]
- Iakovleva, E.; Guerra, D.; Tcvetkov, P.; Shklyarskiy, Y. Technical and economic analysis of modernization of solar power plant: A case study from the Republic of Cuba. Sustainability 2022, 14, 822. [Google Scholar] [CrossRef]
- Camaraza-Medina, Y.; Retirado-Mediaceja, Y.; Hernandez-Guerrero, A.; Luviano-Ortiz, J.L. Energy efficiency indicators of the steam boiler in a power plant of Cuba. Therm. Sci. Eng. Prog. 2021, 23, 100880. [Google Scholar] [CrossRef]
- Hens, L.; Cabello-Eras, J.J.; Sagastume-Gutiérrez, A.; Garcia-Lorenzo, D.; Cogollos-Martinez, J.B.; Vandecasteele, C. University–industry interaction on cleaner production: The case of the Cleaner Production Center at the University of Cienfuegos in Cuba, a country in transition. J. Clean. Prod. 2017, 142, 63–68. [Google Scholar] [CrossRef]
- Suárez, J.; Beaton, P.; Escalona, R.; Montero, O. Energy, environment and development in Cuba. Renew. Sustain. Energy Rev. 2012, 16, 2724–2731. [Google Scholar] [CrossRef]
- Brandts, M.; Bertheau, P.; Rojas Plana, D.; Lammers, K.; Rubio Rodrigue, M.A. An energy system model-based approach to investigate cost-optimal technology mixes for the Cuban power system to meet national targets. Energy 2024, 306, 132492. [Google Scholar] [CrossRef]
- Zhang, N.; Yan, J.; Hu, C.; Sun, Q.; Yang, L.; Wenzhong, D. Price-Matching-Based Regional Energy Market With Hierarchical Reinforcement Learning Algorithm. IEEE Trans. Ind. Inform. 2024, 20, 11103–11114. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Sun, M.; Sun, C. Hybrid Policy-Based Reinforcement Learning of Adaptive Energy Management for the Energy Transmission-Constrained Island Group. IEEE Trans. Ind. Inform. 2023, 19, 10751–10762. [Google Scholar] [CrossRef]
- Duric, Z.; Potocnik Topler, J. The role of performance and environmental sustainability indicators in hotel competitiveness. Sustainability 2021, 13, 6574. [Google Scholar] [CrossRef]
- Xu, P.P.; Chan, E.H.W.; Qian, Q.K. Key performance indicators (KPI) for the sustainability of building energy efficiency retrofit (BEER) in hotel buildings in China. Facilities 2012, 30, 432–448. [Google Scholar] [CrossRef]
- Beccali, M.; La Gennusa, M.; Lo Coco, L.; Rizzo, G. An empirical approach for ranking environmental and energy saving measures in the hotel sector. Renew. Energy 2009, 34, 82–90. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J. Hotel Energy Management Optimization System Based on Artificial Intelligence. In Proceedings of the 3rd International Conference on Artificial Intelligence and Autonomous Robot Systems (AIARS), Bristol, UK, 29–31 July 2024. [Google Scholar] [CrossRef]
- Udawatta, L.; Perera, A.; Witharana, S. Analysis of Sensory Information for Efficient Operation of Energy Management Systems in Commercial Hotels. Electron. J. Struct. Eng. 2010, 113–120. [Google Scholar] [CrossRef]
- Arlyn, M.; Moutaz, K.; David, B. Towards a production classification system. Bus. Process Manag. J. 2002, 8, 53–79. [Google Scholar] [CrossRef]
- Li, H.; Szum, C.; Lisauskas, S.; Bekhit, A.; Nesler, C.; Snyder, S.C. Targeting building energy efficiency opportunities: An Open-source Analytical & Benchmarking Tool. Ashrae Trans. 2019, 125, 470–478. [Google Scholar]
- Pace, L.A. How do tourism firms innovate for sustainable energy consumption? A capabilities perspective on the adoption of energy efficiency in tourism accommodation establishments, (parte B). J. Clean. Prod. 2016, 111, 409–420. [Google Scholar] [CrossRef]
- Mardani, A.; Zavadskas, E.K.; Streimikiene, D.; Jusoh, A.; Nor, K.M.D.; Khoshnoudi, M. Using fuzzy multiple criteria decision making approaches for evaluating energy saving technologies and solutions in five star hotels: A new hierarchical framework. (parte 1). Energy 2016, 117, 131–148. [Google Scholar] [CrossRef]
- Baloglu, S.; Jones, T. Energy Efficiency Initiatives at Upscale and Luxury U.S. Lodging Properties: Utilization, Awareness, and Concerns. Cornell Hosp. Q. 2015, 56, 237–247. [Google Scholar] [CrossRef]
- Filimonau, V.; Dickinson, J.; Robbins, D.; Huijbregts, M.A.J. Reviewing the carbon footprint analysis of hotels: Life Cycle Energy Analysis (LCEA) as a holistic method for carbon impact appraisal of tourist accommodation. J. Clean. Prod. 2011, 19, 1917–1930. [Google Scholar] [CrossRef]
- Wang, X.; Wu, N.; Qiao, Y.; Song, Q. Assessment of Energy-Saving Practices of the Hospitality Industry in Macau. Sustainability 2018, 10, 255. [Google Scholar] [CrossRef]
- Nizic, M.; Matoš, S. Energy Efficiency as a Business Policy for Eco-Certified Hotels. Tour. Hosp. Manag. 2018, 24, 307–324. [Google Scholar] [CrossRef]
- Es-sakali, N.; Pfafferott, J.; Oualid Mghazli, M.; Cherkaoui, M. Towards climate-responsive net zero energy rural schools: A multi-objective passive design optimization with bio-based insulations, shading, and roof vegetation. Sustain. Cities Soc. 2025, 120, 106142. [Google Scholar] [CrossRef]
- Cuba. Ministerio de Turismo. Política Energética. 2018. Available online: https://www.mintur.gob.cu (accessed on 31 July 2025).
- ONEI. Turismo. Indicadores Seleccionados Enero-Diciembre 2024. 2025. Available online: https://www.onei.gob.cu/turismo-indicadores-seleccionados-enero-diciembre-2024 (accessed on 31 July 2025).
- Afroz, Z.; Gunay, H.B.; O’Brien, W.; Newsham, G.; Wilton, I. An inquiry into the capabilities of baseline building energy modelling approaches to estimate energy savings. Energy Build. 2021, 244, 111054. [Google Scholar] [CrossRef]
- Wang, F.; Lin, H.; Luo, J. Energy Consumption Analysis with a Weighted Energy Index for a Hotel Building. Procedia Eng. 2017, 205, 1952–1958. [Google Scholar] [CrossRef]
- Bezerra, P.; da Silva, F.; Cruz, T.; Mistry, M.; Vasquez-Arroyo, E.; Magalar, L.; De Cian, E.; Lucena, A.F.P.; Schaeffer, R. Impacts of a warmer world on space cooling demand in Brazilian households. Energy Build. 2021, 234, 110696. [Google Scholar] [CrossRef]
- Moujahed, M.; Sezer, N.; Hou, D.; Wang, L.L.; Hassan, I. Comparative energy performance evaluation and uncertainty analysis of two building archetype development methodologies: A case study of high-rise residential buildings in Qatar. Energy Build. 2022, 276, 112535. [Google Scholar] [CrossRef]
- García Morales, O.F.; Roque Villalonga, G.; Camaraza Medina, Y.; Álvarez-Guerra Plasencia, M.A. Determinación y comportamiento de línea base energética y de indicadores de desempeño energético en hoteles de Varadero, Cuba. Univ. Soc. 2023, 15, 85–92. [Google Scholar]
- McCarthy, I. Manufacturing Classification: Lessons from Organizational Systematics and Biological Taxonomy. Comprehensive Manufacturer System. 1995. Available online: https://www.emerald.com/jmtm/article-abstract/6/6/37/174637/Manufacturing-classificationLessons-from?redirectedFrom=fulltext (accessed on 31 July 2025).
- Johnsson, S.; Andersson, E.; Thollander, P.; Karlsson, M. Energy savings and greenhouse gas mitigation potential in the Swedish wood industry. Energy 2019, 187, 115–919. [Google Scholar] [CrossRef]
- Taisch, G.; Prabhu, M.; Barletta, V. Energy-related key performance indicators: State of the art, gaps and industrial needs. In Advances in Production Management Systems. Sustainable Production and Service Supply Chains; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- ISO 50001:2011; Energy Management. Requirements with Guidance for Use. International Organization for Standardization (ISO): Geneva, Switzerland, 2011. Available online: https://www.iso.org/iso-50001-energy-management.html (accessed on 17 March 2025).
- Söderström, M. Industrial electricity use characterized by unit processes. A tool for analysis and forecasting. In Proceedings of the UIE XIII Congress on Electricity Applications, Birmingham, UK, 16–20 June 1996. [Google Scholar]
- Thollander, P.; Backlund, S.; Trianni, A.; Cagno, E. Beyond barriers—A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden. Appl. Energy 2013, 111, 636–643. [Google Scholar] [CrossRef]
- Sommarin, P.; Svensson, A.; Thollander, P. A method for bottom-up energy end-use data collection: Results and experience. In Proceedings of the ECEEE 2014, Industrial Summer Study: Retooling for a Competitive and Sustainable Industry, Arnhem, The Netherlands, 2–5 June 2014. [Google Scholar]
- Rosenqvist, J.; Thollander, P.; Rohdin, P. Industrial Energy Auditing for Increased Sustainability—Methodology and Measurements. In Sustainable Energy-Recent Research; InTech Publisher: London, UK, 2012; Available online: http://www.intechopen.com/books/sustainable-energy-recent-studies/industrial-energy-auditing-for-increased-sustainability-methodology-and-measurements (accessed on 31 July 2025).
- Rodríguez Santos, O.; Cruz Fonticiella, O.; Leyva Céspedes, A. Modelo de cálculo de grados-día mensuales de enfriamiento y calentamiento con temperatura base variable, para aplicaciones energéticas. Cent. Azúcar 2018, 45, 94–100. [Google Scholar]
- Díaz Torres, Y.; Herrera, H.H.; Torres del Toro, M.; Álvarez Guerra, M.A.; Gullo, P.; Silva Ortega, J.I. Statistical-mathematical procedure to determine the cooling distribution of a chiller plant. Energy Rep. 2022, 8, 512–526. [Google Scholar] [CrossRef]
- Valdivia Nodal, Y.; Hernández Herrera, H.; Reyes Calvo, R.; Álvarez Guerra, M.; Silva, J.; Santana Justiz, M. Energetic analysis in a hot water system: A hotel facility case study. J. Sustain. Dev. Energy. Water Environ. Syst. 2023, 11, 1–15. [Google Scholar] [CrossRef]
- Iturralde Carrera, L.A.; Álvarez González, A.L.; Rodríguez-Reséndiz, J.; Álvarez-Alvarado, J.M. Selection of the Energy Performance Indicator for Hotels Based on ISO 50001: A Case Study. Sustainability 2023, 15, 1568. [Google Scholar] [CrossRef]
- ISO 50002:2014; Energy Audits-Requirements with Guidance for Use. International Organization for Standardization: Geneva, Switzerland, 2014. Available online: https://www.iso.org/standard/60088.html (accessed on 17 March 2025).
- ISO 50006:2023; Energy Management Systems—Evaluating Energy Performance Using Energy Performance Indicators and Energy Baselines. International Organization for Standardization: Geneva, Switzerland, 2023.
- Lawrence, A.; Thollander, P.; Andrei, M.; Karlsson, M. Specific Energy Consumption/Use (SEC) in Energy Management for Improving. Energy Efficiency in Industry: Meaning, Usage and Differences. Energies 2019, 12, 247. [Google Scholar] [CrossRef]
- Primagas. Energy Savings in Hotels: 6 Keys to an Efficient Hotel Primagas. 2019. Available online: https://www.primagas.es/blog/ahorro-de-energia-en-hoteles (accessed on 31 July 2025).
- Martínez Chou, K.E.; Álvarez Guerra Plasencia, M.A. Análisis comparativo (benchmarking) de indicadores de desempeño energético para instalaciones hoteleras. Univ. Soc. 2022, 15, 276–283. [Google Scholar]
- Valdivia Nodal, Y.; Iturralde Carrera, L.A.; Zapatero-Gutierrez, A.; GuerraPlasencia, M.A.A.; Reyes Calvo, R.; Rodriguez-Resendiz, J. Energy Optimization in Hotels: Strategies for Efficiency in Hot Water Systems. Algorithms 2025, 18, 301. [Google Scholar] [CrossRef]
- Vourdoubas, J. Energy Consumption and Use of Renewable Energy Sources in Hotels: A Case Study in Crete, Greece. J. Tour. Hospit. Manag. 2016, 4, 75–87. [Google Scholar] [CrossRef]
Area | Equipment | Amount | Unit Power (kW) | Total Power (kW) | Estimated Daily Use Time (h) | Energy Use (kWh)/Daily |
---|
Carrier | U/M | Consumption | TCF | Carbon Footprint TCO2/Year |
---|---|---|---|---|
Electricity | MWh | 383,200 | 121,800 | 105,649.32 |
Diesel | M.L. | 21,600 | 22,700 | 593,151 |
Gas | M.L. | 19,100 | 22,200 | 365,697 |
Total | 166,700 |
Level 2 | Energy Use (Annual kWh) |
---|---|
Major Services Process | 427,000 |
Support Process | 51,900 |
Level 3 | Energy Use (Annual kWh) |
---|---|
HVAC | 193,800 |
Tap Hot Water | 158,300 |
Food Process | 131,200 |
Internal Transportation | 96,400 |
Lightning | 45,100 |
Offices | 12,600 |
Entertainment | 700 |
Level 4 | Energy Use (Annual kWh) |
---|---|
DX Cooling | 148,800 |
Cooking | 72,300 |
Lightning | 45,100 |
Split AC | 45,000 |
Fridge | 20,600 |
Electric Motors | 6800 |
Heat Extraction | 4900 |
Cleaning Devices | 3400 |
Computing Devices | 2600 |
Entertainment Devices | 803 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez Santos, K.E.; Thollander, P.; Guerra Plasencia, M.Á. Improved Energy Management in the Hotel Industry, Energy Key Performance Indicators, Benchmarking, and Taxonomy Methodology. Energies 2025, 18, 4277. https://doi.org/10.3390/en18164277
Martínez Santos KE, Thollander P, Guerra Plasencia MÁ. Improved Energy Management in the Hotel Industry, Energy Key Performance Indicators, Benchmarking, and Taxonomy Methodology. Energies. 2025; 18(16):4277. https://doi.org/10.3390/en18164277
Chicago/Turabian StyleMartínez Santos, Kelvin E., Patrik Thollander, and Mario Álvarez Guerra Plasencia. 2025. "Improved Energy Management in the Hotel Industry, Energy Key Performance Indicators, Benchmarking, and Taxonomy Methodology" Energies 18, no. 16: 4277. https://doi.org/10.3390/en18164277
APA StyleMartínez Santos, K. E., Thollander, P., & Guerra Plasencia, M. Á. (2025). Improved Energy Management in the Hotel Industry, Energy Key Performance Indicators, Benchmarking, and Taxonomy Methodology. Energies, 18(16), 4277. https://doi.org/10.3390/en18164277