Energy Storage and Energy Efficiency in Buildings and Cities
Abstract
1. Introduction
2. Thermal Comfort and Overheating Assessment
2.1. Urban Heat Island and Energy Demand
2.2. System-Level Modelling for District Energy
2.3. Rural Buildings, User Behaviour, and Energy Monitoring
3. Innovative Technologies for Renewable Energy in Buildings
3.1. Integrated Photovoltaics (BIPVs) in Renovation
3.2. Advances in Energy Storage in Buildings
4. EU Legislative Framework and Its Significance
- A decarbonized EU building stock by 2050;
- Minimum Energy Performance Standards (MEPSs) for poorly performing buildings;
- Zero-Emission Buildings (ZEBs) by 2028 for public structures and 2030 for all new buildings;
- Integration of solar technologies and digital energy management;
- Lifecycle GWP evaluation and renovation passports.
5. Conclusions
- Holistic integration: Combined approaches—optimizing thermal envelope, smart HVAC, PVs, ESSs, and controls—are most effective, as affirmed across multiple case studies and modelling exercises;
- Storage’s enabling role: ESSs smooth PV variability, enhance self-consumption, contribute to grid stability, and unlock cost and emission reductions;
- Intelligent control architectures: AI-assisted management systems and model-predictive control are critical for the real-time balancing of comfort, efficiency, and demand responses;
- Policy alignment: EPBD and EED frameworks create strong regulatory drivers for EE, ZEBs, solar-ready design, and digital building management;
- Climate resilience: Retrofitting and storage strategies significantly guard against overheating and Urban Heat Island effects, especially in at-risk communities.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UN Environment Programme, Global Alliance for Buildings and Construction. Not Just Another Brick in the Wall: The Solutions Exist—Scaling Them Will Build on Progress and Cut Emissions Fast. Global Status Report for Buildings and Construction 2024/2025, 17 March 2025. 2025. Available online: https://wedocs.unep.org/20.500.11822/47214 (accessed on 5 June 2025).
- World Green Building Council. EPBD Implementation Support Hub, EPBD Implementation Support Hub—World Green Building Council. 2025. Available online: https://worldgbc.org/epbd-implementation-support-hub/ (accessed on 12 June 2025).
- Sajadirad, F.; O’Hegarty, R.; Kinnane, O. Assessing overheating risks in moderately insulated Irish social housing: Analysis of building energy ratings and indoor temperature profiles. Energies 2025, 18, 1381. [Google Scholar] [CrossRef]
- Hashemi, F.; Najafian, P.; Salahi, N.; Ghiasi, S.; Passe, U. Impacts of Urban Heat Island and Future Climate on Urban Buildings Energy Use in a U.S. Midwest Neighborhood. Energies 2025, 18, 1474. [Google Scholar] [CrossRef]
- Kiss, G.R.; Horváth, M.; Szánthó, Z. MATLAB Simulink based modelling and performance analysis of district heating substations for renewable energy integration. Energies 2025, 18, 2370. [Google Scholar] [CrossRef]
- Widera, B. Energy and carbon savings in European households resulting from behavioral changes. Energies 2024, 17, 3888. [Google Scholar] [CrossRef]
- Yang, D.; Hamza, N.; Gilroy, R. Summer energy use and comfort analysis in rural Chinese dwellings: A case study of low-income older populations in Shandong. Energies 2024, 17, 5527. [Google Scholar] [CrossRef]
- Del Hierro López, I.; Martín Chivelet, N.; Polo, J.; Olivieri, L. Renovation of typological clusters with building integrated photovoltaic systems. Energies 2025, 18, 1394. [Google Scholar] [CrossRef]
- Sadowski, K. Comparison of the carbon payback period (CPP) of different variants of insulation materials and existing external walls in selected European countries. Energies 2023, 16, 113. [Google Scholar] [CrossRef]
- IPCC. Sixth Assessment Report, Climate Change 2022: Impacts, Adaptation and Vulnerability, the Working Group II Contribution. Available online: https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ (accessed on 10 June 2025).
- Attia, S.; Benzidane, C.; Rahif, R.; Amaripadath, D.; Hamdy, M.; Holzer, P.; Koch, A.; Maas, A.; Moosberger, S.; Petersen, S. Overheating calculation methods, criteria, and indicators in European regulation for residential buildings. Energy Build. 2023, 292, 113170. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Kubilay, A.; Allegrini, J.; Strebel, D.; Zhao, Y.; Derome, D.; Carmeliet, J. Advancement in Urban Climate Modelling at Local Scale: Urban Heat Island Mitigation and Building Cooling Demand. Atmosphere 2020, 11, 1313. [Google Scholar] [CrossRef]
- Yang, J.; Tham, K.W.; Lee, S.E.; Santamouris, M.; Sekhar, C.; Cheong, D.K.W. Anthropogenic heat reduction through retrofitting strategies of campus buildings. Energy Build. 2017, 152, 813–822. [Google Scholar] [CrossRef]
- Grover, A.; Vadakkuveettil, A.; Chen, R.; Wu, J. Warming reality of Kozhikode Urban Area: Uncovering the heat of built-up expansion and vegetation loss. Environ. Chall. 2024, 17, 101016. [Google Scholar] [CrossRef]
- Rahaman, Z.A.; Al Kafy, A.; Saha, M.; Rahim, A.A.; Almulhim, A.; Rahaman, S.N.; Fattah, M.D.; Rahman, M.T.; Abdullah-Al-Faisal, M.; Al Rakib, A. Assessing the impacts of vegetation cover loss on surface temperature, urban heat island and carbon emission in Penang city, Malaysia. Build. Environ. 2022, 222, 109335. [Google Scholar] [CrossRef]
- Aboulnaga, M.; Trombadore, A.; Mostafa, M.; Abouaiana, A. Understanding Urban Heat Island Effect: Causes, Impacts, Factors, and Strategies for Better Livability and Climate Change Mitigation and Adaptation. In Livable Cities; Springer International Publishing: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Shi, D.; Song, J.; Huang, X.; Chan, P.W. Modelling and optimization of urban green-blue infrastructure design for city cooling. Build. Environ. 2025, 279, 113096. [Google Scholar] [CrossRef]
- Stern, P.; Holzer, M.; Kretschmer, F. Implementing blue-green infrastructures in cities—A methodological approach considering space constraints and microclimatic benefits. Sustain. Cities Soc. 2025, 126, 106391. [Google Scholar] [CrossRef]
- Thorsen, J.E.; Gudmundsson, O.; Tunzi, M.; Esbensen, T. Aftercooling Concept: An Innovative Substation Ready for 4th Generation District Heating Networks. Energy 2024, 293, 130750. [Google Scholar] [CrossRef]
- Østergaard, D.S.; Smith, K.M.; Tunzi, M.; Svendsen, S. Low-temperature operation of heating systems to enable 4th generation district heating: A review. Energy 2022, 248, 123529. [Google Scholar] [CrossRef]
- Averfalk, H.; Werner, S. Economic benefits of fourth generation district heating. Energy 2020, 193, 116727. [Google Scholar] [CrossRef]
- Knudsen, B.R.; Rohde, D.; Kauko, H. Thermal energy storage sizing for industrial waste-heat utilization in district heating: A model predictive control approach. Energy 2021, 234, 121200. [Google Scholar] [CrossRef]
- Ozarisoy, B.; Elsharkawy, H. Assessing overheating risk and thermal comfort in state-of-the-art prototype houses that combat exacerbated climate change in UK. Energy Build. 2019, 187, 201–217. [Google Scholar] [CrossRef]
- Chen, L.; Msigwa, G.; Yang, M.; Osman, A.I.; Fawzy, S.; Rooney, D.W. Strategies to achieve a carbon neutral society: A review. Environ. Chem. Lett. 2022, 20, 2277–2310. [Google Scholar] [CrossRef] [PubMed]
- Ibañez-Puy, M.; Vidaurre-Arbizu, M.; Sacristán-Fernández, J.A.; Martín-Gómez, C. Opaque Ventilated Façades: Thermal and energy performance review. Renew. Sustain. Energy Rev. 2017, 79, 180–191. [Google Scholar] [CrossRef]
- Beneito, L.; Konstantinou, T.; Torres-Ramo, J.; Sánchez-Ostiz, A. Towards decarbonisation in the built environment: A comparative analysis of conventional vs. industrialised façades in nearly zero-energy building renovations. Energy Build. 2025, 342, 115885. [Google Scholar] [CrossRef]
- Martín Chivelet, N.; Kapsis, C.; Frontini, F. Building-Integrated Photovoltaics: A Technical Guidebook, 1st ed.; Routledge: New York, NY, USA, 2024; ISBN 978-1-00-343224-1. [Google Scholar]
- Polyvianchuk, A.; Gritsuk, I.; Polyvianchuk, N.; Yefimov, O.; Romanenko, S.; Kapustenko, P.; Arsenyeva, O. Optimized step-by-step modernization of residential heating systems: A multi-period investment strategy for energy efficiency and cost reduction. Therm. Sci. Eng. Prog. 2025, 64, 103799. [Google Scholar] [CrossRef]
- Richarz, J.; Henn, S.; Osterhage, T.; Müller, D. Optimal scheduling of modernization measures for typical non-residential buildings. Energy 2022, 238, 121871. [Google Scholar] [CrossRef]
- Coccato, S.; Barhmi, K.; Lampropoulos, I.; Golroodbari, S.; van Sark, W. A Review of Battery Energy Storage Optimization in the Built Environment. Batteries 2025, 11, 179. [Google Scholar] [CrossRef]
- Walichnowska, P.; Kruszelnicka, W.; Tomporowski, A.; Mroziński, A. The Impact of Energy Storage on the Efficiency of Photovoltaic Systems and Determining the Carbon Footprint of Households with Different Electricity Sources. Sustainability 2025, 17, 2765. [Google Scholar] [CrossRef]
- Li, H.; Johra, H.; de Andrade Pereira, F.; Hong, T.; Le Dreau, J.; Maturo, A.; Wei, M.; Liu, Y.; Saberi-Derakhtenjani, A.; Nagy, Z.; et al. Data-Driven Key Performance Indicators and Datasets for Building Energy Flexibility: A Review and Perspectives. Appl. Energy 2023, 343, 121217. [Google Scholar] [CrossRef]
- Hiris, D.; Balan, M.C.; Bode, F.I. A Comprehensive Review on Enhancing Seasonal Energy Storage Systems through Energy Efficiency Perspectives. Processes 2024, 12, 1623. [Google Scholar] [CrossRef]
- Guo, F.; Chen, Z.; Yao, Y.; Xu, Z.; Zhang, T.; Miyaoka, H.; Jain, A.; Ichikawa, T. Tuning the thermodynamics and kinetics of magnesium-based materials for hydrogen energy storage: A review. Mater. Chem. Phys. 2025, 343, 131070. [Google Scholar] [CrossRef]
- He, J.; Yan, Z.; Wang, J.; Xie, J.; Jiang, L.; Shi, Y.; Yuan, F.; Yu, F.; Sun, Y. Significantly enhanced photocatalytic hydrogen evolution under visible light over CdS embedded on metal—organic frameworks. Chem. Commun. 2013, 49, 6761–6763. [Google Scholar] [CrossRef]
- Abdollahi, S.A.; Ranjbar, S.F. Solar energy storage via green hydrogen production and liquefaction utilizing proton exchange membrane electrolyzers. Int. J. Thermofluids 2025, 28, 101295. [Google Scholar] [CrossRef]
- Franco, A.; Carcasci, C.; Ademollo, A.; Calabrese, M.; Giovannini, C. Integrated plant design for green hydrogen production and power generation in photovoltaic systems: Balancing electrolyzer sizing and storage. Hydrogen 2025, 6, 7. [Google Scholar] [CrossRef]
- Wang, J.; Wen, J.; Wang, J.; Yang, B.; Jiang, L. Water electrolyzer operation scheduling for green hydrogen production: A review. Renew. Sustain. Energy Rev. 2024, 203, 114779. [Google Scholar] [CrossRef]
- Al-Ghussain, L.; Ahmad, A.D.; Abubaker, A.M.; Hassan, M.A. Exploring the feasibility of green hydrogen production using excess energy from a country-scale 100% solar-wind renewable energy system. Int. J. Hydrogen Energy 2022, 47, 21613–21633. [Google Scholar] [CrossRef]
- Liu, L.; Zhai, R.; Hu, Y. Performance evaluation of wind-solar-hydrogen system for renewable energy generation and green hydrogen generation and storage: Energy, exergy, economic, and enviroeconomic. Energy 2023, 276, 127386. [Google Scholar] [CrossRef]
- Widera, B. Renewable hydrogen implementations for combined energy storage, transportation and stationary applications. Therm. Sci. Eng. Prog. 2020, 16, 100460. [Google Scholar] [CrossRef]
- Ferrara, M.; Prunotto, F.; Rolfo, A.; Fabrizio, E. Energy Demand and Supply Simultaneous Optimization to Design a Nearly Zero-Energy House. Appl. Sci. 2019, 9, 2261. [Google Scholar] [CrossRef]
- Bilardo, M.; Kämpf, J.H.; Fabrizio, E. From Zero Energy to Zero Power Buildings: A new paradigm for a sustainable transition of the building stock. Sustain. Cities Soc. 2024, 101, 105136. [Google Scholar] [CrossRef]
- Merabet, G.H.; Essaaidi, M.; Ben Haddou, M.; Qolomany, B.; Qadir, J.; Anan, M.; Al-Fuqaha, A.; Abid, M.R.; Benhaddou, D. Intelligent Building Control Systems for Thermal Comfort and Energy-Efficiency: A Systematic Review of Artificial Intelligence—Assisted Techniques. arXiv 2021, arXiv:2104.02214. [Google Scholar] [CrossRef]
- Chen, X.; Aziz, M. Solid-gas thermochemical energy storage materials for renewable energy integration in power grids. Energy Storage Mater. 2025, 80, 104340. [Google Scholar] [CrossRef]
- Sawilam, M.; Kizilkaya, B.; Taha, A.; Flynn, D.; Imran, M.A.; Ansari, S. Impact of Virtual Power Plants on grid stability and renewable energy integration in smart cities using IoT. Energy Rep. 2025, 13, 3312–3323. [Google Scholar] [CrossRef]
- Mrówczyńska, M.; Skiba, M.; Leśniak, A.; Bazan-Krzywoszańska, A.; Janowiec, F.; Sztubecka, M.; Grech, R.; Kazak, J.K. A new fuzzy model of multi-criteria decision support based on Bayesian networks for the urban areas’ decarbonization planning. Energy Convers. Manag. 2022, 268, 116035. [Google Scholar] [CrossRef]
- Heidari, M.; Soleimani, A.; Dzikuć, M.; Heidari, M.; Dolatabadi, S.H.H.; Kuryło, P.; Khan, B. Exploring synergistic ecological and economic energy solutions for low-urbanized are-as through simulation-based analysis. AIMS Energy 2024, 12, 119–151. [Google Scholar] [CrossRef]
- Negri, S.; Spadacini, G.; Grassi, F.; Lezynski, P.; Smolenski, R.; Pignari, S.A. Comprehensive Comparison of Physical and Behavioral Approaches for Virtual Prototyping and Accurate Modeling of Three-Phase EMI Filters. Energies 2024, 17, 4974. [Google Scholar] [CrossRef]
- EED-EU/2023/1791; Directive (EU) 2023/1791 of the European Parliament and of the Council of 13 September 2023 on Energy Efficiency and Amending Regulation (EU) 2023/955. European Parliament & Council: Strasbourg, France, 2023. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32023L1791 (accessed on 14 June 2025).
- EPBD-EU/2024/1275; Directive (EU) 2024/1275 on the Energy Performance of Buildings. Official Journal of the European Union. European Parliament & Council: Strasbourg, France, 2024. Available online: https://eur-lex.europa.eu/eli/dir/2024/1275/oj (accessed on 14 June 2025).
- The Joint Research Centre: EU Science Hub (2021) Support to EPBD. Available online: https://joint-research-centre.ec.europa.eu/scientific-activities-z/energy-efficiency/buildings/support-epbd_en (accessed on 18 June 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widera, B.; Skiba, M.; Sztubecka, M. Energy Storage and Energy Efficiency in Buildings and Cities. Energies 2025, 18, 4210. https://doi.org/10.3390/en18164210
Widera B, Skiba M, Sztubecka M. Energy Storage and Energy Efficiency in Buildings and Cities. Energies. 2025; 18(16):4210. https://doi.org/10.3390/en18164210
Chicago/Turabian StyleWidera, Barbara, Marta Skiba, and Małgorzata Sztubecka. 2025. "Energy Storage and Energy Efficiency in Buildings and Cities" Energies 18, no. 16: 4210. https://doi.org/10.3390/en18164210
APA StyleWidera, B., Skiba, M., & Sztubecka, M. (2025). Energy Storage and Energy Efficiency in Buildings and Cities. Energies, 18(16), 4210. https://doi.org/10.3390/en18164210