Development of High-Efficiency and High-Stability Perovskite Solar Cells with Space Environmental Resistance
Abstract
1. Introduction
2. Challenges in the Space Environment
3. Strategies for Achieving High Stability and Performance
3.1. Self-Healing Perovskite Compositions
3.2. Gradient Buffer Layer Engineering
3.3. Advanced Encapsulation and Coating Strategies
4. Recent Advances in Radiation Tolerance
5. Applications in Deep-Space and Lunar Missions
6. Challenges in Scalability and Integration
7. Future Outlook and Broader Impacts
- Development of high-efficiency, highly stable PSCs with enhanced environmental resistance is in progress, supported by advances in materials and encapsulation technologies.
- Self-healing materials, composite buffer layers, and improved interfaces are promising approaches for extending device lifetimes in harsh space environments.
- Optimization of large-area coating and module integration processes remains essential to enable mass production of space-grade PSC modules.
- Practical application to low-risk space missions (e.g., CubeSats and ISS experiments) is feasible between 2025 and 2030, with gradual expansion to mainstream satellite platforms.
- Additional technological validation, including long-term space exposure data and standardization of testing protocols, is required for future deep-space and GEO missions.
Author Contributions
Funding
Conflicts of Interest
References
- Li, J.; Aierken, A.; Liu, Y.; Zhuang, Y.; Yang, X.; Mo, J.H.; Fan, R.K.; Chen, Q.Y.; Zhang, S.Y.; Huang, Y.M.; et al. A brief review of high efficiency III-V solar cells for space application. Front. Phys. 2021, 8, 631925. [Google Scholar] [CrossRef]
- Hepp, A.F.; Raffaelle, R.P.; Martin, I.T. Space photovoltaics: New technologies, environmental challenges, and missions. In Photovoltaics Beyond Silicon; Elsevier: Amsterdam, The Netherlands, 2024; pp. 675–766. [Google Scholar]
- Jeco-Espaldon, B.M. Innovative Strategies for High-Efficiency, Low-Cost, Lightweight III-V Multijunction Solar Cells. Adv. Eng. Forum 2025, 55, 45–50. [Google Scholar] [CrossRef]
- Camarillo Abad, E.; Sun, K.; Barthel, A.; Trojak, O.; Kalfagiannis, N.; Koutsogeorgis, D.C.; Vaidya, N.; Muskens, O.L.; Hirst, L.C. Advanced Solar Cells with Thermal, Radiation, and Light Management for Space-Based Solar Power. Sol. RRL 2025, 9, 202500016. [Google Scholar] [CrossRef]
- Zhang, C.; Xiong, Y.; Gao, M.; Lan, Z.; Wu, J.; Ye, L. Electrostatically Sprayed Flexible Encapsulation for High-Performance III–V Solar Cells. Sol. RRL 2024, 8, 2300836. [Google Scholar] [CrossRef]
- Zhang, L.; Mei, L.; Wang, K.; Lv, Y.; Zhang, S.; Lian, Y.; Liu, X.; Ma, Z.; Xiao, G.; Liu, Q.; et al. Advances in the application of perovskite materials. Nano-Micro Lett. 2023, 15, 177. [Google Scholar] [CrossRef]
- Gong, J.; Ji, S.; Li, J.; Wei, H.; Mao, W.; Hu, J.; Huang, W.; He, X.; Li, X.A.; Chu, L. Three-dimensional/one-dimensional perovskite heterostructures for stable tri-state synaptic memristors. Sci. China Mater. 2024, 67, 2848–2855. [Google Scholar] [CrossRef]
- Wei, H.; Chu, L. Two-dimensional halide perovskite memristor arrays: Linearly programmable for neuromorphic computing. Sci. China Mater. 2025, 68, 1678–1679. [Google Scholar] [CrossRef]
- Assirey, E.A. Perovskite synthesis, properties and their related biochemical and industrial application. Saudi Pharm. J. 2019, 27, 817–829. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xue, Y.; Wang, Z.; Xu, Z.Q.; Zheng, C.; Weber, B.; Song, J.; Wang, Y.; Lu, Y.; Zhang, Y.; et al. Two-dimensional CH3NH3PbI3 perovskite: Synthesis and optoelectronic application. ACS Nano 2016, 10, 3536–3542. [Google Scholar] [CrossRef]
- Filip, M.R.; Eperon, G.E.; Snaith, H.J.; Giustino, F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 2014, 5, 5757. [Google Scholar] [CrossRef]
- Tu, Y.; Wu, J.; Xu, G.; Yang, X.; Cai, R.; Gong, Q.; Zhu, R.; Huang, W. Perovskite solar cells for space applications: Progress and challenges. Adv. Mater. 2021, 33, 2006545. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Ran, C.; Gao, W.; Li, M.; Xia, Y.; Huang, W. Metal halide perovskite for next-generation optoelectronics: Progresses and prospects. eLight 2023, 3, 3. [Google Scholar] [CrossRef]
- Kim, M.; Kim, G.H.; Lee, T.K.; Choi, I.W.; Choi, H.W.; Jo, Y.; Yoon, Y.J.; Kim, J.W.; Lee, J.; Huh, D.; et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 2019, 3, 2179–2192. [Google Scholar] [CrossRef]
- Chen, H.; Liu, C.; Xu, J.; Maxwell, A.; Zhou, W.; Yang, Y.; Zhou, Q.; Bati, A.S.R.; Wan, H.; Wang, Z.; et al. Ultra-stable perovskite solar cells enabled by molecular anchoring. Science 2024, 384, 189–193. [Google Scholar] [CrossRef]
- Chen, P.; Xiao, Y.; Hu, J.; Li, S.; Luo, D.; Su, R.; Caprioglio, P.; Kaienburg, P.; Jia, X.; Chen, N.; et al. Multifunctional ytterbium oxide buffer for perovskite solar cells. Nature 2024, 625, 516–522. [Google Scholar] [CrossRef]
- Jung, H.S.; Han, G.S.; Park, N.G.; Ko, M.J. Flexible perovskite solar cells. Joule 2019, 3, 1850–1880. [Google Scholar] [CrossRef]
- Gan, Y.; Zhao, D.; Qin, B.; Bi, X.; Liu, Y.; Ning, W.; Yang, R.; Jiang, Q. Numerical simulation of high-performance CsPbI3/FAPbI3 heterojunction perovskite solar cells. Energies 2022, 15, 7301. [Google Scholar] [CrossRef]
- Lim, J.; Park, N.G.; Seok, S.I.; Saliba, M. All-perovskite tandem solar cells: From fundamentals to technological progress. Energy Environ. Sci. 2024, 17, 4390–4425. [Google Scholar] [CrossRef]
- Gao, H.; Xiao, K.; Lin, R.; Zhao, S.; Wang, W.; Dayneko, S.; Duan, C.; Ji, C.; Sun, H.; Bui, A.D.; et al. Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules. Science 2024, 383, 855–859. [Google Scholar] [CrossRef]
- Ho-Baillie, A.W.Y.; Sullivan, H.G.; Bannerman, T.A.; Talathi, H.P.; Bing, J.; Tang, S.; Xu, A.; Bhattacharyya, D.; Cairns, I.H.; McKenzie, D.R. Deployment opportunities for space photovoltaics and the prospects for perovskite solar cells. Adv. Mater. Technol. 2022, 7, 2101059. [Google Scholar] [CrossRef]
- Machín, A.; Márquez, F. Advancements in photovoltaic cell materials: Silicon, organic, and perovskite solar cells. Materials 2024, 17, 1165. [Google Scholar] [CrossRef] [PubMed]
- Elumalai, N.K.; Mahmud, M.A.; Wang, D.; Uddin, A. Perovskite solar cells: Progress and advancements. Energies 2016, 9, 861. [Google Scholar] [CrossRef]
- UCS Satellite Database. Union of Concerned Scientists. Available online: https://www.ucsusa.org/resources/satellite-database (accessed on 1 May 2023).
- Ahn, N.; Choi, M. Towards Long-Term Stable Perovskite Solar Cells: Degradation Mechanisms and Stabilization Techniques. Adv. Sci. 2024, 11, 2306110. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Q.; Zhu, Y.; Sui, X.; Fan, X.; Lin, M.; Shi, Y.; Zheng, Y.; Yuan, H.; Zhou, Y.; et al. Photomechanically accelerated degradation of perovskite solar cells. Energy Environ. Sci. 2025, 18, 2254–2263. [Google Scholar] [CrossRef]
- Ding, Y.; Ding, B.; Shi, P.; Romano-deGea, J.; Li, Y.; Turnell-Ritson, R.C.; Syzgantseva, O.A.; Yavuz, I.; Xia, M.; Yu, R.; et al. Cation reactivity inhibits perovskite degradation in efficient and stable solar modules. Science 2024, 386, 531–538. [Google Scholar] [CrossRef]
- Baumann, S.; Eperon, G.E.; Virtuani, A.; Jeangros, Q.; Sulas-Kern, D.B.; Barrit, D.; Schall, J.; Nie, W.; Oreski, G.; Khenkin, M.; et al. Stability and reliability of perovskite containing solar cells and modules: Degradation mechanisms and mitigation strategies. Energy Environ. Sci. 2024, 17, 7566. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Wang, T.; Li, J.; Chia, H.Y.; Liang, H.; Xi, S.; Liu, S.; Guo, X.; Guo, R.; et al. Determining the bonding–degradation trade-off at heterointerfaces for increased efficiency and stability of perovskite solar cells. Nat. Energy 2025, 10, 181–190. [Google Scholar] [CrossRef]
- Fei, C.; Kuvayskaya, A.; Shi, X.; Wang, M.; Shi, Z.; Jiao, H.; Silverman, T.J.; Owen-Bellini, M.; Dong, Y.; Xian, Y.; et al. Strong-bonding hole-transport layers reduce ultraviolet degradation of perovskite solar cells. Nature 2024, 384, 1126–1134. [Google Scholar] [CrossRef]
- Lee, Y.; Yoon, D.; Yu, S.; Sim, H.; Park, Y.; Nam, Y.S.; Kim, K.J.; Choi, S.Y.; Kang, Y.; Son, J. Reversible manipulation of photo-conductivity caused by surface oxygen vacancies in perovskite stannates with ultraviolet light. Adv. Mater. 2022, 34, 2107650. [Google Scholar] [CrossRef]
- Seid, B.A.; Sarisozen, S.; Peña-Camargo, F.; Ozen, S.; Gutierrez-Partida, E.; Solano, E.; Steele, J.A.; Stolterfoht, M.; Neher, D.; Lang, F. Understanding and Mitigating Atomic Oxygen-Induced Degradation of Perovskite Solar Cells for Near-Earth Space Applications. Small 2024, 20, 2311097. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, L.; Zhang, T.; Liu, N.; Ejaz, A.; Liang, Y. Degradation behavior and damage mechanisms of perovskite solar cells under 50–200 keV proton irradiations. Sol. Energy Mater. Sol. Cells 2025, 282, 113442. [Google Scholar] [CrossRef]
- Zhi, C.; Li, C.; Wan, Z.; Liu, C.; Jiang, Z.; Zunair, H.; Du, L.; Zhang, S.; Li, Z.; Shi, J.; et al. Boosting Efficiency and UV Resistance in Perovskite Solar Cells via Sunscreen Ingredient Octinoxate. Adv. Funct. Mater. 2024, 34, 2403321. [Google Scholar] [CrossRef]
- Chen, M.; Dong, Y.; Zhang, Y.; Zheng, X.; McAndrews, G.R.; Dai, Z.; Jiang, Q.; You, S.; Liu, T.; Harvey, S.P.; et al. Stress Engineering for Mitigating Thermal Cycling Fatigue in Perovskite Photovoltaics. ACS Energy Lett. 2024, 9, 2582–2589. [Google Scholar] [CrossRef]
- Li, F.; Yang, Y.; Kadyrma, D.; Dosmukhambetova, A.; Liu, Z.; Kalkozova, Z.; Chen, R.; Wang, H. Beyond the Horizon: Exploration of Perovskite Solar Cells in Extreme Environments. ChemPhotoChem 2025, 9, e202400337. [Google Scholar] [CrossRef]
- Xu, G.; Cai, P.; Tu, Y.; Kong, H.; Ke, Z.; Li, Y.; Zhuang, C.; Chen, Z.; Liu, Y.; Li, X.; et al. Calibration for space solar cells: Progress, prospects, and challenges. Solar RRL 2024, 8, 2300822. [Google Scholar] [CrossRef]
- Miyazawa, Y.; Ikegami, M.; Chen, H.-W.; Ohshima, T.; Imaizumi, M.; Hirose, K.; Miyasaka, T. Tolerance of perovskite solar cell to high-energy particle irradiations in space environment. iScience 2018, 2, 148–155. [Google Scholar] [CrossRef]
- Verduci, R.; Romano, V.; Brunetti, G.; Yaghoobi Nia, N.; Di Carlo, A.; D’Angelo, G.; Ciminelli, C. Solar energy in space applications: Review and technology perspectives. Adv. Energy Mater. 2022, 12, 2200125. [Google Scholar] [CrossRef]
- Yang, J.; Lim, E.L.; Tan, L.; Wei, Z. Ink engineering in blade-coating large-area perovskite solar cells. Adv. Energy Mater. 2022, 12, 2200975. [Google Scholar] [CrossRef]
- Ishizaki, T.; Miura, D.; Kuno, A.; Nagao, R.; Aoki, S.; Ohshima, Y.; Kino, T.; Usui, M.; Yamada, Y. Power cycle reliability of Cu nanoparticle joints with mismatched coefficients of thermal expansion. Microelectron. Reliab. 2016, 64, 287–293. [Google Scholar] [CrossRef]
- Carlson, R.O.; Glascock, H.H., II; Webster, H.F.; Neugebauer, C.A. Thermal expansion mismatch in electronic packaging. MRS Online Proc. Libr. 1984, 40, 177. [Google Scholar] [CrossRef]
- Rolston, N.; Bush, K.A.; Printz, A.D.; Gold-Parker, A.; Ding, Y.; Toney, M.F.; McGehee, M.D.; Dauskardt, R.H. Engineering stress in perovskite solar cells to improve stability. Adv. Energy Mater. 2018, 8, 1802139. [Google Scholar] [CrossRef]
- Xie, L.; Du, S.; Li, J.; Liu, C.; Pu, Z.; Tong, X.; Liu, J.; Wang, Y.; Meng, Y.; Yang, M.; et al. Molecular dipole engineering-assisted strain release for mechanically robust flexible perovskite solar cells. Energy Environ. Sci. 2023, 16, 5423–5433. [Google Scholar] [CrossRef]
- Ogbomo, O.O.; Amalu, E.H.; Ekere, N.N.; Olagbegi, P.O. Effect of coefficient of thermal expansion (CTE) mismatch of solder joint materials in photovoltaic (PV) modules operating in elevated temperature climate on the joint’s damage. Procedia Manuf. 2017, 11, 1145–1152. [Google Scholar] [CrossRef]
- Xu, J.; Shi, P.; Zhao, K.; Yao, L.; Deger, C.; Wang, S.; Zhang, X.; Zhang, S.; Tian, Y.; Wang, X.; et al. Ion-migration inhibitor for spiro-OMeTAD/perovskite contact toward stable perovskite solar cells. ACS Energy Lett. 2024, 9, 1073–1081. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, M.; Li, R.; Zhuang, X.; Wang, C.; Shang, X.; He, D.; Chen, J.; Chen, C. Suppressing ion migration by synergistic engineering of anion and cation toward high-performance inverted perovskite solar cells and modules. Adv. Mater. 2024, 36, 2313860. [Google Scholar] [CrossRef]
- Song, Z.; Li, C.; Chen, C.; McNatt, J.; Yoon, W.-L.; Scheiman, D.; Jenkins, P.P.; Ellingson, R.J.; Heben, M.J.; Yan, Y. High remaining factors in the photovoltaic performance of perovskite solar cells after high-fluence electron beam irradiations. J. Phys. Chem. C 2019, 124, 1330–1336. [Google Scholar] [CrossRef]
- Xiao, C.; Li, Z.; Guthrey, H.; Moseley, J.; Yang, Y.; Wozny, S.; Moutinho, H.; To, B.; Berry, J.J.; Gorman, B.; et al. Mechanisms of electron-beam-induced damage in perovskite thin films revealed by cathodoluminescence spectroscopy. J. Phys. Chem. C 2015, 119, 26904–26911. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, X.; Zhao, J.; Zhang, Y.; Kong, G.; Li, Q.; Li, N.; Yu, Y.; Xu, N.; Zhang, J.; et al. Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite. Nat. Commun. 2018, 9, 4807. [Google Scholar] [CrossRef]
- Jun, H.; Tondelier, D.; Geffroy, B.; Florea, I.; Bouree, J.-E.; Lopez-Varo, P.; Schulz, P.; Bonnassieux, Y.; Swaraj, S. Electrochemical and spectro-microscopic analyses of charge accumulation and ion migration in dry processed perovskite solar cells under electrical biasing. J. Phys. Chem. Lett. 2025, 16, 835–847. [Google Scholar] [CrossRef]
- Milosavljević, A.R.; Huang, W.; Sadhu, S.; Ptasinska, S. Low-energy electron-induced transformations in organolead halide perovskite. Angew. Chem. Int. Ed. 2016, 55, 10083–10087. [Google Scholar] [CrossRef]
- Dang, Z.; Shamsi, J.; Palazon, F.; Imran, M.; Akkerman, Q.A.; Park, S.; Bertoni, G.; Prato, M.; Brescia, R.; Manna, L. In situ transmission electron microscopy study of electron beam–induced transformations in colloidal cesium lead halide perovskite nanocrystals. ACS Nano 2017, 11, 2124–2132. [Google Scholar] [CrossRef] [PubMed]
- Huan, Z.; Zheng, Y.; Wang, K.; Shen, Z.; Ni, W.; Zu, J.; Shao, Y. Advancements in radiation resistance and reinforcement strategies of perovskite solar cells in space applications. J. Mater. Chem. A 2024, 12, 1910–1922. [Google Scholar] [CrossRef]
- Romano, V.; Agresti, A.; Verduci, R.; D’Angelo, G. Advances in perovskites for photovoltaic applications in space. ACS Energy Lett. 2022, 7, 2490–2514. [Google Scholar] [CrossRef]
- McMillon-Brown, L.; Luther, J.M.; Peshek, T.J. What would it take to manufacture perovskite solar cells in space? Joule 2022, 6, 2696–2699. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, S.C.; Jeangros, Q.; Pisoni, S.; Moser, T.; Buecheler, S.; Tiwari, A.N.; Fu, F. Mitigation of vacuum and illumination-induced degradation in perovskite solar cells by structure engineering. Joule 2020, 4, 1087–1103. [Google Scholar] [CrossRef]
- Guo, R.; Han, D.; Chen, W.; Dai, L.; Ji, K.; Xiong, Q.; Li, S.; Reb, L.K.; Scheel, M.A.; Pratap, S.; et al. Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen. Nat. Energy 2021, 6, 977–986. [Google Scholar] [CrossRef]
- VanSant, K.T.; Kirmani, A.R.; Patel, J.B.; Crowe, L.E.; Ostrowski, D.P.; Wieliczka, B.M.; McGehee, M.D.; Schelhas, L.T.; Luther, J.M.; Peshek, T.J.; et al. Combined stress testing of perovskite solar cells for stable operation in space. ACS Appl. Energy Mater. 2023, 6, 10319–10326. [Google Scholar] [CrossRef]
- Harvey, G.A.; Kinard, W.H.; Wilson, L.A. Outgassing of Flown and Unflown Mir Solar Cells. In Twenty-First Space Simulation Conference: The Future of Space Simulation Testing in the 21st Century; NASA: Greenbelt, MD, USA, 2000. [Google Scholar]
- Pastore, R.; Delfini, A.; Albano, M.; Vricella, A.; Marchetti, M.; Santoni, F.; Piergentili, F. Outgassing effect in polymeric composites exposed to space environment thermal-vacuum conditions. Acta Astronaut. 2020, 170, 466–471. [Google Scholar] [CrossRef]
- Chen, J.; Ding, N.; Li, Z.; Wang, W. Organic polymer materials in the space environment. Prog. Aerosp. Sci. 2016, 83, 37–56. [Google Scholar] [CrossRef]
- Thirsk, R.; Kuipers, A.; Mukai, C.; Williams, D. The space-flight environment: The International Space Station and beyond. CMAJ 2009, 180, 1216–1220. [Google Scholar] [CrossRef]
- Luo, T.; Liu, L.; Du, M.; Wang, K.; Liu, S. Vacuum preparation of charge transport layers for perovskite solar cells and modules. J. Mater. Chem. A 2025, 13, 1669–1710. [Google Scholar] [CrossRef]
- Grossman, E.; Gouzman, I. Space environment effects on polymers in low earth orbit. Nucl. Instrum. Methods Phys. Res. B 2003, 208, 48–57. [Google Scholar] [CrossRef]
- Takacs, G.A.; Miri, M.J.; Kovach, T. Vacuum UV surface photo-oxidation of polymeric and other materials for improving adhesion: A critical review. Prog. Adhes. Adhes. 2021, 6, 559–585. [Google Scholar]
- Tu, Y.; Xu, G.; Yang, X.; Zhang, Y.; Li, Z.; Su, R.; Luo, D.; Yang, W.; Miao, Y.; Cai, R.; et al. Mixed-cation perovskite solar cells in space. Sci. China Phys. Mech. Astron. 2019, 62, 974221. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, S.; Bae, S.; Cho, K.; Chung, T.; Mundt, L.E.; Lee, S.; Park, S.; Park, H.; Schubert, M.C.; et al. UV degradation and recovery of perovskite solar cells. Sci. Rep. 2016, 6, 38150. [Google Scholar] [CrossRef]
- Abdelmageed, G.; Jewell, L.; Hellier, K.; Seymour, L.; Luo, B.; Bridges, F.; Zhang, J.Z.; Carter, S. Mechanisms for light induced degradation in MAPbI3 perovskite thin films and solar cells. Appl. Phys. Lett. 2016, 109, 233905. [Google Scholar] [CrossRef]
- Kirmani, A.R.; Ostrowski, D.P.; VanSant, K.T.; Byers, T.A.; Bramante, R.C.; Heinselman, K.N.; Tong, J.; Stevens, B.; Nemeth, W.; Zhu, K.; et al. Metal oxide barrier layers for terrestrial and space perovskite photovoltaics. Nat. Energy 2023, 8, 191–202. [Google Scholar] [CrossRef]
- Fatima, Q.; Haidry, A.A.; Zhang, H.; El Jery, A.; Aldrdery, M. A critical review on advancement and challenges in using TiO2 as electron transport layer for perovskite solar cell. Mater. Today Sustain. 2024, 27, 100857. [Google Scholar] [CrossRef]
- Bautista, I.Z.; Yang, S.; Kuyyakanont, A.; Iwata, M.; Ma, T.; Cho, M. Perovskite Solar Cells in Space: Evaluation of Perovskite Solar Cell Hole Transport Material in Space Environment. Trans. Jpn. Soc. Aeronaut. Space Sci. 2022, 65, 95–107. [Google Scholar] [CrossRef]
- You, J.; Zhu, H.; Ye, J.; Xu, C.; Xu, G.; Jiang, Z.; He, X.; Dai, Z.; Zheng, N.; Zhang, S.; et al. Optimizing UV Resistance and Defect Passivation in Perovskite Solar Cells with Tailored Tin Oxide. Small 2025, 21, 2500695. [Google Scholar] [CrossRef]
- Youn, S.S.; Kim, J.; Na, J.; Jo, W.; Kim, G.Y. Understanding the Space-Charge Layer in SnO2 for Enhanced Electron Extraction in Hybrid Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 48229–48239. [Google Scholar] [CrossRef] [PubMed]
- Bati, A.S.; Zhong, Y.L.; Burn, P.L.; Nazeeruddin, M.K.; Shaw, P.E.; Batmunkh, M. Next-generation applications for integrated perovskite solar cells. Commun. Mater. 2023, 4, 2. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; He, Y.; Cao, S.; Wang, L.; Gao, H.; Yuan, L.; Wang, K.; Xu, M. Large-Area Flexible Plasma-Polymerized HDMSO Thin-Film Coating for Low-Earth-Orbit Spacecraft Polymers: Excellent Resistance to Atomic Oxygen and UV Erosion. ACS Appl. Polym. Mater. 2024, 6, 11604–11613. [Google Scholar] [CrossRef]
- Asgarimoghaddam, H.; Chen, Q.; Ye, F.; Shahin, A.; Song, B.; Musselman, K.P. Effect of different oxygen precursors on alumina deposited using a spatial atomic layer deposition system for thin-film encapsulation of perovskite solar cells. Nanotechnology 2023, 35, 095401. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, Z.; Li, T.; Chen, Y.; Huang, W. Stability of perovskite solar cells: A prospective on the substitution of the A cation and X anion. Angew. Chem. Int. Ed. 2017, 56, 1190–1212. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Xie, W.; Song, Q.; Ma, S.; Ma, Y.; Shi, C.; Xiao, M.; Pei, F.; Niu, X.; Zhang, Y.; et al. Inhibited crack development by compressive strain in perovskite solar cells with improved mechanical stability. Adv. Mater. 2023, 35, 2211257. [Google Scholar] [CrossRef]
- Meng, W.; Zhang, K.; Osvet, A.; Zhang, J.; Gruber, W.; Forberich, K.; Meyer, B.; Heiss, W.; Unruh, T.; Li, N.; et al. Revealing the strain-associated physical mechanisms impacting the performance and stability of perovskite solar cells. Joule 2022, 6, 458–475. [Google Scholar] [CrossRef]
- Qian, M.; Zhang, Y.; Mao, X.; Gao, Y.; Xuan, X.; Wu, M.; Niu, Y.; Gong, S. Flexible photoelectronic material device and investigation method for space applications. Prog. Aerosp. Sci. 2023, 139, 100901. [Google Scholar] [CrossRef]
- Koo, J.H.; Kim, D.C.; Shim, H.J.; Kim, T.H.; Kim, D.H. Flexible and stretchable smart display: Materials, fabrication, device design, and system integration. Adv. Funct. Mater. 2018, 28, 1801834. [Google Scholar] [CrossRef]
- Wang, Y.; Ahmad, I.; Leung, T.; Lin, J.; Chen, W.; Liu, F.; Ng, A.M.; Zhang, Y.; Djurišić, A.B. Encapsulation and stability testing of perovskite solar cells for real life applications. ACS Mater. Au 2022, 2, 215–236. [Google Scholar] [CrossRef]
- Finkenauer, B.P.; Akriti; Ma, K.; Dou, L. Degradation and self-healing in perovskite solar cells. ACS Appl. Mater. Interfaces 2022, 14, 24073–24088. [Google Scholar] [CrossRef]
- Afshari, H.; Chacon, S.A.; Sourabh, S.; Byers, T.A.; Whiteside, V.R.; Crawford, R.; Rout, B.; Eperon, G.E.; Sellers, I.R. Radiation tolerance and self-healing in triple halide perovskite solar cells. APL Energy 2023, 1, 026105. [Google Scholar] [CrossRef]
- Lan, Y.; Wang, Y.; Lai, Y.; Cai, Z.; Tao, M.; Wang, Y.; Li, M.; Dong, X.; Song, Y. Thermally driven self-healing efficient flexible perovskite solar cells. Nano Energy 2022, 100, 107523. [Google Scholar] [CrossRef]
- Yang, J.; Sheng, W.; Li, X.; Zhong, Y.; Su, Y.; Tan, L.; Chen, Y. Synergistic toughening and self-healing strategy for highly efficient and stable flexible perovskite solar cells. Adv. Funct. Mater. 2023, 33, 2214984. [Google Scholar] [CrossRef]
- Nam, J.S.; Choi, J.M.; Lee, J.W.; Han, J.; Jeon, I.; Kim, H.D. Decoding polymeric additive-driven self-healing processes in perovskite solar cells from chemical and physical bonding perspectives. Adv. Energy Mater. 2024, 14, 2304062. [Google Scholar] [CrossRef]
- Kang, Y.; Li, R.; Wang, A.; Kang, J.; Wang, Z.; Bi, W.; Yang, Y.; Song, Y.; Dong, Q. Ionogel-perovskite matrix enabling highly efficient and stable flexible solar cells towards fully-R2R fabrication. Energy Environ. Sci. 2022, 15, 3439–3448. [Google Scholar] [CrossRef]
- Kirmani, A.R.; Sellers, I.R. Are metal-halide perovskite solar cells really radiation tolerant? Joule 2025, 9, 101852. [Google Scholar] [CrossRef]
- Shen, C.; Ye, T.; Yang, P.; Chen, G. All–inorganic perovskite solar cells: Defect regulation and emerging applications in extreme environments. Adv. Mater. 2024, 36, 2401498. [Google Scholar] [CrossRef]
- Hoang, M.T.; Yang, Y.; Tuten, B.; Wang, H. Are metal halide perovskite solar cells ready for space applications? J. Phys. Chem. Lett. 2022, 13, 2908–2920. [Google Scholar] [CrossRef]
- Mozaffari, N.; Duong, T.; Shehata, M.M.; Bui, A.D.; Pham, H.T.; Yin, Y.; Mayon, Y.O.; Zheng, J.; Mahmud, M.A.; Tabi, G.D.; et al. Above 23% efficiency by binary surface passivation of perovskite solar cells using guanidinium and octylammonium spacer cations. Solar RRL 2022, 6, 2200355. [Google Scholar] [CrossRef]
- Barthel, A.; Sayre, L.; Kusch, G.; Oliver, R.A.; Hirst, L.C. Radiation effects in ultra-thin GaAs solar cells. J. Appl. Phys. 2022, 132, 184501. [Google Scholar] [CrossRef]
- Wang, T.B.; Wang, Z.X.; Zhang, S.Y.; Li, M.; Tang, G.H.; Zhuang, Y.; Yang, X.; Aierken, A. 1 MeV electron irradiation effect and damage mechanism analysis of flexible GaInP/GaAs/InGaAs solar cells. J. Appl. Phys. 2024, 135, 053103. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhuang, Y.; Aierken, A.; Song, Q.; Yang, X.; Zhang, S.; Wang, Q.; Dou, Y. Probing the displacement damage mechanism in Si, Ge, GaAs by defects evolution analysis. Comput. Mater. Sci. 2022, 203, 111084. [Google Scholar] [CrossRef]
- Duarte-Cano, S.; Pérez-Zenteno, F.; Caudevilla, D.; Olea, J.; San Andrés, E.; del Prado, A.; Benítez-Fernández, R.; García-Hemme, E.; Rezaei, M.; Clemente, J.A.; et al. Proton irradiation effects on silicon heterojunction solar cells with MoOx selective contacts. Mater. Sci. Semicond. Process. 2025, 190, 109312. [Google Scholar] [CrossRef]
- Lin, H.Y.; Jiang, Z.; Liu, S.C.; Du, Z.; Hsu, S.E.; Li, Y.S.; Qiu, W.J.; Yang, H.; Macdonald, T.J.; McLachlan, M.A.; et al. Overcoming Microstructural Defects at the Buried Interface of Formamidinium-Based Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2024, 16, 47763–47772. [Google Scholar] [CrossRef]
- Singh, P.; Soffer, Y.; Ceratti, D.R.; Elbaum, M.; Oron, D.; Hodes, G.; Cahen, D. A-site cation dependence of self-healing in polycrystalline APbI3 perovskite films. ACS Energy Lett. 2023, 8, 2447–2455. [Google Scholar] [CrossRef]
- Liu, J.; Wang, M.; Lin, J.; Chen, G.; Liu, B.; Huang, J.; Zhang, M.; Liang, G.; Lu, L.; Xu, P.; et al. Mitigating deep-level defects through a self-healing process for highly efficient wide-bandgap inorganic CsPbI3−XBrX perovskite photovoltaics. J. Mater. Chem. A 2022, 10, 17237–17245. [Google Scholar] [CrossRef]
- Jung, Y.; Cho, S.H.; Kim, S.; Lee, J.; Park, K.T.; Lee, Y.S. Spatial Atomic Arrangement of Cyclohexyl-Based Ligands for Enhanced Interface Passivation in 2D/3D Perovskite Solar Cells. Small 2025, 2501564, online ahead of print. [Google Scholar] [CrossRef]
- Wu, G.; Liang, R.; Ge, M.; Sun, G.; Zhang, Y.; Xing, G. Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells. Adv. Mater. 2022, 34, 2105635. [Google Scholar] [CrossRef]
- Zhang, Y.; Xi, J.; Deng, Y.; Liu, W.; Li, Z.; Liu, C.; Guo, W. The Crucial Role of Organic Ligands on 2D/3D Perovskite Solar Cells: A Comprehensive Review. Adv. Energy Mater. 2024, 14, 2403326. [Google Scholar] [CrossRef]
- Kirmani, A.R.; Byers, T.A.; Ni, Z.; VanSant, K.; Saini, D.K.; Scheidt, R.; Zheng, X.; Kum, T.B.; Sellers, I.R.; McMillon-Brown, L.; et al. Unraveling radiation damage and healing mechanisms in halide perovskites using energy-tuned dual irradiation dosing. Nat. Commun. 2024, 15, 696. [Google Scholar] [CrossRef]
- Parida, S.; Kumar, S.; Cherf, S.; Aharon, S.; Cahen, D.; Eren, B. Self-Healing and-Repair of Nanomechanical Damages in Lead Halide Perovskites. Adv. Funct. Mater. 2023, 33, 2304278. [Google Scholar] [CrossRef]
- Subedi, B.; Li, C.; Chen, C.; Liu, D.; Junda, M.M.; Song, Z.; Yan, Y.; Podraza, N.J. Urbach energy and open-circuit voltage deficit for mixed anion–cation perovskite solar cells. ACS Appl. Mater. Interfaces 2022, 14, 7796–7804. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, R.M.; Ornelas−Cruz, I.; Dias, A.C.; Lima, M.P.; Da Silva, J.L. Theoretical investigation of the role of mixed a+ cations in the structure, stability, and electronic properties of perovskite alloys. ACS Appl. Energy Mater. 2023, 6, 5259–5273. [Google Scholar] [CrossRef]
- Wu, C.; Wang, R.; Lin, Z.; Yang, N.; Wu, Y.; Ouyang, X. Simultaneous dual-interface modification based on mixed cations for efficient inverted perovskite solar cells with excellent stability. Chem. Eng. J. 2024, 493, 152899. [Google Scholar] [CrossRef]
- Ruggeri, E.; Anaya, M.; Gałkowski, K.; Abfalterer, A.; Chiang, Y.H.; Ji, K.; Andaji-Garmaroudi, Z.; Stranks, S.D. Halide remixing under device operation imparts stability on mixed-cation mixed-halide perovskite solar cells. Adv. Mater. 2022, 34, 2202163. [Google Scholar] [CrossRef] [PubMed]
- Parkhomenko, H.P.; Solovan, M.M.; Sahare, S.; Mostovyi, A.I.; Aidarkhanov, D.; Schopp, N.; Kovaliuk, T.; Kaikanov, M.; Ng, A.; Brus, V.V. Impact of a short-pulse high-intense proton irradiation on high-performance perovskite solar cells. Adv. Funct. Mater. 2024, 34, 2310404. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Bui, A.D.; Huang, K.; Leung, T.L.; Chang, L.C.; Nguyen, K.; Tabi, G.D.; Trần-Phú, T.; Nguyen, H.; Ho-Baillie, A.; et al. Void Formation and Radiation-Induced Ion Migration in Perovskite Solar Cells under 10 MeV Proton Radiation. Sol. RRL 2024, 8, 2400113. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Walter, D.; Weber, K.J.; Duong, T.; White, T.P. Simulating Proton Radiation Tolerance of Perovskite Solar Cells for Space Applications. Adv. Energy Sustain. Res. 2023, 4, 2300085. [Google Scholar] [CrossRef]
- Corso, A.J.; Padovani, M.; Santi, G.; Hübner, R.; Kentsch, U.; Bazzan, M.; Pelizzo, M.G. Optical Thin Films in Space Environment: Investigation of Proton Irradiation Damage. ACS Appl. Mater. Interfaces 2024, 16, 38645–38657. [Google Scholar] [CrossRef]
- Ullah, S.; Alshahrani, T.; Khan, F. Investigating the potential of lead-free Cs2AgBiI6 and Cs2AgBiBr6 double perovskites for photovoltaic applications. Mater. Today Commun. 2024, 38, 108514. [Google Scholar] [CrossRef]
- Zhai, M.; Chen, C.; Cheng, M. Advancing lead-free Cs2AgBiBr6 perovskite solar cells: Challenges and strategies. Sol. Energy 2023, 253, 563–583. [Google Scholar] [CrossRef]
- Zhu, S.; Jin, X.; Tan, W.; Zhang, Y.; Zhao, G.; Wang, X.; Yang, Y.; Zhou, C.; Tang, Z.; Wu, X.; et al. Multiple dynamic hydrogen bonding networks boost the mechanical stability of flexible perovskite solar cells. Adv. Funct. Mater. 2024, 34, 2408487. [Google Scholar] [CrossRef]
- Ma, S.; Tang, J.; Yuan, G.; Zhang, Y.; Wang, Y.; Wu, Y.; Zhu, C.; Wang, Y.; Wu, S.; Lu, Y.; et al. Resist thermal shock through viscoelastic interface encapsulation in perovskite solar cells. Energy Environ. Mater. 2024, 7, e12739. [Google Scholar] [CrossRef]
- Shao, C.; Ma, J.; Niu, G.; Nie, Z.; Zhao, Y.; Wang, F.; Wang, J. Strain Release via Glass Transition Temperature Regulation for Efficient and Stable Perovskite Solar Cells. Adv. Mater. 2025, 37, 2417150. [Google Scholar] [CrossRef]
- Gao, L.; Zhao, Y.; Chang, Y.; Gao, K.; Wang, Q.; Zhang, Q.; Tang, Q. In-situ compensation for thermal strain by phase transformation strain in all-inorganic perovskite solar cells. Chem. Eng. J. 2023, 469, 143881. [Google Scholar] [CrossRef]
- Dai, Z.; Li, S.; Liu, X.; Chen, M.; Athanasiou, C.E.; Sheldon, B.W.; Gao, H.; Guo, P.; Padture, N.P. Dual-Interface-Reinforced Flexible Perovskite Solar Cells for Enhanced Performance and Mechanical Reliability. Adv. Mater. 2022, 34, 2205301. [Google Scholar] [CrossRef]
- Ma, S.; Yuan, G.; Zhang, Y.; Yang, N.; Li, Y.; Chen, Q. Development of encapsulation strategies towards the commercialization of perovskite solar cells. Energy Environ. Sci. 2022, 15, 13–55. [Google Scholar] [CrossRef]
- Heo, J.H.; Zhang, F.; Park, J.K.; Lee, H.J.; Lee, D.S.; Heo, S.J.; Luther, J.M.; Berry, J.J.; Zhu, K.; Im, S.H. Surface engineering with oxidized Ti3C2TX MXene enables efficient and stable p-i-n-structured CsPbI3 perovskite solar cells. Joule 2022, 6, 1672–1688. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, S.; Pan, Y.; Li, F.; Sun, H.; Lu, Q.; Li, Y.; Bai, Y.; Xia, Y.; Cheng, X.; et al. Preparation of organic N-fused perylenediimide-MXene hybrid material for robust versatile memristive device. Int. J. Extrem. Manuf. 2024, 7, 025507. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, D.; Wang, K.; Yang, Q.; Qian, J.; Zhou, J.; Liu, S.; Yang, D. Lattice mismatch at the heterojunction of perovskite solar cells. Angew. Chem. Int. Ed. 2024, 63, e202405878. [Google Scholar] [CrossRef]
- Katta, V.S.; Waheed, M.; Kim, J.H. Recent advancements in enhancing interfacial charge transport for perovskite solar cells. Sol. RRL 2024, 8, 2300908. [Google Scholar] [CrossRef]
- Wang, J.; Jiao, B.; Tian, R.; Sun, K.; Meng, Y.; Bai, Y.; Lu, X.; Han, B.; Yang, M.; Wang, Y.; et al. Less-acidic boric acid-functionalized self-assembled monolayer for mitigating NiOx corrosion for efficient all-perovskite tandem solar cells. Nat. Commun. 2025, 16, 4148. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, S.; Yuan, H.; Jiao, Y.; Guo, X.; Hu, Z.; Hu, X.G.; Lin, Z.; Hao, Y.; Ding, L.; et al. Mechanically Resilient and Highly Efficient Flexible Perovskite Solar Cells with Octylammonium Acetate for Surface Adhesion and Stress Relief. ACS Nano 2025, 19, 4867–4875. [Google Scholar] [CrossRef]
- Zhu, X.; Cai, H.; Bai, C.; Wu, Z.; Shen, W.; Xiong, Y.; Zhao, J.; Huang, F.; Cheng, Y.; Zhong, J. Universal encapsulation adhesive for lead sedimentation and attachable perovskite solar cells with enhanced performance. Energy Environ. Mater. 2024, 7, e12649. [Google Scholar] [CrossRef]
- Lochhead, K.; Johlin, E.; Yang, D. Encapsulation of perovskite solar cells with thin barrier films. In Thin Films—Deposition Methods and Applications; IntechOpen: Rijeka, Croatia, 2022. [Google Scholar]
- Martínez, W.O.; Guerrero, N.B.; Andrade, V.A.; Alurralde, M.; Perez, M.D. Evaluation of the resistance of halide perovskite solar cells to high energy proton irradiation for space applications. Sol. Energy Mater. Sol. Cells 2022, 238, 111644. [Google Scholar] [CrossRef]
- Kim, S.; Lee, C.M.; Shah, S.H.U.; Jung, M.-C.; Lee, S.G.; Kim, C.H.; Lee, H.J.; Park, C.; Yeom, J.-Y.; Ryu, S.Y.; et al. Radiation tolerance of organohalide-based perovskite solar cells under 6 MeV electron beam irradiation. J. Phys. Chem. C 2024, 128, 885–893. [Google Scholar] [CrossRef]
- Lang, F.; Jošt, M.; Frohna, K.; Köhnen, E.; Al-Ashouri, A.; Bowman, A.R.; Bertram, T.; Morales-Vilches, A.B.; Koushik, D.; Tennyson, E.M.; et al. Proton radiation hardness of perovskite tandem photovoltaics. Joule 2020, 4, 1054–1069. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, L.; Jiang, Y.; Ding, L. Failure pathways of perovskite solar cells in space. J. Semicond. 2022, 43, 100201. [Google Scholar] [CrossRef]
- Chen, Z.; Cheng, Q.; Chen, H.; Wu, Y.; Ding, J.; Wu, X.; Yang, H.; Liu, H.; Chen, W.; Tang, X.; et al. Perovskite grain-boundary manipulation using room-temperature dynamic self-healing “ligaments” for developing highly stable flexible perovskite solar cells with 23.8% efficiency. Adv. Mater. 2023, 35, 2300513. [Google Scholar] [CrossRef]
- Wang, L.; Song, Y.; Wang, J.; Bi, W.; Ding, L.; Liu, H.; Yang, X.; Wang, Y.; Yuan, S.; Dong, Q.; et al. Rapid Recovery of Degraded Perovskite Single-Crystal Radiation Detectors via Infrared Healing. ACS Appl. Mater. Interfaces 2024, 16, 44202–44209. [Google Scholar] [CrossRef]
- Shin, Y.S.; Lee, J.; Lee, D.G.; Song, J.W.; Seo, J.; Roe, J.; Sung, M.J.; Park, S.; Shin, G.Y.; Yeop, J.; et al. Damp-heat stable and efficient perovskite solar cells and mini-modules with a BP-free hole-transporting layer. Energy Environ. Sci. 2025, 18, 3269–3277. [Google Scholar] [CrossRef]
- Shin, Y.S.; Song, J.W.; Lee, D.G.; Lee, J.; Seo, J.; Roe, J.; Shin, G.Y.; Kim, D.; Yeop, J.; Lee, D.; et al. De-doping engineering for efficient and heat-stable perovskite solar cells. Joule 2025, 9, 101779. [Google Scholar] [CrossRef]
- Lalbakhsh, A.; Pitcairn, A.; Mandal, K.; Alibakhshikenari, M.; Esselle, K.P.; Reisenfeld, S. Darkening low-earth orbit satellite constellations: A review. IEEE Access 2022, 10, 24383–24394. [Google Scholar] [CrossRef]
- Yoon, G.W.; Jo, B.; Boonmongkolras, P.; Han, G.S.; Jung, H.S. Perovskite tandem solar cells for low earth orbit satellite power applications. Adv. Energy Mater. 2025, 15, 2400204. [Google Scholar] [CrossRef]
- Calle, C.I.; Buhler, C.R.; Johansen, M.R.; Hogue, M.D.; Snyder, S.J. Active dust control and mitigation technology for lunar and Martian exploration. Acta Astronaut. 2011, 69, 1082–1088. [Google Scholar] [CrossRef]
- Sorloaica-Hickman, N.; McFall, J.; Nason, S.; Davis, K.; Arens, E. Optimization of the photovoltaic powered systems with dust mitigation technology for future lunar and Martian missions. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference (PVSC), Austin, TX, USA, 3–8 June 2012; pp. 2815–2818. [Google Scholar]
- Liu, D.; Li, Y.; Wang, J.; Zhang, H.; Chen, X.; Zhao, Y.; Yang, S. Tolerance of perovskite solar cells to electrostatic discharge in Martian dust activities. ACS Omega 2024, 9, 25215–25222. [Google Scholar] [CrossRef]
- Colenbrander, T.; Smith, A.; Johnson, M.; Lee, S.; Patel, R.; Kim, J. Low-intensity low-temperature analysis of perovskite solar cells for deep space applications. Energy Adv. 2023, 2, 298–307. [Google Scholar] [CrossRef]
- Lee, D.K.; Park, N.G. Materials and methods for high-efficiency perovskite solar modules. Sol. RRL 2022, 6, 2100455. [Google Scholar] [CrossRef]
- Vesce, L.; Stefanelli, M.; Rossi, F.; Castriotta, L.A.; Basosi, R.; Parisi, M.L.; Sinicropi, A.; Di Carlo, A. Perovskite solar cell technology scaling-up: Eco-efficient and industrially compatible sub-module manufacturing by fully ambient air slot-die/blade meniscus coating. Prog. Photovolt. Res. Appl. 2024, 32, 115–129. [Google Scholar] [CrossRef]
- Bochun, K.A.; Yan, F. Emerging strategies for the large-scale fabrication of perovskite solar modules: From design to process. Energy Environ. Sci. 2025, 18, 3917–3954. [Google Scholar]
- Yin, R.; Wu, Y.; Huang, Z.; Vasenko, A.S.; Xu, S.; Zhou, H. Fabricating Perovskite Films for Solar Modules from Small to Large Scale. Adv. Funct. Mater. 2025, 35, 2419184. [Google Scholar] [CrossRef]
- Subbiah, A.S.; Mannar, S.; Hnapovskyi, V.; Pininti, A.R.; Vishal, B.; Merino, L.V.; Matiash, O.; Karalis, O.; Hempel, H.; Prasetio, A.; et al. Efficient blade-coated perovskite/silicon tandems via interface engineering. Joule 2025, 9, 101767. [Google Scholar] [CrossRef]
- Sun, R.; Chen, S.; He, Q.; Yang, P.; Gao, X.; Wu, M.; Wang, J.; Zhong, C.; Zhao, X.; Li, M.; et al. A Stepwise Melting-Polymerizing Molecule for Hydrophobic Grain-Scale Encapsulated Perovskite Solar Cell. Adv. Mater. 2025, 37, 2410395. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chu, L.; Yan, W. Stability Challenges in Industrialization of Perovskite Photovoltaics: From Atomic-Scale View to Module Encapsulation. Adv. Funct. Mater. 2025, 35, 2412389. [Google Scholar] [CrossRef]
- Mu, L.; Wang, S.; Liu, H.; Li, W.; Zhu, L.; Wang, H.; Chen, H. Innovative materials for lamination encapsulation in perovskite solar cells. Adv. Funct. Mater. 2025, 35, 2415353. [Google Scholar] [CrossRef]
- Emery, Q.; Dagault, L.; Khenkin, M.; Kyranaki, N.; de Araújo, W.M.; Erdil, U.; Demuylder, M.; Cros, S.; Schlatmann, R.; Stannowski, B.; et al. Tips and Tricks for a Good Encapsulation for Perovskite-Based Solar Cells. Prog. Photovolt. Res. Appl. 2025, 33, 551–559. [Google Scholar] [CrossRef]
- Gong, J.; Adnani, M.; Jones, B.T.; Xin, Y.; Wang, S.; Patel, S.V.; Lochner, E.; Mattoussi, H.; Hu, Y.Y.; Gao, H. Nanoscale encapsulation of hybrid perovskites using hybrid atomic layer deposition. J. Phys. Chem. Lett. 2022, 13, 4082–4089. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, F. Advances in encapsulations for perovskite solar cells: From materials to applications. Sol. RRL 2023, 7, 2201123. [Google Scholar] [CrossRef]
Aspect | Key Finding | References |
---|---|---|
Radiation Effects | Proton/electron irradiation causes nanoscale voids and ion migration; partial self-healing possible through thermal annealing. | [129,130,131,132] |
Material-Dependent Response | Devices with inorganic CTLs (e.g., CuSCN and NiO) show better radiation stability than those with organic CTLs (e.g., Spiro-OMeTAD). | [132,136,137] |
Self-Healing Mechanism | Defects such as Pb–Br antisites and ion migration can be reversed by mild thermal treatment or relaxation. | [83,133,134,135] |
Stack Design Strategy | Fully inorganic PSC stacks are more resistant; metal-oxide buffer layers (e.g., YbOx) further improve radiation hardness. | [56,132,136,137] |
Tandem/Shielding Approaches | Wide-bandgap perovskites (in top tandem cells) could serve as radiation shields for underlying layers. | [132,133] |
Large-Area Coating Challenge | Description |
---|---|
Defect Formation Risk | Pinholes, incomplete coverage, and compositional inhomogeneity can arise, especially across meter-scale substrates. |
Yield Reduction | Increased probability of device failure as the area scales up; even minor defects can lead to significant yield loss in large modules. |
Crystallization Uniformity | Achieving uniform crystallization requires precise control of ink rheology, temperature, and coating speed across large areas. |
Encapsulation Difficulty | Edge and seam sealing become more critical in large modules to prevent environmental ingress and electrical breakdown. |
Need for Process Monitoring | In situ defect detection and quality control are essential to maintain low defect density and high yield. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, D.; Cho, Y.; Shin, H.; Kim, G.-H. Development of High-Efficiency and High-Stability Perovskite Solar Cells with Space Environmental Resistance. Energies 2025, 18, 3378. https://doi.org/10.3390/en18133378
Yun D, Cho Y, Shin H, Kim G-H. Development of High-Efficiency and High-Stability Perovskite Solar Cells with Space Environmental Resistance. Energies. 2025; 18(13):3378. https://doi.org/10.3390/en18133378
Chicago/Turabian StyleYun, Donghwan, Youngchae Cho, Hyeseon Shin, and Gi-Hwan Kim. 2025. "Development of High-Efficiency and High-Stability Perovskite Solar Cells with Space Environmental Resistance" Energies 18, no. 13: 3378. https://doi.org/10.3390/en18133378
APA StyleYun, D., Cho, Y., Shin, H., & Kim, G.-H. (2025). Development of High-Efficiency and High-Stability Perovskite Solar Cells with Space Environmental Resistance. Energies, 18(13), 3378. https://doi.org/10.3390/en18133378