A Hierarchical Evolutionary Search Framework with Manifold Learning for Powertrain Optimization of Flying Vehicles
Abstract
1. Introduction
2. Powertrain Modeling and Control Strategy
2.1. Vehicle Dynamics Model
2.2. Powertrain Model
2.3. Energy Controller Model
3. Co-Optimization of HEVTOL Powertrain Sizing and Energy Management System
3.1. Problem Formulation
3.2. Lightweight Manifold Discovery
3.3. Manifold-Projected Bayesian Optimization
3.4. Surrogate-Seeded NSGA-III Fine-Tuning
Algorithm 1: Pseudocode of hierarchical manifold Bayesian evolutionary optimization | |
I: Manifold Discovery | |
1 | Generate M samples using Latin Hypercube Sampling |
2 | for each sample do |
3 | Identify K-nearest neighbors |
4 | Solve local linear reconstruction weights |
5 | end for |
6 | Learn low-dimensional embedding preserving reconstruction |
7 | Train inverse mapping (e.g., RBF regression) |
8 | Store manifold dataset |
II: Manifold-Guided Bayesian Optimization | |
9 | Fit GP models for each objective on latent variables z |
10 | for to do |
11 | Compute multi-objective acquisition function (e.g., Expected Improvement) |
12 | Select maximizing acquisition |
13 | Map to and evaluate |
14 | Add to dataset and update GP |
15 | end for |
16 | Select top-N seeds for fine-tuning |
III: NSGA-III-Based Local Refinement | |
17 | Map to as initial population |
18 | for to do |
19 | Evaluate objectives for all individuals in |
20 | Apply crossover and mutation to produce |
21 | Merge and , select next via NSGA-III selection |
22 | end for |
23 | Return final Pareto front |
4. Results and Discussion
4.1. Results of Pareto-Based Co-Optimization
4.2. Pareto Front Evolution and Convergence Analysis
5. Conclusions
- The lightweight manifold-based dimensionality reduction framework is proposed for joint component sizing and energy management parameterization in HEVTOL systems, effectively compressing the high-dimensional design space and improving optimization efficiency.
- A hybrid optimization strategy combining global Bayesian exploration and refined NSGA-III evolution is designed, enabling efficient escape from local optima while ensuring strict adherence to dynamic constraints. The HM-BEO framework achieves faster convergence compared to NSGA-III, as evidenced by IGD trends.
- Comprehensive validation under real-world driving scenarios confirms the engineering applicability of the optimized strategy, with the HM-BEO-derived control parameters reducing fuel consumption by 5.3%, mitigating battery SOH degradation by 7.4%, and reducing system manufacturing costs by 1.7% compared to traditional NSGA-III-based optimization. These improvements highlight the framework’s effectiveness in enhancing energy efficiency, battery longevity, and system cost-efficiency for flying vehicles.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jia, C.; He, H.; Zhou, J.; Li, J.; Wei, Z.; Li, K.; Li, M. A novel deep reinforcement learning-based predictive energy management for fuel cell buses integrating speed and passenger prediction. Int. J. Hydrogen Energy 2025, 100, 456–465. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J.; Xu, Q.; Wang, J.; Li, K. Mixed platoon control of automated and human-driven vehicles at a signalized intersection: Dynamical analysis and optimal control. Transp. Res. Part C Emerg. Technol. 2021, 127, 103138. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, F.; Geng, J.; Hao, H.; Liu, Z. Comprehensive assessment for different ranges of battery electric vehicles: Is it necessary to develop a battery electric vehicle with an ultra-long range? iScience 2023, 26, 106654. [Google Scholar] [CrossRef]
- Qing, H.; Feng, Y.; Zhang, C.; Gao, J.; Chen, H.; Hao, D.; Yu, P.; Simonovic, M. Parallel structure-based decentralized model predictive control of vehicle PEMFC anode circulation system. Energy 2025, 324, 135767. [Google Scholar] [CrossRef]
- Jin, N.; Jia, F.; Dai, L.; Liu, H.; Wang, T.; Hu, P. A Hierarchical Energy Management Strategy for PHEVs: Optimizing SOC Trajectory Tracking Performance Using Adaptive Initial Equivalent Factor Strategy (AIEFS). Energy 2025, 318, 134816. [Google Scholar] [CrossRef]
- Yi, F.; Shu, X.; Zhou, J.; Zhang, J.; Feng, C.; Gong, H.; Zhang, C.; Yu, W. Remaining useful life prediction of PEMFC based on matrix long short-term memory. Int. J. Hydrogen Energy 2025, 111, 228–237. [Google Scholar] [CrossRef]
- Lei, N.; Zhang, H.; Wang, H.; Wang, Z. An Improved Co-Optimization of Component Sizing and Energy Management for Hybrid Powertrains Interacting With High-fidelity Model. IEEE Trans. Veh. Technol. 2023, 72, 15585–15596. [Google Scholar] [CrossRef]
- He, R.; Ping, Y.; Li, T.; Zhang, Y.; Chen, R. Phase Transition of n-Heptane/Ethanol Blends from Subcritical to Supercritical Conditions. Int. J. Heat Mass Transf. 2022, 185, 122405. [Google Scholar] [CrossRef]
- Zhou, J.; Shu, X.; Zhang, J.; Yi, F.; Jia, C.; Zhang, C.; Kong, X.; Zhang, J.; Wu, G. A deep learning method based on CNN-BiGRU and attention mechanism for proton exchange membrane fuel cell performance degradation prediction. Int. J. Hydrogen Energy 2024, 94, 394–405. [Google Scholar] [CrossRef]
- Chen, C.; Cai, M.; Wang, J.; Li, K.; Xu, Q.; Wang, J.; Li, K. Cooperation Method of Connected and Automated Vehicles at Unsignalized Intersections: Lane Changing and Arrival Scheduling. IEEE Trans. Veh. Technol. 2022, 71, 11351–11366. [Google Scholar] [CrossRef]
- Lu, D.; Yi, F.; Hu, D.; Li, J.; Yang, Q.; Wang, J. Online optimization of energy management strategy for FCV control parameters considering dual power source lifespan decay synergy. Appl. Energy 2023, 348, 121516. [Google Scholar] [CrossRef]
- Wang, Z.; Sasse, J.P.; Trutnevyte, E. Home or workplace charging? Spatio-temporal flexibility of electric vehicles within Swiss electricity system. Energy 2025, 320, 135452. [Google Scholar] [CrossRef]
- Jia, C.; Liu, W.; He, H.; Chau, K. Superior energy management for fuel cell vehicles guided by improved DDPG algorithm: Integrating driving intention speed prediction and health-aware control. Appl. Energy 2025, 394, 126195. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, W.; Cash, S.; Olatunbosun, O.; Xu, H.; Lu, G. Intelligent sizing of a series hybrid electric power-train system based on Chaos-enhanced accelerated particle swarm optimization. Appl. Energy 2017, 189, 588–601. [Google Scholar] [CrossRef]
- He, C.; Jia, Y.; Ma, D. Optimization and Analysis of Hybrid Electric System for Distributed Propulsion Tilt-Wing UAV. IEEE Access 2020, 8, 224654–224667. [Google Scholar] [CrossRef]
- Jia, C.; Liu, W.; He, H.; Chau, K. Deep reinforcement learning-based energy management strategy for fuel cell buses integrating future road information and cabin comfort control. Energy Convers. Manag. 2024, 321, 119032. [Google Scholar] [CrossRef]
- Chen, C.; Xu, Q.; Cai, M.; Wang, J.; Wang, J.; Li, K. Conflict-Free Cooperation Method for Connected and Automated Vehicles at Unsignalized Intersections: Graph-Based Modeling and Optimality Analysis. IEEE Trans. Intell. Transp. Syst. 2022, 23, 21897–21914. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, F.; Hao, H.; Liu, Z. Comparative analysis for different vehicle powertrains in terms of energy-saving potential and cost-effectiveness in China. Energy 2023, 276, 127564. [Google Scholar] [CrossRef]
- Zhang, H.; Lei, N.; Wang, Z. Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles. Appl. Energy 2024, 369, 123505. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, F.; Hao, H.; Liu, Z. Opportunities, Challenges and Strategies for Developing Electric Vehicle Energy Storage Systems under the Carbon Neutrality Goal. World Electr. Veh. J. 2023, 14, 170. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- He, Y.; Wang, C.; Zhou, Q.; Li, J.; Makridis, M.; Williams, H.; Lu, G.; Xu, H. Multiobjective component sizing of a hybrid ethanol-electric vehicle propulsion system. Appl. Energy 2020, 266, 114843. [Google Scholar] [CrossRef]
- Chen, M.; Li, B.; Bian, Y.; Zhuang, W.; Evangelou, S.; Pan, X.; Chen, B. Intersection Signal-Vehicle Coupled Coordination With Mixed Autonomy Vehicles. IEEE Trans. Transp. Electrif. 2024, 11, 668–681. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, Q.; Liu, S.; Li, S.E.; Huang, J.; Wang, Z. Hierarchical energy management strategy for plug-in hybrid electric powertrain integrated with dual-mode combustion engine. Appl. Energy 2021, 304, 117869. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, S.; Lei, N.; Fan, Q.; Li, S.E.; Wang, Z. Learning-based supervisory control of dual mode engine-based hybrid electric vehicle with reliance on multivariate trip information. Energy Convers. Manag. 2022, 257, 115450. [Google Scholar] [CrossRef]
- Li, Y.; Lu, X.; Kar, N.C. Rule-Based Control Strategy With Novel Parameters Optimization Using NSGA-II for Power-Split PHEV Operation Cost Minimization. IEEE Trans. Veh. Technol. 2014, 63, 3051–3061. [Google Scholar] [CrossRef]
- Sun, H.; Li, S.; Li, B.; Chen, M.; Zhang, S.; Zhuang, W.; Yin, G.; Chen, B. Spatial–temporal transformer-based ecological car-following strategy for connected electric vehicles in dynamic environments. Energy 2025, 317, 134673. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, B.; Lei, N.; Li, B.; Li, R.; Wang, Z. Integrated Thermal and Energy Management of Connected Hybrid Electric Vehicles Using Deep Reinforcement Learning. IEEE Trans. Transp. Electrif. 2024, 10, 4594–4603. [Google Scholar] [CrossRef]
- Li, K.; Zhou, J.; Jia, C.; Yi, F.; Zhang, C. Energy sources durability energy management for fuel cell hybrid electric bus based on deep reinforcement learning considering future terrain information. Int. J. Hydrogen Energy 2024, 52, 821–833. [Google Scholar] [CrossRef]
- Wen, Y.; Chu, Z.; Srivastava, A.; Teng, F.; Chen, B. Resilient Microgrid Scheduling With Synthetic Inertia From Electric Vehicles Within a Network of Charging Stations. IEEE Trans. Control Syst. Technol. 2024, 33, 775–787. [Google Scholar] [CrossRef]
- He, R.; Ping, Y.; Li, T. Evaporation and condensation characteristics of n -heptane and multi-component diesel droplets under typical spray relevant conditions. Int. J. Heat Mass Transf. 2020, 163, 120162. [Google Scholar] [CrossRef]
- Milićević, S.; Blagojević, I.; Milojević, S.; Bukvić, M.; Stojanović, B. Numerical Analysis of Optimal Hybridization in Parallel Hybrid Electric Powertrains for Tracked Vehicles. Energies 2024, 17, 3531. [Google Scholar] [CrossRef]
- Bao, H.; Knights, P.; Kizil, M.; Nehring, M. Energy Consumption and Battery Size of Battery Trolley Electric Trucks in Surface Mines. Energies 2024, 17, 1494. [Google Scholar] [CrossRef]
- Parkar, O.; Snyder, B.; Rahi, A.; Anwar, S. Modified Particle Swarm Optimization Based Powertrain Energy Management for Range Extended Electric Vehicle. Energies 2023, 16, 5082. [Google Scholar] [CrossRef]
- Pardhi, S.; El Baghdadi, M.; Hulsebos, O.; Hegazy, O. Optimal Powertrain Sizing of Series Hybrid Coach Running on Diesel and HVO for Lifetime Carbon Footprint and Total Cost Minimisation. Energies 2022, 15, 6974. [Google Scholar] [CrossRef]
- Jia, C.; He, H.; Zhou, J.; Li, J.; Wei, Z.; Li, K. Learning-based model predictive energy management for fuel cell hybrid electric bus with health-aware control. Appl. Energy 2024, 355, 122228. [Google Scholar] [CrossRef]
- Ruan, S.; Ma, Y.; Wei, Z.; Zhang, C.; Xiang, C. Data-Driven Cooperative Differential Game Based Energy Management Strategy for Hybrid Electric Propulsion System of a Flying Car. IEEE Trans. Intell. Transp. Syst. 2024, 25, 14770–14784. [Google Scholar] [CrossRef]
- Zhang, H.; Lei, N.; Liu, S.; Fan, Q.; Wang, Z. Data-driven predictive energy consumption minimization strategy for connected plug-in hybrid electric vehicles. Energy 2023, 283, 128514. [Google Scholar] [CrossRef]
- Wu, X.; Cao, B.; Li, X.; Xu, J.; Ren, X. Component sizing optimization of plug-in hybrid electric vehicles. Appl. Energy 2011, 88, 799–804. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S.; Huang, P.; Han, W.; Lyu, Y.; Xu, M.; Zhao, D. Dynamics as Prompts: In-Context Learning for Sim-to-Real System Identifications. IEEE Robot. Autom. Lett. 2025, 10, 3190–3197. [Google Scholar] [CrossRef]
- Xiongbo, D.; Chu, X.; Wang, R.; Chen, Z.; Zhou, F.; Abdellatief, T. The performance and emissions characteristics of the gasoline spark ignition engine fuelled with green and renewable methanol and hydrogen. Renew. Energy 2024, 240, 122184. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, B.; Lei, N.; Li, B.; Chen, C.; Wang, Z. Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency. Appl. Energy 2024, 360, 122792. [Google Scholar] [CrossRef]
- Chen, B.; Li, X.; Evangelou, S.; Lot, R. Joint Propulsion and Cooling Energy Management of Hybrid Electric Vehicles by Optimal Control. IEEE Trans. Veh. Technol. 2020, 69, 4894–4906. [Google Scholar] [CrossRef]
Parameter Definition | Value Range |
---|---|
Max ICE Power | 80 kW 300 kW |
Max Generator Power | 50 kW 300 kW |
Motor Max Power | 60 kW 120 kW |
A-ECMS Initial EF | 0 8 |
A-ECMS Proportional Gain | 0 50 |
A-ECMS Integral Gain | 0 5 |
-Optimal | -Optimal | -Optimal | Trade-Off | |
---|---|---|---|---|
Max ICE Power (kW) | 259.55 | 257.76 | 248.81 | 263.13 |
Max Gen Power (kW) | 238.79 | 237.14 | 228.91 | 242.08 |
Max Mot Power (kW) | 94.5 | 99.9 | 100.8 | 94.5 |
(-) | 0.32 | 5.75 | 5.5 | 0.64 |
(-) | 20.93 | 4.25 | 5.49 | 41.05 |
(-) | 1.34 | 1.39 | 1.27 | 0.24 |
value-corrected (L) | 18.41 | 19.83 | 19.04 | 18.78 |
value (%) | 0.14 | 0.12 | 0.14 | 0.13 |
value (USD) | 68,988.5 | 69,805.0 | 67,332.5 | 69,632.5 |
-Optimal | -Optimal | -Optimal | Trade-Off | |
---|---|---|---|---|
Max ICE Power (kW) | 255.97 | 254.18 | 247.02 | 257.76 |
Max Gen Power (kW) | 235.49 | 233.84 | 227.25 | 237.13 |
Max Mot Power (kW) | 93.6 | 98.1 | 97.2 | 90.9 |
(-) | 0.56 | 5.46 | 5.62 | 0.56 |
(-) | 22.54 | 3.68 | 5.18 | 51.28 |
(-) | 1.48 | 1.26 | 1.27 | 0.18 |
value-corrected (L) | 17.99 | 19.67 | 18.96 | 18.34 |
value (%) | 0.13 | 0.12 | 0.14 | 0.12 |
value (USD) | 68,850.5 | 69,908.5 | 66,550.5 | 68,425.0 |
Strategy | Corrected (L) | SOC Loss (%) | Start SOC (%) | Final SOC (%) |
---|---|---|---|---|
A-ECMS with NSGA-III | 19.47 | 0.274 | 60.00 | 30.76 |
A-ECMS with HM-BEO | 18.44 | 0.259 | 60.00 | 34.89 |
Dynamic programming (DP) | 17.76 | 0.256 | 60.00 | 34.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, C.; Lei, N.; Chen, C.; Zhang, H. A Hierarchical Evolutionary Search Framework with Manifold Learning for Powertrain Optimization of Flying Vehicles. Energies 2025, 18, 3350. https://doi.org/10.3390/en18133350
Lyu C, Lei N, Chen C, Zhang H. A Hierarchical Evolutionary Search Framework with Manifold Learning for Powertrain Optimization of Flying Vehicles. Energies. 2025; 18(13):3350. https://doi.org/10.3390/en18133350
Chicago/Turabian StyleLyu, Chenghao, Nuo Lei, Chaoyi Chen, and Hao Zhang. 2025. "A Hierarchical Evolutionary Search Framework with Manifold Learning for Powertrain Optimization of Flying Vehicles" Energies 18, no. 13: 3350. https://doi.org/10.3390/en18133350
APA StyleLyu, C., Lei, N., Chen, C., & Zhang, H. (2025). A Hierarchical Evolutionary Search Framework with Manifold Learning for Powertrain Optimization of Flying Vehicles. Energies, 18(13), 3350. https://doi.org/10.3390/en18133350