A Constant-Pressure Air Storage Operation Strategy for an Isothermal Compressed Air Energy Storage System Based on a Linear-Drive Liquid Piston
Abstract
:1. Introduction
2. Constant-Pressure Air Storage Process
2.1. Dual-Mode Operation Strategy of Buffer Tank
2.2. Dual-Mode Operation Strategy of Hydraulic Cylinders
3. Constant-Pressure Isothermal Compressed Air Energy Storage System (CP-ICAES)
3.1. System Structure
3.2. System Operation
3.2.1. Preconditioning Process
3.2.2. Energy Storage Process
3.2.3. Power Generation Process
4. Mathematical Model
- (1)
- The air is treated as an ideal gas.
- (2)
- The liquid is assumed incompressible, and air dissolution is negligible.
- (3)
- Kinetic energy losses, phase changes, and chemical reactions during gas–liquid flow are ignored.
- (4)
- Pressure losses in pipelines are neglected.
- (5)
- Valve switching time is excluded.
- (6)
- The linear motor operates at a constant speed during reciprocation, with no consideration of startup or shutdown processes.
4.1. Mathematical Model for Energy Storage Process
4.1.1. Low-Pressure Compressor
4.1.2. Liquid Piston Compressor
4.1.3. Buffer Tank
4.1.4. Air Storage Tank
4.2. Power Generation Process Modeling
4.2.1. Low-Pressure Expander
4.2.2. Liquid Piston Expander
4.2.3. Buffer Tank
4.2.4. Air Storage Tank
4.3. Efficiency Analysis
5. Case Study
5.1. Parameter Configuration
5.2. Energy Storage Process
5.3. Power Generation Process
5.4. Efficiency Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAES | Compressed Air Energy Storage |
ICAES | Isothermal Compressed Air Energy Storage |
CP-ICAES BFT | Constant-Pressure Isothermal Compressed Air Energy Storage System Buffer Tank |
LP | Liquid Piston |
AST | Air Storage Tank |
WST | Water Storage Tank |
CBA | Combined BFT and AST |
CBP | Combined BFT and LP |
CPP | Combined LP and LP |
CPW | Combined LP and WST |
Symbols | |
W | Work (kWh) |
Mass Inflow Rate (kg/s) | |
Rg | Air Constant (J/kg K) |
T | Temperature (°C) |
p | Pressure (MPa) |
η | Efficiency (dimensionless) |
V | Volume (m3) |
ρ | Density (kg/m3) |
v | Velocity (m/s) |
S | Surface (mm2) |
d | Diameter (mm) |
E | Energy (kWh) |
t | Time (h) |
Q | Volumetric Flow Rate (m3/h) |
F | Force (N) |
References
- Ahmad, T.; Zhang, D. A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Rep. 2020, 6, 1973–1991. [Google Scholar] [CrossRef]
- Bogdanov, D.; Ram, M.; Aghahosseini, A.; Gulagi, A.; Oyewo, A.S.; Child, M.; Caldera, U.; Sadovskaia, K.; Farfan, J.; De Souza Noel Simas Barbosa, L.; et al. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy 2021, 227, 120467. [Google Scholar] [CrossRef]
- Downie, C. Strategies for Survival: The International Energy Agency’s response to a new world. Energ. Policy 2020, 141, 111452. [Google Scholar] [CrossRef]
- Bassam, A.M.; Elminshawy, N.A.S.; Oterkus, E.; Amin, I. Hybrid compressed air energy storage system and control strategy for a partially floating photovoltaic plant. Energy 2024, 313, 133706. [Google Scholar] [CrossRef]
- Chen, H.; Cong, T.N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. Mater. 2009, 19, 291–312. [Google Scholar] [CrossRef]
- Tong, Z.; Cheng, Z.; Tong, S. A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization. Renew. Sustain. Energy Rev. 2021, 135, 110178. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, L.; Guo, W.; Lian, H.; Wang, Y.; Ye, K.; Xie, M. Dynamic analysis of an adiabatic compressed air energy storage system with temperature-regulated in air tanks. Renew. Sustain. Energy Rev. 2024, 206, 114862. [Google Scholar] [CrossRef]
- Li, H.; Dong, C.; Mao, Y.; Gu, H.; Ye, Y.; Ye, C.; Bu, Z.; Zhong, Y.; Ye, T. Performance discussion of a compressed air energy storage system based on compression and expansion dual-purpose compressor with water spray cooling function. J. Energy Storage 2024, 103, 114327. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, L.; Yang, H.; Xie, M.; Ye, K. Dynamic simulation of a Re-compressed adiabatic compressed air energy storage (RA-CAES) system. Energy 2022, 261, 125351. [Google Scholar] [CrossRef]
- Dupin, V.; Teixeira, D. Advanced adiabatic compressed air energy storage systems dynamic modelling: Impact of the heat storage device. Heliyon 2025, 11, e40730. [Google Scholar] [CrossRef]
- Cui, J.; Yang, X.; Chen, J.; Su, H.; Xie, J. Multi-perspective analysis of adiabatic compressed air energy storage system with cascaded packed bed latent heat storage under variable conditions. Energy 2024, 305, 132373. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, X.; Zhang, T.; Xue, X.; Chen, X.; Si, Y. Design and operation of an adiabatic compressed air energy storage system incorporating a detailed heat exchanger model. Energy 2024, 304, 132104. [Google Scholar] [CrossRef]
- PraveenKumar, S.; Kumar, A. Thermodynamic, environmental and economic analysis of solar photovoltaic panels using aluminium reflectors and latent heat storage units: An experimental investigation using passive cooling approach. Energy Storage 2025, 112, 115487. [Google Scholar] [CrossRef]
- Bennett, J.A.; Fitts, J.P.; Clarens, A.F. Compressed air energy storage capacity of offshore saline aquifers using isothermal cycling. Appl. Energy 2022, 325, 119830. [Google Scholar] [CrossRef]
- Cheekatamarla, P.K.; Kassaee, S.; Abu-Heiba, A.; Momen, A.M. Near isothermal compressed air energy storage system in residential and commercial buildings: Techno-economic analysis. Energy 2022, 251, 123963. [Google Scholar] [CrossRef]
- Heidari, M.; Mortazavi, M.; Rufer, A. Design, modeling and experimental validation of a novel finned reciprocating compressor for Isothermal Compressed Air Energy Storage applications. Energy 2017, 140, 1252–1266. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.; Zhou, X.; Zhang, Y.; Li, W.; Zuo, Z.; Guo, H.; Huang, Y.; Chen, H. A near-isothermal expander for isothermal compressed air energy storage system. Appl. Energy 2018, 225, 955–964. [Google Scholar] [CrossRef]
- Patil, V.C.; Ro, P.I. Modeling of liquid-piston based design for isothermal ocean compressed air energy storage system. Energy Storage 2020, 31, 101449. [Google Scholar] [CrossRef]
- Gouda, E.M.; Fan, Y.; Benaouicha, M.; Neu, T.; Luo, L. Review on Liquid Piston technology for compressed air energy storage. J. Energy Storage 2021, 43, 103111. [Google Scholar] [CrossRef]
- Patil, V.C.; Liu, J.; Ro, P.I. Efficiency improvement of liquid piston compressor using metal wire mesh for near-isothermal compressed air energy storage application. J. Energy Storage 2020, 28, 101226. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, W.; Nian, Y. Liquid-gas heat transfer characteristics of near isothermal compressed air energy storage based on Spray Injection. Int. J. Heat Mass Tran. 2023, 215, 124530. [Google Scholar] [CrossRef]
- Li, R.; Tao, R.; Yao, E.; Chen, H.; Zhang, H.; Xu, X.; Wang, H. Comprehensive thermo-exploration of a near-isothermal compressed air energy storage system with a pre-compressing process and heat pump discharging. Energy 2023, 268, 126609. [Google Scholar] [CrossRef]
- Fu, H.; Jiang, T.; Cui, Y.; Li, B. Adaptive Hydraulic Potential Energy Transfer Technology and Its Application to Compressed Air Energy Storage. Energies 2018, 11, 1845. [Google Scholar] [CrossRef]
- Kim, Y.M.; Favrat, D. Energy and exergy analysis of a micro-compressed air energy storage and air cycle heating and cooling system. Energy 2010, 35, 213–220. [Google Scholar] [CrossRef]
- Cao, R.; Li, W.; Wang, S.; Yang, H.; Kuang, C. Comprehensive comparative study of two novel isobaric adiabatic compressed air energy storage systems coupled with pumped hydro storage. Appl. Therm. Eng. 2024, 257, 124318. [Google Scholar] [CrossRef]
- Wei, L.; Liu, X.; Wu, F.; Li, H.; Wu, Y.; Zhou, H. Performance analysis of a novel isobaric compressed air energy storage (CAES) system based on dual fluid. J. Energy Storage 2025, 108, 115001. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Wang, X.; Yao, E. A Novel Pumped Hydro Combined with Compressed Air Energy Storage System. Energies 2013, 6, 1554–1567. [Google Scholar] [CrossRef]
- Yao, E.; Wang, H.; Liu, L.; Xi, G. A Novel Constant-Pressure Pumped Hydro Combined with Compressed Air Energy Storage System. Energies 2015, 8, 154–171. [Google Scholar] [CrossRef]
- Kim, Y.M.; Shin, D.G.; Favrat, D. Operating characteristics of constant-pressure compressed air energy storage (CAES) system combined with pumped hydro storage based on energy and exergy analysis. Energy 2011, 36, 6220–6233. [Google Scholar] [CrossRef]
Mode | Compressed Air in LP2 | Compressed Air in LP1 |
---|---|---|
CBA | FA1, FA5, FW3 | FA3, FA5, FW3 |
CBP | FA1, FA4, FW2 | FA3, FA2, FW1 |
CPP | FW5, FW14 | FW5, FW14 |
CPW | FW5, FW15 | FW4, FW15 |
Hydraulic Cylinder | Compressed Air in LP2 | Compressed Air in LP1 | |||
---|---|---|---|---|---|
Left | Right | Left | Right | ||
C1 | CPP mode | FW7, FW8 FW7, FW8 | FW6, FW9 FW6, FW9 | FW6, FW9 FW6, FW9 | FW7, FW8 FW7, FW8 |
CPW mode | |||||
C2 | CPP mode | FW11, FW12 FW11, FW12 | FW10, FW13 FW10, FW13 | FW10, FW13 FW11, FW12 | FW11, FW12 FW10, FW13 |
CPW mode |
Mode | Expanded Air in LP1 | Expanded Air in LP2 |
---|---|---|
CBP | FA3, FA2, FW1 | FA1, FA4, FW2 |
CBA | FA3, FA5, FW3 | FA1, FA5, FW3 |
CPW | FW5, FW15 | FW4, FW15 |
CPP | FW5, FW14 | FW5, FW14 |
Hydraulic Cylinder | Expanded Air in LP1 | Expanded Air in LP2 | |||
---|---|---|---|---|---|
Left | Right | Left | Right | ||
C1 | CPW mode | FW7, FW8 FW7, FW8 | FW6, FW9 FW6, FW9 | FW6, FW9 FW6, FW9 | FW7, FW8 FW7, FW8 |
CPP mode | |||||
C2 | CPW mode | FW11, FW12 FW11, FW12 | FW10, FW13 FW10, FW13 | FW11, FW12 FW10, FW13 | FW10, FW13 FW11, FW12 |
CPP mode |
Parameter | Value | Parameter | Value |
---|---|---|---|
Pressure of low-pressure air (MPa) | 1 | Time of energy storage (h) | 2 |
Pressure of air storage (MPa) | 5 | Mass flow rate in compression (kg/s) | 0.203 |
Ambient pressure (MPa) | 0.1 | Time of compression cycle (h) | 0.5 |
Volume of LP (m3) | 30.7 | Time of CBA mode in compression (h) | 0.25 |
Volume of BFT (m3) | 6.14 | Time of CPW mode in compression (h) | 0.25 |
Volume of AST (m3) | 24.6 | Number of cycles in compression | 4 |
Diameter of C1 (mm) | 130 | Time of power generation (h) | 2 |
Rod diameter of C1 (mm) | 63 | Mass flow rate in expansion (kg/s) | 0.203 |
Diameter of C2 (mm) | 112 | Time of expansion cycle (h) | 0.5 |
Rod diameter of C2 (mm) | 63 | Time of CBP mode in expansion (h) | 0.25 |
Linear speed in compression (m/s) | 1 | Time of CPP mode in expansion (h) | 0.25 |
Linear speed in expansion (m/s) | 1 | Number of cycles in expansion | 4 |
Efficiency of linear motor | 0.9 | Efficiency of low-pressure compressor | 0.85 |
Efficiency of linear generator | 0.9 | Efficiency of low-pressure expander | 0.85 |
System | Temperature Fluctuation/°C | Thermal Efficiency | System Efficiency |
---|---|---|---|
Ideal isothermal CAES | 0 | 100% | 74.0% |
Near-isothermal CAES | 3 | 98.0% | 72.5% |
5 | 96.6% | 71.6% | |
15 | 90.3% | 66.8% | |
20 | 87.2% | 64.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Jiang, T.; Chen, Z. A Constant-Pressure Air Storage Operation Strategy for an Isothermal Compressed Air Energy Storage System Based on a Linear-Drive Liquid Piston. Energies 2025, 18, 3178. https://doi.org/10.3390/en18123178
Cui Y, Jiang T, Chen Z. A Constant-Pressure Air Storage Operation Strategy for an Isothermal Compressed Air Energy Storage System Based on a Linear-Drive Liquid Piston. Energies. 2025; 18(12):3178. https://doi.org/10.3390/en18123178
Chicago/Turabian StyleCui, Yan, Tong Jiang, and Zhengda Chen. 2025. "A Constant-Pressure Air Storage Operation Strategy for an Isothermal Compressed Air Energy Storage System Based on a Linear-Drive Liquid Piston" Energies 18, no. 12: 3178. https://doi.org/10.3390/en18123178
APA StyleCui, Y., Jiang, T., & Chen, Z. (2025). A Constant-Pressure Air Storage Operation Strategy for an Isothermal Compressed Air Energy Storage System Based on a Linear-Drive Liquid Piston. Energies, 18(12), 3178. https://doi.org/10.3390/en18123178