A Critical Review of the State Estimation Methods of Power Batteries for Electric Vehicles
Abstract
1. Introduction
2. Analysis of Publications Published on Battery State Estimation
3. State of the Art of Technologies in State Estimation of Power Batteries
3.1. SOC Estimation
3.2. SOE Estimation
3.3. SOH Estimation
3.4. SOP/SOF Estimation
3.5. SOT Estimation
3.6. SOS Estimation
4. Multi-State Joint Estimation Scheme
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ah | ampere-hour |
AUKF | adaptive unscented Kalman filter |
BiLSTM | bidirectional long short-term memory networks |
BMS | battery management system |
BPNN | back-propagation neural network |
BPINN | battery physics-informed neural network |
CDKF | central difference Kalman filter |
CNN | convolutional neural networks |
DOD | depth of discharge |
DV | discharge voltage |
Dual-EKF | dual extended Kalman filter |
DFFNN | deep feedforward neural networks |
EChM | electrochemical model |
ECM | equivalent circuit model |
EKF | extended Kalman filter |
EV | electric vehicle |
FFNN | feedforward neural network |
FO | fractional-order |
GA | genetic algorithms |
GMR | Gaussian mixture regression |
GPR | Gaussian process regression |
HI | health indicator |
IC | incremental capacity |
LIB | lithium-ion battery |
IR | internal resistance |
LSTM | long short-term memory networks |
MARE | mean absolute value relative error |
NN | neural network |
OCV | open-circuit voltage |
P2D | pseudo two-dimensional |
RLS | recursive least squares |
RUL | remaining useful life |
SMO | sliding mode observer |
SOC | state of charge |
SOE | state of energy |
SOH | state of health |
SOP | state of peak power |
SOF | state of function |
SOT | state of temperature |
SOS | state of safety |
SVR | support vector regression |
SVR-PF | support vector regression particle filter |
UKF | unscented Kalan filter |
References
- He, H.-W.; Xiong, R.; Chang, Y.-H. Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications. Energies 2010, 3, 1821–1830. [Google Scholar] [CrossRef]
- Chen, H.; Liu, X.; Yu, J.; Okubo, K. Residual Performance Evaluation of Electric Vehicle Batteries: Focusing on the Analysis Results of a Social Survey of Vehicle Owners. Sustainability 2025, 17, 4685. [Google Scholar] [CrossRef]
- Kim, T.; Song, W.; Son, D.-Y.; Ono, L.K.; Qi, Y. Lithium-Ion Batteries: Outlook on Present, Future, and Hybridized Technologies. J. Mater. Chem. A 2019, 7, 2942–2964. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, H. Research on Model Prediction of Remaining Service Life of Lithium-Ion Batteries Based on Chaotic Time Series. Electronics 2025, 14, 2280. [Google Scholar] [CrossRef]
- Zhang, Q.; Shang, Y.; Li, Y.; Cui, N.; Duan, B.; Zhang, C. A novel fractional variable-order equivalent circuit model and parameter identification of electric vehicle Li-ion batteries. ISA Trans. 2020, 97, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.R.; Bharatiraja, C.; Udhayakumar, K.; Devakirubakaran, S.; Sekar, K.S.; Mihet-Popa, L. Advances in Batteries, Battery Modeling, Battery Management System, Battery Thermal Management, SOC, SOH, and Charge/Discharge Characteristics in EV Applications. IEEE Access 2023, 11, 105761–105809. [Google Scholar] [CrossRef]
- Jiao, S.; Zhang, G.; Zhou, M.; Li, G. A Comprehensive Review of Research Hotspots on Battery Management Systems for UAVs. IEEE Access 2023, 11, 84636–84650. [Google Scholar] [CrossRef]
- Singh, S.; More, V.; Batheri, R. Driving Electric Vehicles into the Future with Battery Management Systems. IEEE Eng. Manag. Rev. 2022, 50, 157–161. [Google Scholar] [CrossRef]
- Hasib, S.A.; Islam, S.; Chakrabortty, R.K.; Ryan, M.J.; Saha, D.K.; Ahamed, M.H.; Moyeen, S.I.; Das, S.K.; Ali, M.F.; Islam, M.R. A comprehensive review of available battery datasets, RUL prediction approaches, and advanced battery management. IEEE Access 2021, 9, 86166–86193. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.; Zhang, Y.; Lv, S.; Ni, H.; Deng, Y.; Yuan, Y. A Review of the Power Battery Thermal Management System with Different Cooling, Heating and Coupling System. Energies 2022, 15, 1963. [Google Scholar] [CrossRef]
- Zhang, C.; Kang, Y.; Duan, B.; Zhou, Z.; Zhang, Q.; Shang, Y.; Chen, A. An Adaptive Battery Capacity Estimation Method Suitable for Random Charging Voltage Range in Electric Vehicles. IEEE Trans. Ind. Electron. 2021, 69, 9121–9132. [Google Scholar] [CrossRef]
- Kampik, M.; Fice, M.; Sztymelski, K.; Oliwa, W.; Wieczorek, G. Examples of Problems with Estimating the State of Charge of Batteries for Micro Energy Systems. Energies 2025, 18, 2850. [Google Scholar] [CrossRef]
- Wilson, J.; Barthorpe, R.J.; Terzioglu, F. Alternative Sensing for State-of-Charge Estimation of Latent Heat Thermal Energy Storage. Energies 2025, 18, 2853. [Google Scholar] [CrossRef]
- Soyoye, B.D.; Bhattacharya, I.; Anthony Dhason, M.V.; Banik, T. State of Charge and State of Health Estimation in Electric Vehicles: Challenges, Approaches and Future Directions. Batteries 2025, 11, 32. [Google Scholar] [CrossRef]
- Plett, G.L. Review and Some Perspectives on Different Methods to Estimate State of Charge of Lithium-Ion Batteries. J. Automot. Saf. Energy 2019, 10, 249–272. [Google Scholar]
- Zhang, Q.; Cui, N.; Li, Y.; Duan, B.; Zhang, C. Fractional calculus based modeling of open-circuit voltage of lithium-ion batteries for electric vehicles. J. Energy Storage 2020, 27, 100945. [Google Scholar] [CrossRef]
- Li, Z.; Lu, L.G.; Ouyang, M.G. Comparison of Methods for Improving SOC Estimation Accuracy through an Ampere-hour Integration Approach. J. Tsinghua Univ. 2010, 8, 2193–2196. [Google Scholar]
- Luo, Y.; Qi, P.; Huang, H.; Wang, J.; Wang, Y.; Li, P. Study on battery SOC estimation by ampere-hour integral method with capacity correction. Automot. Eng. 2020, 42, 681–687. [Google Scholar]
- Wang, S.L.; Xiong, X.; Zou, C.Y.; Chen, L.; Jiang, C.; Xie, Y.X.; Stroe, D.I. An improved coulomb counting method based on dual open-circuit voltage and real-time evaluation of battery dischargeable capacity considering temperature and battery aging. Int. J. Energy Res. 2021, 45, 17609–17621. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Cui, N. Estimation of state-of-charge of lithium-ion battery: Nonlinear observer method. Control Theory Appl. 2012, 29, 1639–1644. [Google Scholar]
- Wang, L.; Wang, S.; Chen, L.; Zhang, L.; Liu, X. An improved particle filter method for lithium batteries SOC estimation. Chin. Battery Ind. 2018, 22, 120–123. [Google Scholar]
- Xiong, R.; Sun, F.; He, H. State-of-charge estimation of lithium-ion batteries in electric vehicles based on an adaptive extended Kalman filter. Gaojishu Tongxin/Chin. High. Technol. Lett. 2012, 22, 198–204. [Google Scholar]
- Sun, F.C.; Hu, X.S.; Zou, Y.; Li, S.G. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles. Energy 2011, 36, 3531–3540. [Google Scholar] [CrossRef]
- He, Y.; Huang, D.; Liu, X. SOC Estimation of Battery Pack Based on Dual Kalman Filtering Algorithm at Different Temperatures. J. Power Supply 2018, 16, 112–118. [Google Scholar]
- Zhu, R.; Duan, B.; Zhang, J.; Zhang, Q.; Zhang, C. Co-estimation of model parameters and state-of-charge for lithium-ion batteries with recursive restricted total least squares and unscented Kalman filter. Appl. Energy 2020, 277, 115494. [Google Scholar] [CrossRef]
- Shang, Y.; Zhang, C.; Cui, N. State of charge estimation for lithium-ion batteries based on extended Kalman filter optimized by fuzzy neural network. Control Theory Appl. 2016, 33, 212–220. [Google Scholar]
- Ofoegbu, O.E. State of charge (SOC) estimation in electric vehicle (EV) battery management systems using ensemble methods and neural networks. J. Energy Storage 2025, 114, 115833. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, H.; Shu, X.; Zhang, Y.; Shen, J.; Liu, Y. Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter. Energy 2021, 228, 120630. [Google Scholar] [CrossRef]
- Chemali, E.; Kollmeyer, P.J.; Preindl, M.; Emadi, A. State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach. J. Power Sources 2018, 400, 242–255. [Google Scholar] [CrossRef]
- Shi, Q.S.; Zhang, C.H.; Cui, N.X. Estimation of battery state-of-charge using v-support vector regression algorithm. Int. J. Automot. Technol. 2008, 9, 759–764. [Google Scholar] [CrossRef]
- Pei, L.; Wu, Y.; Shen, X.; Yu, C.; Wen, Z.; Wang, T. Energy State Estimation for Series-Connected Battery Packs Based on Online Curve Construction of Pack Comprehensive OCV. Energies 2025, 18, 1772. [Google Scholar] [CrossRef]
- Dong, G.Z.; Zhang, X.; Zhang, C.B.; Chen, Z.H. A method for state of energy estimation of lithium-ion batteries based on neural network model. Energy 2015, 90, 879–888. [Google Scholar] [CrossRef]
- He, H.W.; Zhang, Y.Z.; Xiong, R.; Wang, C. A novel Gaussian model based battery state estimation approach: State-of-Energy. Appl. Energy 2015, 151, 41–48. [Google Scholar] [CrossRef]
- Liu, X.T.; Wu, J.; Zhang, C.B.; Chen, Z.H. A method for state of energy estimation of lithium-ion batteries at dynamic currents and temperatures. J. Power Sources 2014, 270, 151–157. [Google Scholar] [CrossRef]
- Dong, G.Z.; Chen, Z.H.; Wei, J.W.; Zhang, C.B.; Wang, P. An online model-based method for state of energy estimation of lithium-ion batteries using dual filters. J. Power Sources 2016, 301, 277–286. [Google Scholar] [CrossRef]
- Correia, A.F.M.; Moura, P.; de Almeida, A.T. Technical and Economic Assessment of Battery Storage and Vehicle-to-Grid Systems in Building Microgrids. Energies 2022, 15, 8905. [Google Scholar] [CrossRef]
- Kim, I.-S. A Technique for Estimating the State of Health of Lithium Batteries Through a Dual-Sliding-Mode Observer. IEEE Trans. Power Electron. 2010, 25, 1013–1022. [Google Scholar]
- Deng, T.; Luo, W.; Li, Z.; Luo, J. Estimation state of health of electric vehicle battery by dual Kalman filter. Battery Bimon. 2018, 48, 95–99. [Google Scholar]
- Liu, S.-L.; Cui, N.-X.; Zhang, C.-H. State of health estimation of lithium-ion battery based on AUKF. Power Electron. 2017, 11, 122–124. [Google Scholar]
- Li, Y.; Liu, K.; Foley, A.M.; Zülke, A.; Berecibar, M.; Nanini-Maury, E.; Van Mierlo, J.; Hoster, H.E. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renew. Sustain. Energy Rev. 2019, 113, 109254. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Yan, J. Prognostic health condition for lithium battery using the partial incremental capacity and gaussian process regression. J. Power Sources 2019, 421, 56–67. [Google Scholar] [CrossRef]
- Zhou, Z.; Duan, B.; Kang, Y.; Shang, Y.; Zhang, Q.; Zhang, C. Practical state of health estimation for LiFePO4 batteries based on Gaussian mixture regression and incremental capacity analysis. IEEE Trans. Ind. Electron. 2023, 70, 2576–2584. [Google Scholar] [CrossRef]
- Dong, H.; Jin, X.; Lou, Y.; Wang, C. Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter. J. Power Sources 2014, 271, 114–123. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, C.; Li, X. Lithium Battery State-of-Health Estimation via Differential Thermal Voltammetry with Gaussian Process Regression. IEEE Trans. Transp. Electrif. 2021, 7, 16–25. [Google Scholar] [CrossRef]
- Sun, G.; Liu, Y.; Liu, X. A method for estimating lithium-ion battery state of health based on physics-informed machine learning. J. Power Sources 2025, 627, 235767. [Google Scholar] [CrossRef]
- Zuo, Y.; Hu, X.; Ma, H.; Li, S. Combined State of Charge and State of Health estimation over lithium-ion battery cell cycle lifespan for electric vehicles. J. Power Sources 2015, 273, 793–803. [Google Scholar] [CrossRef]
- Sun, F.; Xiong, R.; He, H. Estimation of state-of-charge and state-of-power capability of lithium-ion battery considering varying health conditions. J. Power Sources 2014, 259, 166–176. [Google Scholar] [CrossRef]
- Liu, X.T.; He, Y.; Zeng, G.J.; Zheng, X.X. State-of-Power Estimation for Li-ion Battery Considering the Effect of Temperature. Trans. China Electrotech. Soc. 2016, 31, 155–163. [Google Scholar]
- Chen, H.; Yang, Z.; Li, X.; Qiao, P. Grey incidence analysis for factors influencing SOP of power battery. Chin. J. Power Sources 2019, 43, 1032–1033+1066. [Google Scholar]
- Jafari, S.; Byun, Y.C. AI-driven state of power prediction in battery systems: A PSO-optimized deep learning approach with XAI. Energy 2025, 331, 136764. [Google Scholar] [CrossRef]
- Reshma, P.; Manohar, V.J. Collaborative evaluation of SoC, SoP and SoH of lithium-ion battery in an electric bus through improved remora optimization algorithm and dual adaptive Kalman filtering algorithm. J. Energy Storage 2023, 68, 107573. [Google Scholar] [CrossRef]
- Raoofi, T.; Yildiz, M. Comprehensive review of battery state estimation strategies using machine learning for battery Management Systems of Aircraft Propulsion Batteries. J. Energy Storage 2023, 59, 106486. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Y.; Hou, L.; Hu, J.; Shang, Y. In-situ analysis and estimation of temperature distribution for large-format lithium-ion batteries based on distributed optical fiber sensors. eTransportation 2025, 100425. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, L.; Wang, S.; Zhu, Y.; Hilal, A.; Shang, Y. An Integrated Heating–Charging Method for Lithium-Ion Batteries at Low Temperature. IEEE Trans. Transp. Electrif. 2025, 11, 8005–8017. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, Z.; Shen, S.; Zhang, Y.; Chen, Z.; Liu, Y. Accurate State of Temperature Estimation for Lithium-Ion Batteries Based on Square Root Cubature Kalman Filter. Appl. Therm. Eng. 2024, 242, 122452. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, Z.; Chen, Z.; Shu, X.; Liu, Y.; Shen, S.; Liu, Y.; Zhang, Y. Temperature estimation of multiple places for lithium-ion batteries based on improved electrochemical thermal modeling. IEEE Trans. Transp. Electrif. 2025, 11, 382–392. [Google Scholar] [CrossRef]
- Li, C.; Zhu, S.; Zhang, L.; Liu, X.; Li, M.; Zhou, H.; Zhang, Q.; Rao, Z. State of charge estimation of lithium-ion battery based on state of temperature estimation using weight clustered-convolutional neural network-long short-term memory. Green Energy Intell. Transp. 2025, 4, 100226. [Google Scholar] [CrossRef]
- Cabrera-Castillo, E.; Niedermeier, F.; Jossen, A. Calculation of the state of safety (SOS) for lithium ion batteries. J. Power Sources 2016, 324, 509–520. [Google Scholar] [CrossRef]
- Song, S.; LI, F.; Tang, X. Research progress on the safety-state assessment of lithium-ion batteries. Energy Storage Sci. Technol. 2023, 12, 3545–3555. [Google Scholar]
- Yin, X.; Song, Y.; Liu, W.; Liu, D. Multi-scale state joint estimation for lithium-ion battery. Chin. J. Sci. Instrum. 2018, 39, 118–126. [Google Scholar]
- Li, R.; Li, K.; Liu, P.; Zhang, X. Research on Multi-Time Scale SOP Estimation of Lithium–Ion Battery Based on H∞ Filter. Batteries 2023, 9, 191. [Google Scholar] [CrossRef]
- Cheng, W.; Yi, Z.; Liang, J.; Song, Y.; Liu, D. An SOC and SOP Joint Estimation Method of Lithium-ion Batteries in Unmanned Aerial Vehicles. In Proceedings of the 2020 International Conference on Sensing, Measurement & Data Analytics in the Era of Artificial Intelligence (ICSMD), Xi’an, China, 15–17 October 2020; pp. 247–252. [Google Scholar]
- Muh, K.; Caliwag, A.; Jeon, I.; Lim, W. Co-Estimation of SoC and SoP Using BiLSTM. J. Korean Inst. Commun. Sci. 2021, 46, 314–323. [Google Scholar]
- Qian, C.; Guan, H.; Xu, B.; Xia, Q.; Sun, B.; Ren, Y.; Wang, Z. A CNN-SAM-LSTM hybrid neural network for multi-state estimation of lithium-ion batteries under dynamical operating conditions. Energy 2024, 294, 130764. [Google Scholar] [CrossRef]
- Lee, S.; Kang, E.; Kim, M.; Lee, S.; Song, M.; Lee, J.; Na, W.; Kim, J. Co-Estimation of SOC and SOT in Lithium-Ion Batteries Using an RLS-Based Heat Generation Model. In Proceedings of the 2025 IEEE Applied Power Electronics Conference and Exposition (APEC), Atlanta, GA, USA, 16–20 March 2025; pp. 3012–3017. [Google Scholar]
- Liu, Y.; Dai, P.; Chen, X. Joint Estimation of SOC, SOH and SOT for Battery Energy Storage System Based on CNN-LSTM. In Proceedings of the 2024 IEEE 2nd International Conference on Power Science and Technology (ICPST), Dali, China, 9–11 May 2024; pp. 1884–1888. [Google Scholar]
Battery States | Abbreviation | Basic Definition |
---|---|---|
state of charge | SOC | The percentage of the remaining capacity to the maximum available capacity. |
state of energy | SOE | The percentage of the remaining energy to the maximum available energy. |
state of health | SOH | There are various definitions of SOH, and the most used one is the percentage of the current maximum available capacity to the nominal capacity. |
state of power | SOP | The current maximum output power of the battery. |
state of function | SOF | The thorough assessment of a battery’s suitability for particular applications involves analyzing various indicators, including SOC, SOH, and SOP. It can be understood as a parameter in the control strategy. |
state of temperature | SOT | It refers to the real-time temperature status of a battery during the charging, discharging, or static process. |
state of safety | SOS | It accurately gives the value of the safety risk level. |
Literature | Methods | Estimation Errors |
---|---|---|
Zhang et al. [20] | Lipschitz nonlinear observer | ≤2% |
Wang et al. [21] | Particle filter | ≤5% |
Xiong et al. [22] | AEKF | ≤2.53% |
Sun et al. [23] | AUKF | ≤1% |
He et al. [24] | Dual EKF | ≤4.31% |
Zhu et al. [25] | UFK | ≤1.2% |
Shang et al. [26] | EKF | ≤1.2% |
Ofoegbu [27] | FFNN | ≤0.88% |
Chen et al. [28] | LSTM | ≤2.12% |
Chen et al. [28] | LSTM-AHIF | ≤1.18% |
Chemali et al. [29] | DFFNN | ≤1.10% |
Shi et al. [30] | SVR | ≤1.04% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Rong, H.; Zhao, D.; Pei, M.; Dong, X. A Critical Review of the State Estimation Methods of Power Batteries for Electric Vehicles. Energies 2025, 18, 3834. https://doi.org/10.3390/en18143834
Zhang Q, Rong H, Zhao D, Pei M, Dong X. A Critical Review of the State Estimation Methods of Power Batteries for Electric Vehicles. Energies. 2025; 18(14):3834. https://doi.org/10.3390/en18143834
Chicago/Turabian StyleZhang, Qi, Hailin Rong, Daduan Zhao, Menglu Pei, and Xing Dong. 2025. "A Critical Review of the State Estimation Methods of Power Batteries for Electric Vehicles" Energies 18, no. 14: 3834. https://doi.org/10.3390/en18143834
APA StyleZhang, Q., Rong, H., Zhao, D., Pei, M., & Dong, X. (2025). A Critical Review of the State Estimation Methods of Power Batteries for Electric Vehicles. Energies, 18(14), 3834. https://doi.org/10.3390/en18143834