Exploration and Development of Unconventional Oil and Gas Resources: Latest Advances and Prospects
1. Introduction
2. Review of the Research Presented in This Special Issue
2.1. Advances in Reservoir Characterization and Evaluation Technology
2.2. Advances in Hydrocarbon Enrichment and Geological Control Mechanisms
2.3. Advances in the Development of Technology and Enhanced Recovery
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Wang, H.-J.; Ma, F.; Tong, X.-G.; Liu, Z.-D.; Zhang, X.-S.; Wu, Z.-Z.; Li, D.-H.; Wang, B.; Xie, Y.-F.; Yang, L.-Y. Assessment of Global Unconventional Oiland Gas Resources. Pet. Explor. Dev. 2016, 43, 925–940. [Google Scholar] [CrossRef]
- Li, S.; Qin, Y.; Tang, D.-Z.; Shen, J.; Wang, J.-J.; Chen, S.-D. A comprehensive review of deep coalbed methane and recent developments in China. Int. J. Coal Geol. 2023, 279, 104369. [Google Scholar] [CrossRef]
- Zhang, B.; Tao, S.; Sun, B.; Tang, S.-L.; Chen, S.-D.; Wen, Y.-J.; Ye, J.-C. Genesis and accumulation mechanism of external gas in deep coal seams of the Baijiahai Uplift. Junggar Basin, China. Int. J. Coal Geol. 2024, 286, 104506. [Google Scholar] [CrossRef]
- Wang, W.-G.; Wang, X.-X.; Chen, Y.-Q.; Liu, C.; Zhang, Y.-H. Unconventional resources: Provenance analysis, sediment transport, reservoir evaluation, geo-energy. Front. Earth Sci. 2024, 12, 1530200. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Sharma, S.; Agrawal, V.; Dix, M.-C.; Zanoni, G.; Birdwe, J.-E.; Wylie, A.-S.; Wagner, T. Influence of Organic Matter Thermal Maturity on Rare Earth Element Distribution: A Study of Middle Devonian Black Shales from the Appalachian Basin, USA. Energies 2024, 17, 2107. [Google Scholar] [CrossRef]
- Lin, D.-L.; Wang, J.-J.; Yuan, B.; Shen, Y.-T. Review on Gas Flow and Recovery in Unconventional Porous Rocks. Adv. Geo-Energy Res. 2017, 1, 39–53. [Google Scholar] [CrossRef]
- Walker, L. Technology Focus: Unconventional and Tight Reservoirs. J. Pet. Technol. 2024, 76, 88–89. [Google Scholar] [CrossRef]
- Abdulhadi, D.; Ali, J.-A.; Hama, S.-M. Advanced Techniques for Improving the Production of Natural Resources from Unconventional Reservoirs: A State-of-the-Art Review. Energy Fuels 2025, 39, 10853–10876. [Google Scholar] [CrossRef]
- Zou, W.; Gu, Y.-G. Solvent Exsolution and Liberation from Different Heavy Oil–Solvent Systems in Bulk Phases and Porous Media: A Comparison Study. Energies 2024, 17, 2287. [Google Scholar] [CrossRef]
- Zheng, H.-W.; Zhang, Z.-S.; Guo, J.-H.; Fang, S.-N.; Wang, C. Numerical Simulation Study on the Influence of Cracks in a Full-Size Core on the Resistivity Measurement Response. Energies 2024, 17, 1386. [Google Scholar] [CrossRef]
- Zou, C.-N.; Zhao, Q.; Dong, D.-Z.; Yang, Z.; Qiu, Z.; Liang, F.; Wang, N.; Huang, Y.; Duan, A.-X.; Zhang, Q.; et al. Geological characteristics, main challenges and future prospect of shale gas. J. Nat. Gas Geosci. 2017, 2, 273–288. [Google Scholar] [CrossRef]
- Mohanty, K.-K.; Tong, S.-Y.; Miller, C.; Zeng, T.-Z.; Honarpour, M.-M.; Turek, E.; Peck, D.-D. Improved Hydrocarbon Recovery using Mixtures of Energizing Chemicals in Unconventional Reservoirs. SPE Reserv. Eval. Eng. 2017, 22, 1436–1448. [Google Scholar] [CrossRef]
- Wang, P.-W.; Liu, Z.-B.; Zhang, D.-W.; Xiong, L.; Liu, H.-T.; Zhou, L.; Li, P. Source rock and reservoir qualities of middle Jurassic Lianggaoshan lacustrine shale at fuxing area, Sichuan Basin: Implication for shale-oil enrichment. Unconv. Resour. 2023, 3, 37–43. [Google Scholar] [CrossRef]
- Zou, C.-N.; Yang, Z.; Cui, J.-W.; Zhu, R.-K.; Hou, L.-H.; Tao, S.-Z.; Yuan, X.-J.; Wu, S.-T.; Lin, S.-H.; Wang, L.; et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China. Pet. Explor. Dev. 2013, 40, 15–27. [Google Scholar] [CrossRef]
- Li, J.-Z.; Dong, D.-Z.; Chen, G.-S.; Wang, S.-Q.; Cheng, K.-M. Prospects and strategic position of shale gas resources in China. Nat. Gas Ind. 2009, 29, 11–16. [Google Scholar]
- Kędzior, S.; Teper, L. Occurrence and Potential for Coalbed Methane Extraction in the Depocenter Area of the Upper Silesian Coal Basin (Poland) in the Context of Selected Geological Factors. Energies 2024, 17, 2592. [Google Scholar] [CrossRef]
- Chen, Q.; Li, P.; Wei, X.-L.; Chen, C.-S.; Dang, W.; Nie, H.-K.; Zhang, J.-C. Mineralogy and geochemistry of shale from Shanxi Formation, Southern North China Basin: Implication for organic matter accumulation. Unconv. Resour. 2025, 6, 100151. [Google Scholar] [CrossRef]
- Tao, S.; Wang, Y.-B.; Tang, D.-Z.; Xu, H.; Lv, Y.-M.; He, W.; Li, Y. Dynamic variation effects of coal permeability during the coalbed methane development process in the Qinshui Basin, China. Int. J. Coal Geol. 2012, 93, 16–22. [Google Scholar] [CrossRef]
- Gensterblum, Y.; Ghanizadeh, A.; Cuss, R.-J.; Amann-Hildenbrand, A.; Krooss, B.-M.; Clarkson, C.-R.; Harrington, J.-F.; Zoback, M.-D. Gas transport and storage capacity in shale gas reservoirs e a review. Part A: Transport processes. J. Unconv. Oil Gas Resour. 2015, 12, 87–122. [Google Scholar] [CrossRef]
- Pan, Z.-J.; Connell, L.-D. Reservoir simulation of free and adsorbed gas production from shale. J. Nat. Gas Sci. Eng. 2015, 22, 359–370. [Google Scholar] [CrossRef]
- Ma, Z.-Y.; Tao, S.; Gao, L.-C.; Cui, Y.; Jing, Q.-H.; Chen, S.-D.; He, W.; Guo, J.; Hai, L.-F. Detailed Characterization of Microscopic Pore Structure in Low-Rank Coal: A Case Study of Zhalainuoer Coalfield. Nat. Resour. Res. 2024, 33, 2261–2277. [Google Scholar] [CrossRef]
- Alharthy, N.; Teklu, T.; Kazemi, H.; Graves, R.; Hawthorne, S.; Braunberger, J.; Kurtoglu, B. Enhanced Oil Recovery in Liquid-Rich Shale Reservoirs: Laboratory to Field. SPE Reserv. Eval. Eng. 2017, 21, 137–159. [Google Scholar] [CrossRef]
- Tao, S.; Pan, Z.-J.; Chen, S.-D.; Tang, S.-L. Coal seam porosity and fracture heterogeneity of marcolithotypes in the Fanzhuang Block, southern Qinshui Basin, China. J. Nat. Gas Sci. Eng. 2019, 66, 148–158. [Google Scholar] [CrossRef]
- Tao, S.; Gao, L.-J.; Pan, Z.-J. Swelling of clay minerals and its effect on coal permeability and gas production: A case study of southern Qinshui Basin, China. Energy Sci. Eng. 2019, 7, 515–528. [Google Scholar] [CrossRef]
- Sie, C.-Y.; Nguyen, Q.-P. Field gas Huff-n-Puff for improving oil recovery in the Eagle Ford Shale−The effect of injection gas composition and cycle. Energy Fuels 2023, 37, 5154–5164. [Google Scholar] [CrossRef]
- Xu, L.-R.; Wang, D.-J.; Liu, L.-Z.; Wang, C.-C.; Zhu, H.-Y.; Tang, X.-H. Review of shale oil and gas refracturing: Techniques and field applications. Processes 2024, 12, 965. [Google Scholar] [CrossRef]
- Song, S.-B.; Liu, J.-F.; Yang, D.-S.; Ni, H.-Y.; Huang, B.-X.; Zhang, K.; Mao, X.-B. Pore structure characterization and permeability prediction of coal samples based on SEM images. J. Nat. Gas Sci. Eng. 2019, 67, 160–171. [Google Scholar] [CrossRef]
- Liu, D.-M.; Zhao, Z.; Cai, Y.-D.; Sun, F.-R. Characterizing coal gas reservoirs: A multiparametric evaluation based on geological and geophysical methods. Gondwana Res. 2024, 133, 91–107. [Google Scholar] [CrossRef]
- Tang, H.-J.; Kou, G.; Zhou, H.; Liu, W.-W.; Duan, X.-G.; Zhan, S.-Y.; Li, H.-Y.; Li, Q.-Z. Microscopic pore-throat classification and reservoir grading evaluation of the Fengcheng formation in shale oil reservoir. Unconv. Resour. 2024, 4, 100074. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, D.-M.; Cai, Y.-D.; Qiu, F.; Sun, F.-R. Gas-Bearing Characteristics of Coal Measure Strata and Logging Evaluation of Fluid Pressure Systems. Phys. Fluids 2025, 37, 046618. [Google Scholar] [CrossRef]
- Alvarez, J.-O.; Tovar, F.-D.; Schechter, D.-S. Improving oil recovery in the wolfcamp reservoir by soaking/flowback production schedule with surfactant additives. SPE Reserv. Eval. Eng. 2018, 21, 1083–1096. [Google Scholar] [CrossRef]
- Hu, S.-Q.; Wu, Y.; Yan, Y.-Q.; Huo, T.-W.; Xu, Z.-Y.; Li, Y.-Y.; He, J.-X.; Zhang, W.; Wang, D. Parameter optimization study of three-dimensional well network-fracture network coupled fracturing in jimsar shale oil. Unconv. Resour. 2024, 4, 100102. [Google Scholar] [CrossRef]
- Kang, Y.-L.; Li, P.-S.; Cao, W.-K.; Chen, M.-J.; You, L.-J.; Liu, J.; Lai, Z.-H. Investigation of pore structure alteration and permeability enhancement of shale matrix by supercritical water treatment after hydraulic fracturing. Petroleum 2024, 10, 265–274. [Google Scholar] [CrossRef]
- Hossain, M.-S.; El-Shafie, A. Intelligent systems in optimizing reservoir operation policy: A review. Water Resour. Manag. 2013, 27, 3387–3407. [Google Scholar] [CrossRef]
- Nwachukwu, A.; Jeong, H.-Y.; Pyrcz, M.; Lake, L.-W. Fast evaluation of well placements in heterogeneous reservoir models using machine learning. J. Pet. Sci. Eng. 2018, 163, 463–475. [Google Scholar] [CrossRef]
- Zhao, G.-X.; Yao, Y.-D.; Zhang, T.; Adenutsi, C.-D.; Nassar, N.-N. An integrated approach for history matching of complex fracture distributions for shale oil reservoirs based on improved adaptive particle filter. SPE J. 2022, 28, 594–613. [Google Scholar] [CrossRef]
- Men, X.-Y.; Chen, S.-D.; Wu, H.; Zhang, B.; Zhang, Y.-F.; Tao, S. Optimizing Neural Networks for Enhanced Fracture Density Prediction in Surrounding Rock of Coalbed Methane Reservoir. Geol. J. 2024, 60, 73–86. [Google Scholar] [CrossRef]
- Ertekin, T.; Sun, Q. Artificial intelligence applications in reservoir engineering: A status check. Energies 2019, 12, 2897. [Google Scholar] [CrossRef]
- Zhang, M.-Y.; Xie, R.-C.; Yin, S.; Deng, M.-Z.; Chen, J.; Feng, S.-K.; Luo, Z.-W.; Chen, J. Logging identification of complex lithology of the Lower Jurassic Da’anzhai Member in the eastern slope of the western Sichuan Depression. Unconv. Resour. 2023, 3, 7–19. [Google Scholar] [CrossRef]
- Si, S.-H.; He, J.-H.; Zhao, Y.-T.; Chuang, E.; Bai, Y.-B.; Wu, W.-T. Diagenesis of tight sandstone and its influence on reservoir properties: A case study of Fuyu reservoirs in Songliao Basin, China. Unconv. Resour. 2023, 3, 84–92. [Google Scholar] [CrossRef]
- Wang, S.-T.; Chang, Y.-H.; Wang, Z.-F.; Sun, X.-X. Evaluation of Grain Size Effects on Porosity, Permeability, and Pore Size Distribution of Carbonate Rocks Using Nuclear Magnetic Resonance Technology. Energies 2024, 17, 1370. [Google Scholar] [CrossRef]
- Zhao, S.-H.; Wang, Y.-B.; Liu, Y.-L.; Liu, Z.-Q.; Wang, W.; Chen, X.-J.; Zhang, J.-Q. Evaluation of Favorable Fracture Area of Deep Coal Reservoirs Using a Combination of Field Joint Observation and Paleostress Numerical Simulation: A Case Study in the Linxing Area. Energies 2024, 17, 3424. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Z.-B.; Zhang, K.-J.; Li, C.-S.; Zhang, Y.; Mu, Z.-H.; Liu, F.; Liu, X.-W.; Mu, M.-N.; Zhang, S.-Q. Intelligent Identification Method for the Diagenetic Facies of Tight Oil Reservoirs Based on Hybrid Intelligence—A Case Study of Fuyu Reservoir in Sanzhao Sag of Songliao Basin. Energies 2024, 17, 1708. [Google Scholar] [CrossRef]
- Wu, W.-T.; Zhao, J.-Z.; Wang, Y.-B.; Guo, M.-Q.; Wu, H.-Y.; Li, J.; Dang, J.-C. Main controlling factors and enrichment model of a multi-layer tight sandstone gas reservoir: Case study from the Linxing Gas Field, eastern Ordos Basin, Northern China. Arab. J. Geosci. 2022, 15, 1866–7511. [Google Scholar] [CrossRef]
- Akbarabadi, M.; Alizaden, A.-H.; Piri, M.; Nagarajan, N. Experimental evaluation of enhanced oil recovery in unconventional reservoirs using cyclic hydrocarbon gas injection. Fuel 2023, 331, 125676. [Google Scholar] [CrossRef]
- Peng, J.-N.; Liu, X.; Zhuang, X.-B.; Ma, Z.-L.; Pan, W.-L.; Fan, Z.-W.; Luo, K.-P. Geochemical characteristics and sedimentary environment of source rocks in the Qiangtang Basin: New discoveries from the upper Triassic Xiaochaka formation in the Woruoshan Mountain. Unconv. Resour. 2023, 3, 103–110. [Google Scholar] [CrossRef]
- Zhao, G.-J.; Jiang, F.-J.; Zhang, Q.; Pang, H.; Zhang, S.-P.; Liu, X.-Z.; Chen, D. Hydrocarbon Accumulation Process and Mode in Proterozoic Reservoir of Western Depression in Liaohe Basin, Northeast China: A Case Study of the Shuguang Oil Reservoir. Energies 2024, 17, 2583. [Google Scholar] [CrossRef]
- Chen, D.-S.; Wang, J.-X.; Tian, X.-S.; Guo, D.-X.; Zhang, Y.-L.; Zeng, C.-L. Geological Constraints on the Gas-Bearing Properties in High-Rank Coal: A Case Study of the Upper Permian Longtan Formation from the Songzao Coalfield, Chongqing, Southwest China. Energies 2024, 17, 1262. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Wang, Y.; Chen, H.-R.; Zhu, Y.-M.; Yang, J.-H.; Zhang, Y.-S.; Dou, K.-L.; Wang, Z.-X. Study on Sedimentary Environment and Organic Matter Enrichment Model of Carboniferous–Permian Marine–Continental Transitional Shale in Northern Margin of North China Basin. Energies 2024, 17, 1780. [Google Scholar] [CrossRef]
- Hajizadeh, Y.; Christie, M.; Demyanov, V. Ant colony optimization for history matching and uncertainty quantification of reservoir models. J. Pet. Sci. Eng. 2011, 77, 78–92. [Google Scholar] [CrossRef]
- Zhao, M.-J.; Zhang, K.; Chen, G.-D.; Zhao, X.-G.; Yao, J.; Yao, C.-J.; Zhang, L.M.; Yang, Y.-F. A classification-based surrogate-assisted multiobjective evolutionary algorithm for production optimization under geological uncertainty. SPE J. 2020, 25, 2450–2469. [Google Scholar] [CrossRef]
- Gomaa, S.; Salem, K.-G.; El-hoshoudy, A.-N. Enhanced heavy and extra heavy oil recovery: Current status and new trends. Petroleum 2024, 10, 399–410. [Google Scholar] [CrossRef]
- Tao, J.-P.; Meng, S.-W.; Li, D.-X.; Liang, L.-H.; Liu, H. Experimental Evaluation of Enhanced Oil Recovery in Shale Reservoirs Using Different Media. Energies 2024, 17, 3410. [Google Scholar] [CrossRef]
- Li, X.-S.; Yang, L.; Sun, D.-Z.; Ling, B.-J.; Wang, S.-L. Experimental Study of Forced Imbibition in Tight Reservoirs Based on Nuclear Magnetic Resonance under High-Pressure Conditions. Energies 2024, 17, 2993. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, S. Exploration and Development of Unconventional Oil and Gas Resources: Latest Advances and Prospects. Energies 2025, 18, 3933. https://doi.org/10.3390/en18153933
Tao S. Exploration and Development of Unconventional Oil and Gas Resources: Latest Advances and Prospects. Energies. 2025; 18(15):3933. https://doi.org/10.3390/en18153933
Chicago/Turabian StyleTao, Shu. 2025. "Exploration and Development of Unconventional Oil and Gas Resources: Latest Advances and Prospects" Energies 18, no. 15: 3933. https://doi.org/10.3390/en18153933
APA StyleTao, S. (2025). Exploration and Development of Unconventional Oil and Gas Resources: Latest Advances and Prospects. Energies, 18(15), 3933. https://doi.org/10.3390/en18153933