Chemical Composition and Corrosion—Contributions to a Sustainable Use of Geothermal Water
Abstract
1. Introduction
2. Materials and Methods
2.1. Analytical Methods for Geothermal Water
2.2. Electrochemical Methods for Corrosion Evaluation
2.2.1. Preparation of Metallic Specimens for Corrosion Assessment
2.2.2. Test Solution Preparation
2.2.3. Gravimetric Measurements
2.2.4. Electrochemical Techniques
3. Results and Discussions
3.1. Short Description of Studied Geothermal Bihor County Reservoirs
3.2. Geothermal Water Characterization
3.2.1. Temperature and pH Measurements
3.2.2. Chemistry of Geothermal Fluids
3.3. Corrosion Process Investigations
3.3.1. Corrosion and Scale Formation Mechanism
3.3.2. Estimation of Corrosion Using Gravimetric, Visual, and Statistical Methods
3.3.3. Estimation of Corrosion Using Electrochemical Methods
3.4. Challenges and Methodology in Geothermal Corrosion Research
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviation | Definition |
p | the corrosion rate expressed as penetration index [mm/year] |
Δm | the weight loss calculated by subtraction between initial and final weights of metal coupons [mg] |
S | the area of the specimen surface exposed to the working solution [m2] |
t | the duration of the experiment [hours] |
ρ | the density of the specific carbon steel [g/cm3] |
SSCE | the saturated silver chloride electrode (reference electrode) |
TDS | total dissolved solids |
CaCO3 | calcite |
SiO2 | chalcedony |
FeOOH | goethite |
Fe3O4 | magnetite |
OCP | open circuit potential |
PP | potentiodynamic polarization plots |
Ecorr | the corrosion potential [mV] |
Rp | the polarization resistance [Ω·cm2] |
icorr | the density of corrosion current [μA/cm2] |
ba and bc | the anodic and cathodic Tafel slopes [mV/dec] |
EIS | electrochemical impedance spectroscopy |
Rs | the solution resistance [Ω·cm2] |
Rct | the charge transfer resistance [Ω·cm2] |
Cdl | the double-layer capacitance [μF/cm2] |
References
- Vargas, C.A.; Caracciolo, L.; Ball, P.J. Geothermal energy as a means to decarbonize the energy mix of megacities. Commun. Earth Environ. 2022, 3, 66. [Google Scholar] [CrossRef]
- Balzan-Alzate, D.; López-Sánchez, J.; Blessent, D.; Raymond, J.; Dezayes, C.; Portela, J.P.; Restrepo, E.R.; Rendón, D.M.; Malo, M.; Goderniaux, P.; et al. An online survey to explore the awareness and acceptance of geothermal energy among an educated segment of the population in five European and American countries. Geotherm. Energy 2021, 9, 9. [Google Scholar] [CrossRef]
- Silva, N.; Fuinhas, J.A.; Koengkan, M.; Kazemzadeh, E.; Kaymaz, V. Renewable energy deployment in Europe: Do politics matter? Environ. Dev. Sustain. 2024, 26, 28751–28784. [Google Scholar] [CrossRef]
- Chen, L.; Hu, Y.; Wang, R.; Li, X.; Chen, Z.; Hua, J.; Osman, A.I.; Farghali, M.; Huang, L.; Li, J.; et al. Green building practices to integrate renewable energy in the construction sector: A review. Environ. Chem. Lett. 2024, 22, 751–784. [Google Scholar] [CrossRef]
- Atstāja, D. Renewable Energy for Sustainable Development: Opportunities and Current Landscape. Energies 2025, 18, 196. [Google Scholar] [CrossRef]
- Crijns-Graus, W.; Wild, P.; Amineh, M.P.; Hu, J.; Yue, H. International Comparison of Research and Investments in New Renewable Electricity Technologies: A Focus on the European Union and China. Energies 2022, 15, 6383. [Google Scholar] [CrossRef]
- Vicidomini, M.; D’Agostino, D. Geothermal Source Exploitation for Energy Saving and Environmental Energy Production. Energies 2022, 15, 6420. [Google Scholar] [CrossRef]
- Wong, P.; Lai, J. Energy Transitions in Cities: A Comparative Analysis of Policies and Strategies in Hong Kong, London, and Melbourne. Energies 2025, 18, 37. [Google Scholar] [CrossRef]
- Sowiżdżał, A. Geothermal Systems—An Overview. Energies 2022, 15, 6377. [Google Scholar] [CrossRef]
- Jasnos, J. Hydrogeochemical Characteristics of Geothermal Waters from Mesozoic Formations in the Basement of the Central Part of the Carpathian Foredeep and the Carpathians (Poland) Using Multivariate Statistical Methods. Energies 2021, 14, 4022. [Google Scholar] [CrossRef]
- Park, Y.; Kim, N.; Lee, J.Y. Geochemical properties of groundwater affected by open loop geothermal heat pump systems in Korea. Geosci. J. 2015, 19, 515–526. [Google Scholar] [CrossRef]
- Gültekin, F.; Temizel, E.H.; Babacan, A.E.; Kırmacı, M.Z.; Ersoy, A.F.; Subaşı, B.M. Conceptual model of the Şavşat (Artvin/NE Turkey) Geothermal Field developed with hydrogeochemical, isotopic, and geophysical studies. Geotherm. Energy 2019, 7, 12. [Google Scholar] [CrossRef]
- Köhl, B.; Elsner, M.; Baumann, T. Hydrochemical and operational parameters driving carbonate scale kinetics at geothermal facilities in the Bavarian Molasse Basin. Geotherm. Energy 2020, 8, 26. [Google Scholar] [CrossRef]
- Ciurba, A.-P.; Haidu, I.; Ianc, D. Administrative Aspects Regarding the Valorisation of Geothermal Waters for Balneological Purposes in Bihor County, Romania. Sustainability 2023, 15, 10320. [Google Scholar] [CrossRef]
- Yáñez-Dávila, D.; Santoyo, E.; Santos-Raga, G. Worldwide research progress and trends on geothermal water–rock interaction experiments: A comprehensive bibliometric analysis. Earth Sci. Inf. 2023, 16, 1–24. [Google Scholar] [CrossRef]
- Fridleifsson, I.B. Status of geothermal energy amongst the world’s energy sources. Geothermics 2003, 32, 379–388. [Google Scholar] [CrossRef]
- Rosca, M.; Bendea, C.; Vîjdea, A.M. Mineral and Thermal Waters of Romania. In Mineral and Thermal Waters of Southeastern Europe; Papic, P., Ed.; Environmental Earth Sciences; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, K.; Chang, J.; He, G.; Chen, F.; Chen, L.; Liu, Z.; Huang, Y. Formation mechanism and evaluation of geothermal resources in Yanqi Qikexing town, Xinjiang. Sci. Rep. 2025, 15, 7006. [Google Scholar] [CrossRef]
- Sebesan, M.; Badea, G.E.; Sebesan, R.; Fodor, K.; Bungau, S.; Ticu, S. Physico-chemical Monitoring Tests on Geothermal Water Production Wells. Rev. Chim. 2019, 70, 3783–3787. [Google Scholar] [CrossRef]
- Chifu, V.R.; Cioara, T.; Pop, C.B.; Anghel, I.; Pelle, A. Physics-Informed Neural Networks for Heat Pump Load Prediction. Energies 2025, 18, 8. [Google Scholar] [CrossRef]
- Katsifarakis, K.L.; Kontos, Y.N. Analytical Optimization of Vertical Closed-Loop Ground Source Heat Pump Systems. Energies 2025, 18, 163. [Google Scholar] [CrossRef]
- Dimitriu, S.; Bianchi, A.M.; Băltăreţu, F. The up-to-date heat pump–combined heat and power solution for the complete utilization of the low enthalpy geothermal water potential. Int. J. Energy Environ. Eng. 2017, 8, 189–196. [Google Scholar] [CrossRef]
- Kristmannsdottir, H. Sampling of hot and cold water for geochemical measurements. In Instructions for Practicals in the Course VAG 1103 Haskolinn a Akureyri; Audlindadeil, Skyrsla HK-04/10; University of Akureyri: Akureyri, Iceland, 2004; p. 11. [Google Scholar]
- Gasperikova, E.; Ulrich, C.; Omitaomu, O.A.; Dobson, P.; Zhang, Y. Multicriteria screening evaluation of geothermal resources on mine lands for direct use heating. Geotherm. Energy 2024, 12, 11. [Google Scholar] [CrossRef]
- Stavropoulou, S.L.; Demadis, K.D. Mapping and delineation of steel corrosion products under geothermal-like conditions. Geothermics 2025, 125, 103172. [Google Scholar] [CrossRef]
- Virchow, L.; Siever-Wenzlaff, C.; Blöcher, G.; Alibrandi, A.; Kallmeyer, J.; Zimmer, M.; Wiersberg, T.; Thielke, C.; Schleicher, A.; Regenspurg, S. Hydrogeochemical and microbial characterization of a Middle Triassic carbonate aquifer (Muschelkalk) in Berlin and geochemical simulation of its use as a high-temperature aquifer thermal energy storage. Geotherm. Energy 2024, 12, 32. [Google Scholar] [CrossRef]
- Muthukrishnan, R.; Balogun, Y.; Rajendran, V.; Prathuru, A.; Hossain, M.; Faisal, N.H. Machine Learning Approach to Investigate High Temperature Corrosion of Critical Infrastructure Materials. High Temp. Corros. Mater. 2024, 101 (Suppl. 1), 309–331. [Google Scholar] [CrossRef]
- Omrani, P.S.; Poort, J.; Barros, E.G.D.; de Zwart, H.; Machado, C.G.; Wasch, L.; Twerda, A.; Rijnaarts, H.H.M.; Torbaghan, S.S. A probabilistic model-based approach to assess and minimize scaling in geothermal plants. Geotherm. Energy 2025, 13, 9. [Google Scholar] [CrossRef]
- Liu, L.; Li, Z.; Wu, J.; Yu, L.; Li, S.; Liu, R. Effect of chemical corrosion on propagation of complex fracture networks under different hydraulic pressures in enhanced geothermal systems. Geomech. Geophys. Geo-Energy Geo-Resources 2023, 9, 16. [Google Scholar] [CrossRef]
- Dacillo, K.B.; Zarrouk, S.J. Stress Corrosion Cracking in Metal Alloys Exposed to Geothermal Fluids with High Non-Condensable Gas Content. Geothermics 2023, 111, 102724. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, M.; Xu, Y. Corrosion and Fouling Behaviors on Modified Stainless Steel Surfaces in Simulated Oilfield Geothermal Water. Prot. Met. Phys. Chem. Surf. 2018, 54, 526–535. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Z.; Li, Z.; Chen, S.; Yang, X.; Duan, L.; Cai, J. Synthesis and evaluation of scale inhibitor with high-temperature resistance and low corrosion capability for geothermal exploitation. J. Pet. Sci. Eng. 2022, 218, 110976. [Google Scholar] [CrossRef]
- Song, J.; Liu, M.; Sun, X. Model analysis and experimental study on scaling and corrosion tendencies of aerated geothermal water. Geothermics 2020, 85, 101766. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Andruszko, J.; Stefanek, P.; Mazur, R. Failure and Degradation Mechanisms of Steel Pipelines: Analysis and Development of Effective Preventive Strategies. Materials 2025, 18, 134. [Google Scholar] [CrossRef] [PubMed]
- Kioka, A.; Nakagawa, M. Theoretical and experimental perspectives in utilizing nanobubbles as inhibitors of corrosion and scale in geothermal power plant. Renew. Sustain. Energy Rev. 2021, 149, 111373. [Google Scholar] [CrossRef]
- Boch, R.; Leis, A.; Haslinger, E.; Goldbrunner, J.E.; Mittermayr, F.; Fröschl, H.; Hippler, D.; Dietzel, M. Scale-fragment formation impairing geothermal energy production: Interacting H2S corrosion and CaCO3 crystal growth. Geotherm. Energy 2017, 5, 4. [Google Scholar] [CrossRef]
- Markó, Á.; Brehme, M.; Pedretti, D.; Zimmermann, G.; Huenges, E. Controls of low injectivity caused by interaction of reservoir and clogging processes in a sedimentary geothermal aquifer (Mezőberény, Hungary). Geotherm. Energy 2024, 12, 40. [Google Scholar] [CrossRef]
- Regenspurg, S.; Iannotta, J.; Feldbusch, E.; Zimmermann, F.J.; Eichinger, F. Hydrogen sulfide removal from geothermal fluids by Fe(III)-based additives. Geotherm. Energy 2020, 8, 21. [Google Scholar] [CrossRef]
- Bowman, S.; Agrawal, V.; Sharma, S. Role of pH and Eh in geothermal systems: Thermodynamic examples and impacts on scaling and corrosion. Geothermics 2023, 111, 102710. [Google Scholar] [CrossRef]
- Vittaler, A.V.; Angst, U.M.; Elsener, B. Laboratory tests simulating corrosion in geothermal power plants: Influence of service conditions. Geotherm. Energy 2020, 8, 9. [Google Scholar] [CrossRef]
- Buyuksagis, A.; Dilek, M.; Kargioglu, M. Corrosion inhibition of ST37 steel in geothermal fluid by Quercus robur and pomegranate peels extracts. Prot. MKohlet Phys. Chem. Surf. 2015, 51, 861–872. [Google Scholar] [CrossRef]
- Shah, M.; Shah, V.; Dudhat, K.; Patel, D. Evaluation of geothermal water and assessment of corrosive and scaling potential of water samples in Tulsishyam Geothermal Region, Gujarat, India. Environ. Sci. Pollut. Res. 2023, 30, 44684–44696. [Google Scholar] [CrossRef]
- Kalyani, D.S.; Rajesh, V.; Reddi, E.U.B.; Kumar, K.C.; Rao, S.S. Correlation between corrosion indices and corrosiveness of groundwater: A study with reference to selected areas of Krishna District, Andhra Pradesh, India. Environ. Earth Sci. 2017, 76, 568. [Google Scholar] [CrossRef]
- Ramírez-Estrada, A.; Mena-Cervantes, V.Y.; Elizalde-Martínez, I.; Pineda-Flores, G.; Aguilar-Aguilar, F.A.; Arreola-Valerio, E.; Cabrera-Sierra, R.; Hernández-Altamirano, R. Synthesis of biodegradable polyelectrolytes for the inhibition of both CaSO4 scales and the corrosion of carbon steel. Int. J. Environ. Sci. Technol. 2025, 22, 6491–6506. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, J.; Fu, X. Effect of Ce Content on Modification Behavior of Inclusions and Corrosion Resistance of 316L Stainless Steel. Materials 2025, 18, 69. [Google Scholar] [CrossRef] [PubMed]
- Kortram, J.D.; Barnhoorn, A.; Pluymakers, A. Laboratory experiments on the effects of corrosion inhibitor on the mechanical properties of reservoir rock. Geotherm. Energy 2023, 11, 17. [Google Scholar] [CrossRef]
- Dionex Corp. Routine Maintenance and Reconditioning of Columns; Technical Note; Dionex Corp.: Sunnyvale, CA, USA, 2018. [Google Scholar]
- Perkin Elmer Corp. Analytical Methods for Atomic Absorption Spectrophotometry; University of Michigan: Ann Arbor, MI, USA, 2018. [Google Scholar]
- AqQa. Spreadsheet for Water Analyses; RockWare: Golden, CO, USA, 2006. [Google Scholar]
- Stanasel, O.D.; Kristmannsdottir, H.; Gavris, G.; Stanasel, I. Interpretation of Exploration Geochemical Data by Modelling Study and Physical-Chemistry Investigations. Rev. Chim. Buchar. 2010, 61, 778. [Google Scholar]
- Bjarnason, J.Ö. The Chemical Speciation Program WATCH; Version 2.4; Iceland GeoSurvey: Reykjavík, Iceland, 2010; p. 9.
- Nye, C. New Data from an Old Well: Changes in the Chemistry of Runoff Geothermal Well Water. In Proceedings of the World Geothermal Congress 2020+1, Reykjavik, Iceland, 30 March–27 October 2021. [Google Scholar]
- Arnórsson, S.; Stefánsson, A.; Bjarnason, J.O. Fluid-fluid interactions in geothermal systems. Rev. Mineral. Geochem. 2007, 65, 259–312. [Google Scholar] [CrossRef]
- Setel, A.; Antal, C.; Sebesan, M. Possible Uses of Geothermal Energy in the Săcuieni Area. J. Sustain. Energy 2014, 5, 51–54. [Google Scholar]
- Andreea, R.C. Fenomenul Geotermic din Vestul României. Ph.D. Thesis, Babes-Bolyai University of Cluj-Napoca, Cluj-Napoca, Romania, 2010. [Google Scholar]
Geothermal Reservoir | Well No. | Abbreviations | Wellhead Temperature, °C | Ph In Situ | pH in Laboratory |
---|---|---|---|---|---|
Oradea-Ioșia | 1717 | I 1717 | 72 | 7.54 | 7.87 |
Oradea-Ioșia | 4767 | I 4767 | 94 | 7.62 | 7.96 |
Săcuieni | 1704 | S 1704 | 84 | 7.52 | 8.75 |
Săcuieni | 4691 | S 4691 | 82 | 7.67 | 8.69 |
Well | Initial | After 96 h | ||
---|---|---|---|---|
pH | Conductivity λ, mS/cm | pH | Conductivity λ, mS/cm | |
I 1717 | 7.87 | 7.58 | 8.99 | 8.78 |
I 4767 | 7.96 | 8.04 | 9.01 | 9.23 |
S 4691 | 8.69 | 5.48 | 9.81 | 6.30 |
S 1704 | 8.75 | 5.17 | 9.80 | 6.55 |
Chemical Composition, (mg/L) | Săcuieni Reservoir | Oradea Reservoir | ||
---|---|---|---|---|
Well 1704 | Well 4691 | Well 1717 | Well 4767 | |
Na+ | 1155.2 | 1294.2 | 65.3 | 48.2 |
K+ | 145.1 | 185.5 | 16.4 | 9.4 |
Ca2+ | 32.8 | 18.2 | 132.6 | 138.7 |
Mg2+ | 9.6 | 7.9 | 15.9 | 18.4 |
Cl− | 668.6 | 726.7 | 31.2 | 61.6 |
SO42− | 14.6 | 21.3 | 129.0 | 254.0 |
HCO3− | 2247.3 | 2410.2 | 455.7 | 289.0 |
NO3− | 1.1 | 0.85 | 0.05 | 0.42 |
SiO2 | 38.4 | 64.2 | 28.8 | 32.5 |
BO2− | 8.4 | 9.1 | 0.213 | 0.44 |
Fe3+ | 0.14 | 0.19 | 0.45 | 0.56 |
TDS | 2790 | 2880 | 669 | 740 |
H2S | 0.008 | 0.016 | 0.156 | 0.121 |
Well | Penetration Index p, mm/Year | ||||
---|---|---|---|---|---|
Time, Hours | 5 | 24 | 48 | 72 | 96 |
I 1707 | 2.093 | 1.337 | 0.949 | 0.754 | 0.615 |
I 4767 | 1.265 | 0.788 | 0.521 | 0.435 | 0.376 |
S 4691 | 0.466 | 0.225 | 0.241 | 0.154 | 0.136 |
S 1704 | 0.408 | 0.385 | 0.299 | 0.253 | 0.203 |
Well | I 1707 | I 4767 | S 4691 | S 1704 |
---|---|---|---|---|
Mean | 1.15 | 0.68 | 0.24 | 0.31 |
SD | 0.59 | 0.36 | 0.13 | 0.09 |
COV | 51.60 | 53.85 | 53.90 | 27.99 |
Water Samples | Ecorr, mV | Rp, Ω·cm2 | icorr, μA/cm2 | ba, mV/dec | –bc, mV/dec | p, mm/Year |
---|---|---|---|---|---|---|
NaCl 3.5% | −541 | 87.14 | 118.8 | 29 | 116 | 1.389 |
I 1717 | −709 | 825.58 | 13.1 | 46 | 72 | 0.152 |
I 4767 | −679 | 1570 | 6.4 | 48 | 80 | 0.075 |
S 4691 | −915 | 443.35 | 9.23 | 28 | 22 | 0.108 |
S 1704 | −883 | 459.64 | 20.54 | 54 | 74 | 0.240 |
Water Samples | Rs, Ω·cm2 | Rct, Ω·cm2 | Cdl, μF/cm2 |
---|---|---|---|
NaCl 3.5% | 2.88 | 109.2 | 1036.0 |
I 1717 | 47.95 | 1633.0 | 872.7 |
I 4767 | 83.98 | 3421.0 | 130.2 |
S 4691 | 12.76 | 292.4 | 487.5 |
S 1704 | 16.07 | 349.2 | 574.2 |
Heating water | 144.60 | 209.5 | 304.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maior, I.; Badea, G.E.; Stănășel, O.D.; Sebeșan, M.; Cojocaru, A.; Petrehele, A.I.G.; Creț, P.; Blidar, C.F. Chemical Composition and Corrosion—Contributions to a Sustainable Use of Geothermal Water. Energies 2025, 18, 3634. https://doi.org/10.3390/en18143634
Maior I, Badea GE, Stănășel OD, Sebeșan M, Cojocaru A, Petrehele AIG, Creț P, Blidar CF. Chemical Composition and Corrosion—Contributions to a Sustainable Use of Geothermal Water. Energies. 2025; 18(14):3634. https://doi.org/10.3390/en18143634
Chicago/Turabian StyleMaior, Ioana, Gabriela Elena Badea, Oana Delia Stănășel, Mioara Sebeșan, Anca Cojocaru, Anda Ioana Graţiela Petrehele, Petru Creț, and Cristian Felix Blidar. 2025. "Chemical Composition and Corrosion—Contributions to a Sustainable Use of Geothermal Water" Energies 18, no. 14: 3634. https://doi.org/10.3390/en18143634
APA StyleMaior, I., Badea, G. E., Stănășel, O. D., Sebeșan, M., Cojocaru, A., Petrehele, A. I. G., Creț, P., & Blidar, C. F. (2025). Chemical Composition and Corrosion—Contributions to a Sustainable Use of Geothermal Water. Energies, 18(14), 3634. https://doi.org/10.3390/en18143634