Controlling of Combustion Process in Energy and Power Systems
1. Introduction
2. New Progress in Combustion Control
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Wiinikka, H.; Vikström, T.; Wennebro, J.; Toth, P.; Sepman, A. Pulverized Sponge Iron, a Zero-Carbon and Clean Substitute for Fossil Coal in Energy Applications. Energy Fuels 2018, 32, 9982–9989. [Google Scholar] [CrossRef]
- Zhen, Z.; Li, B.; Ou, X.; Zhou, S. How hydrogen can decarbonize the chemical industry in China: A review based on the EIC–TER industrial assessment framework. Int. J. Hydrogen Energy 2024, 60, 1345–1358. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Shao, Y.; Jin, B. Coal-fueled separated gasification chemical looping combustion under auto-thermal condition in a two-stage reactor system. Chem. Eng. J. 2020, 390. [Google Scholar] [CrossRef]
- Yin, X.; Li, Z.; Yang, B.; Sun, T.; Wang, Y.; Zeng, K. Experimental study of the combustion characteristics prediction model for a sensor-less closed-loop control in a heavy-duty NG engine. Fuel 2021, 300. [Google Scholar] [CrossRef]
- Mujeebu, M.A.; Abdullah, M.Z.; Bakar, M.Z.; Mohamad, A.A.; Muhad, R.M.; Abdullah, M.K. Combustion in porous media and its applications—A comprehensive survey. J. Environ. Manag. 2009, 90, 2287–2312. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Q.; Ye, N.; Zhang, Z.; Wu, X.; Fan, H. A review on flexible peak shaving development of coal-fired boilers in China under the carbon peak and carbon neutrality goals. Therm. Sci. Eng. Prog. 2024, 55. [Google Scholar] [CrossRef]
- Li, J.; Xiao, H.; Li, Q.; Shi, J. Heat recirculation and heat losses in porous micro-combustors: Effects of wall and porous media properties and combustor dimensions. Energy 2021, 220, 119772. [Google Scholar] [CrossRef]
- Pourhedayat, S.; Hu, E.; Chen, L. Performances of a gas turbine power plant with a direct evaporative saturator. Therm. Sci. Eng. Prog. 2024, 56, 103047. [Google Scholar] [CrossRef]
- Huang, H.; Tian, J.; Li, J.; Tan, D. Effects of Different Exhaust Gas Recirculation (EGR) Rates on Combustion and Emission Characteristics of Biodiesel–Diesel Blended Fuel Based on an Improved Chemical Mechanism. Energies 2022, 15, 4153. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, X.; Sun, P.; Xu, S. Experimental investigation of the performance and emissions of a dual-injection SI engine with natural gas direct injection plus gasoline port injection under lean-burn conditions. Fuel 2021, 300, 120952. [Google Scholar] [CrossRef]
- Wang, Z.; Du, G.; Li, Z.; Wang, X.; Wang, D. Study on the combustion characteristics of a high compression ratio HCCI engine fueled with natural gas. Fuel 2019, 255, 115701. [Google Scholar] [CrossRef]
- Abdullah, M.; Abedin, M.Z. Recent development of combined heat transfer performance for engine systems: A comprehensive review. Results Surf. Interfaces 2024, 15, 100212. [Google Scholar] [CrossRef]
- E, J.; Mei, Y.; Feng, C.; Ding, J.; Cai, L.; Luo, B. A review of enhancing micro combustion to improve energy conversion performance in micro power system. Int. J. Hydrogen Energy 2022, 47, 22574–22601. [Google Scholar] [CrossRef]
- Yang, W.-W.; Ma, X.; Tang, X.-Y.; Dou, P.-Y.; Yang, Y.-J.; He, Y.-L. Review on developments of catalytic system for methanol steam reforming from the perspective of energy-mass conversion. Fuel 2023, 345, 128234. [Google Scholar] [CrossRef]
- Namazi, M.; Nayebi, M.; Isazadeh, A.; Modarresi, A.; Marzbali, I.G.; Hosseinalipour, S.M. Experimental and numerical study of catalytic combustion and pore-scale numerical study of mass diffusion in high porosity fibrous porous media. Energy 2022, 238, 121831. [Google Scholar] [CrossRef]
- Li, X.; Shang, J.; Gan, X.; Cao, S.; Zhang, T.; Nie, J.; Feng, D.; Cheng, X. Recent advances in environmental applications of Semi-coke: Energy storage, adsorption and catalysis. J. Environ. Chem. Eng. 2024, 12, 112430. [Google Scholar] [CrossRef]
- Wen, W.; Wen, C.; Wang, D.; Zhu, G.; Yu, J.; Ling, P.; Xu, M.; Liu, T. A review on activated coke for removing flue gas pollutants (SO2, NOx, Hg0, and VOCs): Preparation, activation, modification, and engineering applications. J. Environ. Chem. Eng. 2024, 12, 111964. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, J.; Liu, J. Preheating Analysis of Semi-Coke in a Circulating Fluidized Bed and Its Kinetic Characteristics. Energies 2023, 16, 4124. [Google Scholar] [CrossRef]
- Yin, H.; Jin, Y.; Li, L.; Lv, W. Numerical Investigation on the Impact of Exergy Analysis and Structural Improvement in Power Plant Boiler through Co-Simulation. Energies 2022, 15, 8133. [Google Scholar] [CrossRef]
- Vitoussia, T.; Leyssens, G.; Trouvé, G.; Brillard, A.; Kemajou, A.; Njeugna, E.; Brilhac, J.-F. Analysis of the combustion of pellets made with three Cameroonian biomass in a domestic pellet stove. Fuel 2020, 276, 118105. [Google Scholar] [CrossRef]
- Lustenberger, D.; Strassburg, J.; Strebel, T.; Mangold, F.; Griffin, T. Simulation Tool for the Development of a Staged Combustion Pellet Stove Controller. Energies 2022, 15, 6969. [Google Scholar] [CrossRef]
- Tipanluisa, L.; Fonseca, N.; Casanova, J.; López, J.-M. Effect of n-butanol/diesel blends on performance and emissions of a heavy-duty diesel engine tested under the World Harmonised Steady-State cycle. Fuel 2021, 302, 121204. [Google Scholar] [CrossRef]
- Kang, Z.; Shi, Z.; Ye, J.; Tian, X.; Huang, Z.; Wang, H.; Wei, D.; Peng, Q.; Tu, Y. A Review of Micro Power System and Micro Combustion: Present Situation, Techniques and Prospects. Energies 2023, 16, 3201. [Google Scholar] [CrossRef]
- Quaye, E.K.; Pan, J.; Lu, Q.; Zhang, Y.; Wang, Y. Combustion optimization in consolidated porous media for thermo-photovoltaic system application Using Response Surface Methodology. Int. J. Therm. Sci. 2023, 184, 107950. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, Y.; Peng, Q. Controlling of Combustion Process in Energy and Power Systems. Energies 2025, 18, 3729. https://doi.org/10.3390/en18143729
Tu Y, Peng Q. Controlling of Combustion Process in Energy and Power Systems. Energies. 2025; 18(14):3729. https://doi.org/10.3390/en18143729
Chicago/Turabian StyleTu, Yaojie, and Qingguo Peng. 2025. "Controlling of Combustion Process in Energy and Power Systems" Energies 18, no. 14: 3729. https://doi.org/10.3390/en18143729
APA StyleTu, Y., & Peng, Q. (2025). Controlling of Combustion Process in Energy and Power Systems. Energies, 18(14), 3729. https://doi.org/10.3390/en18143729