A Novel Multilevel Inverter Topology Generating a 19-Level Output Regulated by the PD-PWM Method
Abstract
:1. Introduction
2. State of the Art: Multilevel Converter Topologies
2.1. Diode-Clamped Multilevel Inverter (NPC)
2.2. Capacitor-Clamped Multilevel Inverter (FC)
2.3. Cascaded Multilevel Inverter (H-Bridge)
2.4. Active Neutral-Point-Clamped (ANPC)
2.5. New Topologies with Reduced Commutations
3. Proposed Topology
3.1. Circuit Description
3.2. Operating Modes and States
3.3. The PD-PWM Control Strategy
3.4. Total Harmonic Distortion (THD) and MTTF Calculation
- MOSFETs: λ(MOSFET) = 50 FIT;
- Diodes: λ(diode) = 20 FIT;
- Capacitors: λ(Capacitors) = 5 FIT;
- Inductors: λ(inductor) = 2 FIT.
- MTTF for CHB topology (36 MOSFETs, 0 diodes): 555,556 h;
- MTTF for NPC topology (36 MOSFETs, 306 diodes): 126,263 h;
- MTTF for FC topology (36 MOSFETs, 153 capacitors): 389,864 h;
- MTTF for our proposed topology (9 MOSFETs, 3 diodes): 1,960,784 h.
4. Hardware-in-the-Loop
- Model Development in Simulink: Begin by creating a detailed Simulink model of the multilevel converter and the PD-PWM control algorithm. Ensure that the model includes all relevant components, such as the converter topology, switching signals, and control logic.
- Code Generation: Use MATLAB’s Embedded Coder to generate C code from your Simulink model. This code will be deployed onto the DSP F28379D. Configure the code generation settings to match the target hardware specifications, including the processor 306 type and peripheral interfaces.
- Configure DSP with Code Composer Studio (CCS): Open the generated code in Code Composer Studio (CCS), the integrated development environment for the DSP F28379D. Set up the project in CCS, configuring the DSP’s CPU cores, clock settings, and peripherals (such as the ADC for sensor inputs and the PWM module for controlling the converter).
- Simulink Real-Time Interface: Establish communication between MATLAB-Simulink and the DSP F28379D by setting up the Simulink Real-Time (SLRT) or external mode. This allows you to run the Simulink model in real-time while monitoring and tuning parameters on the fly.
- HIL Simulation: Connect the DSP F28379D to the PC running MATLAB-Simulink via a JTAG debugger (Texas Instruments, Dallas, TX, USA) or USB interface. Start the HIL simulation, where the DSP controls the multilevel converter model running in Simulink. The DSP processes real-time data from the model, and the PWM signals are generated and fed back into the simulation, allowing for closed-loop testing.
- Testing and Validation: Monitor the system’s performance in real-time through Simulink. Adjust control parameters as needed to optimize performance. Validate the control strategy by comparing the HIL results with the expected outcomes from the purely simulated model.
- Iterative Refinement: Make sure the control algorithm satisfies performance objectives, such as lowering total harmonic distortion (THD) and speeding up response time, by using input from HIL testing. The system will be prepared for deployment in a real-world setting after validation.
5. Results and Discussion
5.1. Simulation Results
5.2. Improving Performance
- Vs is the filter output voltage.
- Ve is the filter input voltage.
- L is the inductance.
- C is the capacitance.
- R is the resistance.
- ω0 is the natural angular frequency.
- ω is the angular frequency of the signal.
- Q is the quality factor.
- μ is the damping coefficient.
- i(t) is the current.
5.3. Experimental Validation Using HIL with DSP F28379D
- The accurate tracking of the reference waveform with minimal deviation;
- The reliable generation of 19 discrete levels with proper voltage shaping;
- Realistic experimental behavior replicating practical inverter operation.
Topologies | NLEVELS | NDC | NS | ND | NC | THD% |
---|---|---|---|---|---|---|
CHB-MLI | 19 | 9 | 36 | 0 | 0 | 6.20% |
NPC [4] | 19 | 18 | 36 | 306 | 0 | - |
FC [5] | 19 | 18 | 36 | 0 | 153 | - |
[51] | 19 | 2 | 9 | 6 | 2 | 7.40% |
[52] | 19 | 2 | 8 | 4 | 0 | 7.19% |
[62] | 15 | 3 | 7 | 3 | 0 | 3.02% |
[59] | 19 | 3 | 13 | 0 | 0 | 3.89% |
[60] | 19 | 2 | 13 | 0 | 2 | 3.61% |
[63] | 17 | 2 | 12 | 0 | 4 | 4.83% |
[64] | 17 | 2 | 8 | 0 | 2 | 8.49% |
[65] | 15 | 4 | 12 | 0 | 0 | 5.50% |
[66] | 15 | 4 | 12 | 0 | 0 | 6.09% |
[67] | 7 | 1 | 8 | 1 | 2 | 5.68% |
[68] | 9 | 4 | 10 | 0 | 0 | 19.6% |
[69] | 11 | 1 | 12 | 0 | 2 | - |
[70] | 21 | 4 | 12 | 0 | 0 | 12.64% |
[71] | 15 | 3 | 10 | 0 | 0 | 5.45% |
[72] | 21 | 3 | 10 | 0 | 0 | 3.49% |
Proposed | 19 | 3 | 9 | 5 | 0 | 1.33% |
6. Conclusion and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PD-PWM | Phase-disposition pulse width modulation |
CHB-MLI | Cascaded H-bridge multilevel inverter |
THD | Total harmonic distortion |
NPC | Diode-clamped multilevel inverter |
CHB | Cascaded multilevel inverter |
FC | Flying capacitor topology |
ANPC | Active neutral-point-clamped |
MLI | Multilevel inverter |
PV | Photovoltaic |
References
- Etxegarai, G.; Camblong, H.; Ezeiza, A.; Lie, T.T. Design of Three Electric Vehicle Charging Tariff Systems to Improve Photovoltaic Self-Consumption. Energies 2024, 17, 1806. [Google Scholar] [CrossRef]
- Eswar, K.N.D.V.S.; Doss, M.A.N.; Vishnuram, P.; Selim, A.; Bajaj, M.; Kotb, H.; Kamel, S. Comprehensive Study on Reduced DC Source Count: Multilevel Inverters and Its Design Topologies. Energies 2023, 16, 18. [Google Scholar] [CrossRef]
- Chen, J.; Hu, H.; Wang, M.; Ge, Y.; Wang, K.; Huang, Y.; Yang, K.; He, Z.; Xu, Z.; Li, Y.R. Power Flow Control-Based Regenerative Braking Energy Utilization in AC Electrified Railways: Review and Future Trends. IEEE Trans. Intell. Transp. Syst. 2024, 25, 6345–6365. [Google Scholar] [CrossRef]
- MVijeh, M.; Rezanejad, M.; Samadaei, E.; Bertilsson, K. A General Review of Multilevel Inverters Based on Main Submodules: Structural Point of View. IEEE Trans. Power Electron. 2019, 34, 9479–9502. [Google Scholar] [CrossRef]
- Ahessab, H.; Hakam, Y.; Gaga, A.; El Haddadi, B. Design and Simulation of an Intelligent Grid-Connected MPPT Inverter with Battery Storage Using ANN Algorithm. In Advances in Electrical Systems and Innovative Renewable Energy Techniques; Springer: Cham, Switzerland, 2024. [Google Scholar]
- Balal, A.; Dinkhah, S.; Shahabi, F.; Herrera, M.; Chuang, Y.L. A Review on Multilevel Inverter Topologies. Emerg. Sci. J. 2022, 6, 185–200. [Google Scholar] [CrossRef]
- Puthiyapurayil, M.R.M.K.; Nasirudeen, M.N.; Saywan, Y.A.; Ahmad, W.; Malik, H. A Review of Open-Circuit Switch Fault Diagnostic Methods for Neutral Point Clamped Inverter. Electronics 2022, 11, 3169. [Google Scholar] [CrossRef]
- Rana, R.A.; Patel, S.A.; Muthusamy, A.; Lee, C.w.; Kim, H.-J. Review of Multilevel Voltage Source Inverter Topologies and Analysis of Harmonics Distortions in FC-MLI. Electronics 2019, 8, 1329. [Google Scholar] [CrossRef]
- Maheswari, K.T.; Bharanikumar, R.; Arjun, V.; Amrish, R.; Bhuvanesh, M. A comprehensive review on cascaded H-bridge multilevel inverter for medium voltage high power applications. Mater. Today Proc. 2021, 45 Pt 2, 2666–2670. [Google Scholar] [CrossRef]
- Prasad, K.N.V.; Kumar, G.R.; Kiran, T.V.; Narayana, G.S. Comparison of different topologies of cascaded H-Bridge multilevel inverter. In Proceedings of the 2013 International Conference on Computer Communication and Informatics, Coimbatore, India, 4–6 January 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Hathiyaldeniye, T.; Karawita, C.; Bagen, B.; Pahalawaththa, N.; Annakkage, U.D. Contrôleurs optimaux pour améliorer la récupération transitoire des onduleurs suiveurs de réseau connectés à des réseaux électriques faibles. IEEE Open Access J. Power Energy 2022, 9, 161–172. [Google Scholar] [CrossRef]
- Espinosa, E.; Veillon, M.; Melin, P.; Baier, C.; Munoz, J.; Espinoza, J.; Hernandez, J. A Staircase Modulation for Aometric Inverter Operating with Equals Fundamental Voltage and Mini-mum THD. In Proceedings of the IECON 2022—48e Conférence Annuelle de l’IEEE Industrial Electronics Society, Bruxelles, Belgique, 17–20 October 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Kavitha, R.; Premalatha, K.; Kumar, M.M.; Kumutha, S.; Manimaran, T.N. Line Voltage THD Minimization in Multilevel Inverter using Particle Swarm Optimization. In Proceedings of the 2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT), Erode, India, 22–24 February 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Dhanamjayulu, C.; Meikandasivam, S. Implementation and Comparison of Symmetric and Asymmetric Multilevel Inverters for Dynamic Loads. IEEE Access 2018, 6, 738–746. [Google Scholar] [CrossRef]
- Bettawar, P.A.; Punam, S.R. An inclusive review on various multilevel converter topologies for a grid connected photo-voltaic system. Int. Res. J. Eng. Technol. 2019, 6, 307–311. [Google Scholar]
- Choudhury, S.; Bajaj, M.; Dash, T.; Kamel, S.; Jurado, F. Multilevel inverter: A survey on classical and advanced topologies, control schemes, applications to power system and future prospects. Energies 2021, 14, 5773. [Google Scholar] [CrossRef]
- Poorfakhraei, A.; Narimani, M.; Emadi, A. A review of multilevel inverter topologies in electric vehicles: Current status and future trends. IEEE Open J. Power Electron. 2021, 2, 155–170. [Google Scholar] [CrossRef]
- Barbosa, P.; Steimer, P.; Meysenc, L.; Winkelnkemper, M.; Steinke, J.; Celanovic, N. Active Neutral-Point-Clamped Multilevel Converters. In Proceedings of the 36e Conférence IEEE 2005 des Spécialistes de L’électronique de Puissance, Dresde, Allemagne, 16 June 2005; pp. 2296–2301. [Google Scholar] [CrossRef]
- Sebaaly, F.; Kanaan, H.Y.; Moubayed, N. Three-level neutral-point-clamped inverters in transformerless PV systems—State of the art. In Proceedings of the MELECON 2014—2014 17th IEEE Mediterranean Electrotechnical Conference, Beirut, Lebanon, 13–16 April 2014; pp. 1–7. [Google Scholar] [CrossRef]
- Ounejjar, Y.; Al-Haddad, K. A novel high energetic efficiency multilevel topology with reduced impact on supply network. In Proceedings of the 2008 34th Annual Conference of IEEE Industrial Electronics, Orlando, FL, USA, 10–13 November 2008; pp. 489–494. [Google Scholar]
- Sharifzadeh, M.; Al-Haddad, K. Packed E-Cell (PEC) converter topology operation and experimental validation. IEEE Access 2019, 7, 93049–93061. [Google Scholar] [CrossRef]
- Hema, P.; Sri, N.S.; Sakthivel, A.; Kaliamoorthy, M. Design and Simulation of Five Levels Active Neutralpoint Clamped Inverter. J. Energy Environ. Sustain. 2017, 4, 25–30. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, Z.; Li, Y.; Liu, K.; Shang, J. Neutral-Point Potential Balancing of a Five-Level Active Neutral-Point-Clamped Inverter. IEEE Trans. Ind. Electron. 2013, 60, 1907–1918. [Google Scholar] [CrossRef]
- Jayakumar, V.; Chokkalingam, B.; Munda, J.L. A comprehensive review on space vector modulation techniques for neutral point clamped multi-level inverters. IEEE Access 2021, 9, 112104–112144. [Google Scholar] [CrossRef]
- Ghias, A.M.Y.M.; Pou, J.; Ciobotaru, M.; Agelidis, V.G. Voltage-balancing method using phase-shifted PWM for the flying capacitor multilevel converter. IEEE Trans. Power Electron. 2014, 29, 4521–4531. [Google Scholar] [CrossRef]
- Kesarwani, K.; Stauth, J.T. Resonant and multi-mode operation of flying capacitor multi-level DC-DC converters. In Proceedings of the 2015 IEEE 16th Workshop on Control and Modeling for Power Electronics (COMPEL), Vancouver, BC, Canada, 12–15 July 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Stillwell, A.; Candan, E.; Pilawa-Podgurski, R.C.N. Active voltage balancing in flying capacitor multi-level converters with valley current detection and constant effective duty cycle control. IEEE Trans. Power Electron. 2019, 34, 11429–11441. [Google Scholar] [CrossRef]
- Barzegarkhoo, R.; Forouzesh, M.; Lee, S.S.; Blaabjerg, F.; Siwakoti, Y.P. Switched-Capacitor Multilevel Inverters: A Compre- hensive Review. IEEE Trans. Power Electron. 2022, 37, 11209–11243. [Google Scholar] [CrossRef]
- Marzo, I.; Sanchez-Ruiz, A.; Barrena, J.A.; Abad, G.; Muguruza, I. Power Balancing in Cascaded H-Bridge and Modular Multilevel Converters Under Unbalanced Operation: A Review. IEEE Access 2021, 9, 110525–110543. [Google Scholar] [CrossRef]
- Hakam, Y.; Gaga, A.; Elhadadi, B. Exploring the state of electric vehicles: An evidence-based examination of current and future electric vehicle technologies and smart charging stations. Energy Rep. 2024, 11, 4102–4114. [Google Scholar] [CrossRef]
- Shirmardp, B.; Choupanp, R.; Zakerianp, A.; Nazarpourp, D.; Daryoosh, N. A New Multilevel Inverter Topology Based on Cascade H-Bridge and Extended Boost Quasi Z-Source for Photovoltaic System Applications. In Proceedings of the 7th Conference on Renewable, Clean and Efficient Energies, Online, 21 May 2015; Available online: https://hal.science/hal-02545355 (accessed on 8 February 2025).
- Estévez-Bén, A.A.; Alvarez-Diazcomas, A.; Rodríguez-Reséndiz, J. Transformerless multilevel voltage-source inverter topology comparative study for PV systems. Energies 2020, 13, 3261. [Google Scholar] [CrossRef]
- Fang, J.; Blaabjerg, F.; Liu, S.; Goetz, S.M. A Review of Multilevel Converters with Parallel Connectivity. IEEE Trans. Power Electron. 2021, 36, 12468–12489. [Google Scholar] [CrossRef]
- Van, C.M.; Xuan, T.N.; Hoang, P.V.; Trong, M.T.; Cong, S.P.; Van, L.N. A Generalized Space Vector Modulation for Cascaded H-bridge Multi-level Inverter. In Proceedings of the 2019 International Conference on System Science and Engineering (ICSSE), Dong Hoi, Vietnam, 20–21 July 2019; pp. 18–24. [Google Scholar] [CrossRef]
- Khan, A.; Ahmad, M.; Bhatti, M.A.; Ijaz, M.A.; Ullah, S. A Comparative Study of Multilevel Inverter Typologies with Reduced Switches. In Proceedings of the 2019 International Conference on Engineering and Emerging Technologies (ICEET), Lahore, Pakistan, 21–22 February 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Majdoul, R.; Touati, A.; Aitelmahjoub, A.; Zegrari, M.; Taouni, A.; Ouchatti, A. A Nine-Switch Nine-Level Voltage Inverter New Topology with Optimal Modulation Technique. In Proceedings of the 2020 International Conference on Electrical and Information Technologies (ICEIT), Rabat, Morocco, 4–7 March 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Zeng, J.; Lin, W.; Liu, J. Switched-Capacitor-Based Active-Neutral-Point-Clamped Seven-Level Inverter with Natural Balance and Boost Ability. IEEE Access 2019, 7, 126889–126896. [Google Scholar] [CrossRef]
- Zheng, G.; Chen, Y.; Kang, Y. A Modular Multilevel Converter (MMC) Based Solid-State Transformer (SST) Topology with Simplified Energy Conversion Process and Magnetic Integration. IEEE Trans. Ind. Electron. 2021, 68, 7725–7735. [Google Scholar] [CrossRef]
- El-Alami, A.; Kazi, M.A.; Baraka, I.; Majdoul, R.; AitElmahjoub, A. Sliding Mode Control of Six-Switch Five-Level Active Neutral Point Clamped (6S-5L-ANPC). In Smart Applications and Data Analysis; Hamlich, M., Bellatreche, L., Siadat, A., Ventura, S., Eds.; SADASC 2022. Communications in Computer and Information Science; Springer: Cham, Switzerland, 2022; Volume 1677. [Google Scholar] [CrossRef]
- Wang, Y.; Aksoz, A.; Geury, T.; Ozturk, S.B.; Kivanc, O.C.; Hegazy, O. A review of modular multilevel converters for stationary applications. Appl. Sci. 2020, 10, 7719. [Google Scholar] [CrossRef]
- Priya, M.; Ponnambalam, P.; Muralikumar, K. Modular-multilevel converter topologies and applications—A review. IET Power Electron. 2019, 12, 170–183. [Google Scholar] [CrossRef]
- Omer, P.; Kumar, J.; Surjan, B.S. A Review on Reduced Switch Count Multilevel Inverter Topologies. IEEE Access 2020, 8, 22281–22302. [Google Scholar] [CrossRef]
- Rezaei, M.A.; Nayeripour, M.; Hu, J.; Band, S.S.; Mosavi, A.; Khooban, M.-H. A New Hybrid Cascaded Switched-Capacitor Reduced Switch Multilevel Inverter for Renewable Sources and Domestic Loads. IEEE Access 2022, 10, 14157–14183. [Google Scholar] [CrossRef]
- Chappa, A.; Gupta, S.; Sahu, L.K.; Gautam, S.P.; Gupta, K.K. Symmetrical and Asymmetrical Reduced Device Multilevel Inverter Topology. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 885–896. [Google Scholar] [CrossRef]
- Vikash, P.; Vijayaraja, L.; Kumar, S.G. 21 Level Asymmetric Inverter without Inversion Circuit with Reduced Switch Count. In PREPARE@ u®|IEI Conferences; 2021; Available online: https://preprint.prepare.org.in/index.php/iei/article/view/189 (accessed on 8 February 2025). [CrossRef]
- Abdulhamed, Z.E.; Esuri, A.H.; Abodhir, N.A. New topology of asymmetrical nine-level cascaded hybrid bridge multilevel inverter. In Proceedings of the 2021 IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering MI-STA, Tripoli, Libya, 25–27 May 2021; IEEE: New York, NY, USA, 2021; pp. 430–434. [Google Scholar]
- Reyes-Severiano, Y.; Aguayo-Alquicira, J.; León-Aldaco, S.E.D.; Carrillo-Santos, L.M. Comparative analysis of PD-PWM technique in the set: Multilevel Inverter-Induction motor. Ing. Investig. Tecnol. 2020, 21. [Google Scholar] [CrossRef]
- Chakir, F.; EL Magri, A.; Lajouad, R.; Kissaoui, M.; Chakir, M.; Bouattane, O. Design and analysis of a new multi-level inverter topology with a reduced number of switches and controlled by PDPWM technique. Int. J. Electr. Comput. Eng. Syst. 2023, 14, 593–600. [Google Scholar] [CrossRef]
- Xue, C.; Zhou, D.; Li, Y. Finite-Control-Set Model Predictive Control for Three-Level NPC Inverter-Fed PMSM Drives with LC Filter. IEEE Trans. Ind. Electron. 2021, 68, 11980–11991. [Google Scholar] [CrossRef]
- Qureshi, M.R.; Mahar, M.A.; Larik, A.S. Harmonic Analysis and Design of LC Filter for a Seven-level Asymmetric Cascaded Half Bridge Multilevel Inverter. Int. J. Electr. Eng. Emerg. Technol. 2020, 3, 52–58. [Google Scholar]
- Sagvand, F.; Siahbalaee, J.; Koochaki, A. An Asymmetrical 19-Level Inverter with a Reduced Number of Switches and Capacitors. Electronics 2023, 12, 338. [Google Scholar] [CrossRef]
- Mohammed, M.F.; Qasim, M.A. Single Phase T-Type Multilevel Inverters for Renewable Energy Systems, Topology, Modulation, and Control Techniques: A Review. Energies 2022, 15, 8720. [Google Scholar] [CrossRef]
- Kumar, S.S.; Sivachitra, M.; Meenakumari, R.; Gowsiha, G.; Kokila, S.; Santhiya, R. Study and Implementation of 19-Level Multilevel Inverter and its Onfigurations. Ann. Rom. Soc. Cell Biol. 2021, 25, 1809–1815. [Google Scholar]
- Thakre, K.; Mohanty, K.B.; Kommukuri, V.S.; Chatterjee, A.; Nigam, P.; Gupta, S.K. Modified cascaded multilevel inverter for renewable energy systems with less number of unidirectional switches. Energy Rep. 2022, 8, 5296–5304. [Google Scholar] [CrossRef]
- Bektaş, E.; Aldabbagh, M.M.; Ahmed, S.R.; Hussain, A.S.T.; Taha, T.A.; Ahmed, O.K.; Ezzat, S.B.; Hashim, A.M. Enhancing Harmonic Reduction in Multilevel Inverters using the Weevil Damage Optimization Algorithm. J. Robot. Control (JRC) 2024, 5, 717–722. [Google Scholar]
- Hang, L.; Subramaniam, U.; Bayrak, G.; Moayedi, H.; Ghaderi, D.; Minaz, M.R. Influence of a proposed switching method on reliability and total harmonic distortion of the quasi Z–source inverters. IEEE Access 2020, 8, 33088–33100. [Google Scholar] [CrossRef]
- Faria, P.; Vale, Z. Realistic Load Modeling for Efficient Consumption Management Using Real-Time Simulation and Power Hardware-in-the-Loop. Energies 2023, 16, 338. [Google Scholar] [CrossRef]
- Hakam, Y.; Gaga, A.; Tabaa, M.; Elhadadi, B. Intelligent Integration of Vehicle-to-Grid (V2G) and Vehicle-for-Grid (V4G) Systems: Leveraging Artificial Neural Networks (ANNs) for Smart Grid. Energies 2024, 17, 3095. [Google Scholar] [CrossRef]
- Dhanamjayulu, C.; Kaliannan, P.; Padmanaban, S.; Maroti, P.K.; Holm-Nielsen, J.B. A new three-phase multi-level asymmetrical inverter with optimum hardware components. IEEE Access 2020, 8, 212515–212528. [Google Scholar] [CrossRef]
- Iqbal, A.; Siddique, M.D.; Reddy, B.P.; Maroti, P.K.; Alammari, R. A new family of step-up hybrid switched capacitor integrated multilevel inverter topologies with dual input voltage sources. IEEE Access 2020, 9, 4398–4410. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, S.; Song, Y.; Qi, W.; Guo, Q.; Li, X.; Kong, L.; Chen, J. Real-Time Global Optimal Energy Management Strategy for Connected PHEVs Based on Traffic Flow Information. IEEE Trans. Intell. Transp. Syst. 2024, 25, 20032–20042. [Google Scholar] [CrossRef]
- Antar, R.K.; Hussein, T.A.; Abdullah, A.M. Design and implementation of reduced number of switches for new multilevel inverter topology without zero-level state. Int. J. Power Electron. Drive Syst. 2022, 13, 401. [Google Scholar] [CrossRef]
- Bin Arif, M.S.; Mustafa, U.; Ayob, S.B.M.; Rodriguez, J.; Nadeem, A.; Abdelrahem, M. Asymmetrical 17-level inverter topology with reduced total standing voltage and device count. IEEE Access 2021, 9, 69710–69723. [Google Scholar] [CrossRef]
- Dhanamjayulu, C.; Prasad, D.; Padmanaban, S.; Maroti, P.K.; Holm-Nielsen, J.B.; Blaabjerg, F. Design and implementation of seventeen level inverter with reduced components. IEEE Access 2021, 9, 16746–16760. [Google Scholar] [CrossRef]
- Fahad, M.; Siddique, M.D.; Iqbal, A.; Sarwar, A.; Mekhilef, S. Implementation and analysis of a 15-level inverter topology with reduced switch count. IEEE Access 2021, 9, 40623–40634. [Google Scholar] [CrossRef]
- Anand, V.; Singh, V. Compact symmetrical and asymmetrical multilevel inverter with reduced switches. Int. Trans. Electr. Energy Syst. 2020, 30, e12458. [Google Scholar] [CrossRef]
- Gopal, Y.; Kumar, Y.N.V.; Kumari, A.; Prakash, O.; Chowdhury, S.; Almehizia, A.A. Reduced Device Count for Self-Balancing Switched-Capacitor Multilevel Inverter Integration with Renewable Energy Source. Sustainability 2023, 15, 8000. [Google Scholar] [CrossRef]
- Memon, R.; Mahar, M.A.; Larik, A.S.; Shah, S.A.A. Design and Performance Analysis of New Multilevel Inverter for PV System. Sustainability 2023, 15, 10629. [Google Scholar] [CrossRef]
- Ali, M.; Tariq, M.; Lin, C.-H.; Chakrobortty, R.K.; Alamri, B.; Alahmadi, A.; Ryan, M.J. Operation of a UXE-Type 11-Level Inverter with Voltage-Balance Modulation Using NLC and ACO-Based SHE. Sustainability 2021, 13, 9035. [Google Scholar] [CrossRef]
- Arulappan, A.T.A.; Selvaraj, M.; Aladian, A. SHE PWM based 21 level inverters with hardware analysis. Int. J. Power Electron. Drive Syst. (IJPEDS) 2024, 15, 993–1000. [Google Scholar] [CrossRef]
- Srivastava, A.; Chauhan, A.; Tripathi, A. Performance Comparison of Asymmetrical Multilevel Inverter with Different Switching Techniques. Energies 2025, 18, 715. [Google Scholar] [CrossRef]
- Khasim, S.R.; Dhanamjayulu, C.; Padmanaban, S.; Holm-Nielsen, J.B.; Mitolo, M. A novel asymmetrical 21-level inverter for solar PV energy system with reduced switch count. IEEE Access 2021, 9, 11761–11775. [Google Scholar] [CrossRef]
T1 | T2 | T3 | T4 | Vout |
---|---|---|---|---|
1 | 1 | 0 | 0 | VDC/2 |
0 | 0 | 1 | 1 | V−DC/2 |
0 | 1 | 1 | 0 | 0 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | Vout |
---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | VDC/2 |
0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | VDC/4 |
0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | −VDC/4 |
0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | −VDC/2 |
Mode | Vout | S1 | S2 | S3 | S4 | S5 | S6 | S7 |
---|---|---|---|---|---|---|---|---|
1 | 9E = Vdc1 + Vdc2 + Vdc3 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |
2 | 8E = Vdc1 + Vdc2 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
3 | 7E = Vdc1 + Vdc3 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
4 | 6E = Vdc1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
5 | 5E = Vdc1 − Vdc3 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
6 | 4E = Vdc1 − Vdc2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
7 | 3E = Vdc2 + Vdc3 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
8 | 2E = Vdc2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
9 | 1E = Vdc3 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | −1E = −Vdc3 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
12 | −2E = −Vdc2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
13 | −3E = −(Vdc2 + Vdc3) | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
14 | −4E = −(Vdc1 − Vdc2) | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
15 | −5E = −(Vdc1 − Vdc3) | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
16 | −6E = −Vdc1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
17 | −7E = −(Vdc1 + Vdc3) | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
18 | −8E = −(Vdc1 + Vdc2) | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
19 | −9E = −(Vdc1 + Vdc2 + Vdc3) | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
Fundamental Frequency | Load | DC | Carrier Frequency |
---|---|---|---|
50 Hz | 10 Ω | Vdc1 = 180 V | 5 kHz |
Vdc2 = 60 V | |||
Vdc3 = 30 V |
Parameter to Be Compared | Before Adding an LC Filter | After Adding an LC Filter | Experimental Using HIL with DSP |
---|---|---|---|
THD% | 6.2% | 1.3% | 2.2% |
Peak (V) | 269.2 V | 269.3 V | 257 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemssaddak, S.; Ait Elmahjoub, A.; Tabaa, M.; El-Alami, A.; Zegrari, M. A Novel Multilevel Inverter Topology Generating a 19-Level Output Regulated by the PD-PWM Method. Energies 2025, 18, 3227. https://doi.org/10.3390/en18133227
Lemssaddak S, Ait Elmahjoub A, Tabaa M, El-Alami A, Zegrari M. A Novel Multilevel Inverter Topology Generating a 19-Level Output Regulated by the PD-PWM Method. Energies. 2025; 18(13):3227. https://doi.org/10.3390/en18133227
Chicago/Turabian StyleLemssaddak, Sofia, Abdelhafid Ait Elmahjoub, Mohamed Tabaa, Adnane El-Alami, and Mourad Zegrari. 2025. "A Novel Multilevel Inverter Topology Generating a 19-Level Output Regulated by the PD-PWM Method" Energies 18, no. 13: 3227. https://doi.org/10.3390/en18133227
APA StyleLemssaddak, S., Ait Elmahjoub, A., Tabaa, M., El-Alami, A., & Zegrari, M. (2025). A Novel Multilevel Inverter Topology Generating a 19-Level Output Regulated by the PD-PWM Method. Energies, 18(13), 3227. https://doi.org/10.3390/en18133227